Browse Source

new class for scheduler computation during LTL-MC

tempestpy_adaptions
hannah 3 years ago
committed by Stefan Pranger
parent
commit
6af47eaadc
  1. 296
      src/storm/modelchecker/helper/ltl/SparseLTLHelper.cpp
  2. 63
      src/storm/modelchecker/helper/ltl/SparseLTLHelper.h
  3. 308
      src/storm/modelchecker/helper/ltl/internal/SparseLTLSchedulerHelper.cpp
  4. 102
      src/storm/modelchecker/helper/ltl/internal/SparseLTLSchedulerHelper.h

296
src/storm/modelchecker/helper/ltl/SparseLTLHelper.cpp

@ -12,10 +12,8 @@
#include "storm/storage/StronglyConnectedComponentDecomposition.h"
#include "storm/storage/MaximalEndComponentDecomposition.h"
#include "storm/storage/memorystructure/MemoryStructure.h"
#include "storm/storage/memorystructure/MemoryStructureBuilder.h"
#include "storm/solver/SolveGoal.h"
#include "storm/utility/graph.h"
#include "storm/exceptions/InvalidPropertyException.h"
@ -25,90 +23,19 @@ namespace storm {
namespace helper {
template <typename ValueType, bool Nondeterministic>
SparseLTLHelper<ValueType, Nondeterministic>::SparseLTLHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix) : _transitionMatrix(transitionMatrix){
SparseLTLHelper<ValueType, Nondeterministic>::SparseLTLHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix) : _transitionMatrix(transitionMatrix) {
// Intentionally left empty.
}
template <typename ValueType, bool Nondeterministic>
uint_fast64_t SparseLTLHelper<ValueType, Nondeterministic>::SparseLTLHelper::getMemoryState(uint_fast64_t daState, uint_fast64_t infSet) {
return (daState * (_infSets.get().size()+1))+ infSet;
}
template <typename ValueType, bool Nondeterministic>
storm::storage::Scheduler<ValueType> SparseLTLHelper<ValueType, Nondeterministic>::SparseLTLHelper::extractScheduler(storm::models::sparse::Model<ValueType> const& model) {
STORM_LOG_ASSERT(this->isProduceSchedulerSet(), "Trying to get the produced optimal choices although no scheduler was requested.");
// If Pmax(phi) = 0 or Pmin(phi) = 1, we return a memoryless scheduler with arbitrary choices
if (_randomScheduler) {
storm::storage::Scheduler<ValueType> scheduler(this->_transitionMatrix.getRowGroupCount());
for (storm::storage::sparse::state_type state = 0; state < this->_transitionMatrix.getRowGroupCount(); ++state) {
scheduler.setChoice(0, state);
}
return scheduler;
}
// Otherwise, we compute a scheduler with memory.
STORM_LOG_ASSERT(this->_producedChoices.is_initialized(), "Trying to extract the produced scheduler but none is available. Was there a computation call before?");
STORM_LOG_ASSERT(this->_memoryTransitions.is_initialized(), "Trying to extract the DA transition structure but none is available. Was there a computation call before?");
STORM_LOG_ASSERT(this->_memoryInitialStates.is_initialized(), "Trying to extract the initial states of the DA but there are none available. Was there a computation call before?");
STORM_LOG_ASSERT(this->_dontCareStates.is_initialized(), "Trying to extract the Scheduler-dontCare states but there are none available. Was there a computation call before?");
// Create a memory structure for the MDP scheduler with memory. If hasRelevantStates is set, we only consider initial model states relevant.
auto memoryBuilder = storm::storage::MemoryStructureBuilder<ValueType>(this->_memoryTransitions.get().size(), model, this->hasRelevantStates());
// Build the transitions between the memory states: startState to goalState using modelStates (transitionVector).
for (storm::storage::sparse::state_type startState = 0; startState < this->_memoryTransitions.get().size(); ++startState) {
for (storm::storage::sparse::state_type goalState = 0; goalState < this->_memoryTransitions.get().size(); ++goalState) {
// Bitvector that represents modelStates the model states that trigger this transition.
memoryBuilder.setTransition(startState, goalState, this->_memoryTransitions.get()[startState][goalState]);
}
}
// InitialMemoryStates: Assign an initial memory state model states
if (this->hasRelevantStates()) {
// Only consider initial model states
for (uint_fast64_t modelState : model.getInitialStates()) {
memoryBuilder.setInitialMemoryState(modelState, this->_memoryInitialStates.get()[modelState]);
}
} else {
// All model states are relevant
for (uint_fast64_t modelState = 0; modelState < model.getNumberOfStates(); ++modelState) {
memoryBuilder.setInitialMemoryState(modelState, this->_memoryInitialStates.get()[modelState]);
}
}
// Build the memoryStructure.
storm::storage::MemoryStructure memoryStructure = memoryBuilder.build();
// Create a scheduler (with memory) for the model from the REACH and MEC scheduler of the MDP-DA-product model.
storm::storage::Scheduler<ValueType> scheduler(this->_transitionMatrix.getRowGroupCount(), memoryStructure);
// Use choices in the product model to create a choice based on model state and memory state
for (const auto &choice : this->_producedChoices.get()) {
// <s, q, InfSet> -> choice
storm::storage::sparse::state_type modelState = std::get<0>(choice.first);
storm::storage::sparse::state_type daState = std::get<1>(choice.first);
uint_fast64_t infSet = std::get<2>(choice.first);
STORM_LOG_ASSERT(!this->_dontCareStates.get()[getMemoryState(daState, infSet)].get(modelState), "Tried to set choice for dontCare state.");
scheduler.setChoice(choice.second, modelState, getMemoryState(daState, infSet));
}
// Set "dontCare" states
for (uint_fast64_t memoryState = 0; memoryState < this->_dontCareStates.get().size(); ++memoryState) {
for (auto state : this->_dontCareStates.get()[memoryState]) {
scheduler.setDontCare(state, memoryState);
}
}
// Sanity check for created scheduler.
STORM_LOG_ASSERT(scheduler.isDeterministicScheduler(), "Expected a deterministic scheduler");
STORM_LOG_ASSERT(!scheduler.isPartialScheduler(), "Expected a fully defined scheduler");
return scheduler;
STORM_LOG_ASSERT(this->_schedulerHelper.is_initialized(), "Trying to get the produced optimal choices but none were available. Was there a computation call before?");
return this->_schedulerHelper.get().extractScheduler(model, this->hasRelevantStates());
}
template<typename ValueType, bool Nondeterministic>
std::vector<ValueType> SparseLTLHelper<ValueType, Nondeterministic>::computeLTLProbabilities(Environment const &env, storm::logic::PathFormula const& formula, CheckFormulaCallback const& formulaChecker) {
// Replace state-subformulae by atomic propositions (APs)
@ -156,11 +83,6 @@ namespace storm {
std::size_t accMECs = 0;
std::size_t allMECs = 0;
if (this->isProduceSchedulerSet()) {
_infSets.emplace();
_accInfSets.emplace(product->getProductModel().getNumberOfStates(), boost::none);
_producedChoices.emplace();
}
for (auto const& conjunction : dnf) {
// Determine the set of states of the subMDP that can satisfy the condition, remove all states that would violate Fins in the conjunction.
@ -238,82 +160,9 @@ namespace storm {
}
if (this->isProduceSchedulerSet()) {
// save choices for states that weren't assigned to any other MEC yet.
this->_schedulerHelper.get().saveProductEcChoices(acceptance, mec, conjunction, product);
// Save all states contained in this MEC
storm::storage::BitVector mecStates(transitionMatrix.getRowGroupCount(), false);
for (auto const &stateChoicePair : mec) {
mecStates.set(stateChoicePair.first);
}
// We know the MEC satisfied the conjunction: Save InfSets.
std::set<uint_fast64_t> infSetIds;
for (auto const& literal : conjunction) {
storm::storage::BitVector infSet;
if (literal->isTRUE()) {
// All states
infSet = storm::storage::BitVector(transitionMatrix.getRowGroupCount(), true);
} else if (literal->isAtom()) {
const cpphoafparser::AtomAcceptance &atom = literal->getAtom();
if (atom.getType() == cpphoafparser::AtomAcceptance::TEMPORAL_INF) {
if (atom.isNegated()) {
infSet = ~acceptance.getAcceptanceSet(atom.getAcceptanceSet());
} else {
infSet = acceptance.getAcceptanceSet(atom.getAcceptanceSet());
}
}
else if (atom.getType() == cpphoafparser::AtomAcceptance::TEMPORAL_FIN) {
// If there are FinSets in the conjunction we use the InfSet containing all states in this MEC
infSet = mecStates;
}
}
// Save new InfSets
if (infSet.size() > 0) {
auto it = std::find(_infSets.get().begin(), _infSets.get().end(), infSet);
if (it == _infSets.get().end()) {
infSetIds.insert(_infSets.get().size());
_infSets.get().emplace_back(infSet);
} else {
// save ID for accCond of the MEC states
infSetIds.insert(distance(_infSets.get().begin(), it));
}
}
}
// Save the InfSets into the _accInfSets for states in this MEC, but only if there weren't assigned to any other MEC yet.
storm::storage::BitVector newMecStates(transitionMatrix.getRowGroupCount(), false);
for (auto const &stateChoicePair : mec) {
if (_accInfSets.get()[stateChoicePair.first] == boost::none) {
// state wasn't assigned to any other MEC yet.
_accInfSets.get()[stateChoicePair.first].emplace(infSetIds);
newMecStates.set(stateChoicePair.first);
}
}
// Define scheduler choices for the states in this MEC (that are not in any other MEC)
for (uint_fast64_t id : infSetIds) {
// Scheduler that satisfies the MEC acceptance condition (visit each InfSet inf often, or switch to scheduler of another MEC)
storm::storage::Scheduler<ValueType> mecScheduler(transitionMatrix.getRowGroupCount());
// States not in InfSet: Compute a scheduler that, with prob=1, reaches the infSet via mecStates starting from states that are not yet in other MEC
storm::utility::graph::computeSchedulerProb1E<ValueType>(newMecStates, transitionMatrix, backwardTransitions, mecStates, _infSets.get()[id] & mecStates, mecScheduler);
// States that already reached the InfSet
for (auto pState : (newMecStates & _infSets.get()[id])) {
// Prob1E sets an arbitrary choice for the psi states, but we want to stay in this accepting MEC.
mecScheduler.setChoice(*mec.getChoicesForState(pState).begin() - transitionMatrix.getRowGroupIndices()[pState], pState);
}
// Extract scheduler choices (only for states that are already assigned a scheduler, i.e are in another MEC)
for (auto pState : newMecStates) {
// We want to reach the InfSet, save choice: <s, q, InfSetID> ---> choice
this->_producedChoices.get().insert({std::make_tuple(product->getModelState(pState), product->getAutomatonState(pState), id), mecScheduler.getChoice(pState)});
}
}
}
}
@ -345,125 +194,6 @@ namespace storm {
return acceptingStates;
}
template <typename ValueType, bool Nondeterministic>
void SparseLTLHelper<ValueType, Nondeterministic>::prepareScheduler(uint_fast64_t numDaStates, storm::storage::BitVector const& acceptingProductStates, std::unique_ptr<storm::storage::Scheduler<ValueType>> reachScheduler, transformer::DAProductBuilder const& productBuilder, typename transformer::DAProduct<productModelType>::ptr product, storm::storage::BitVector const& modelStatesOfInterest) {
STORM_LOG_ASSERT(this->_producedChoices.is_initialized(), "Trying to extract the produced scheduler but none is available. Was there a computation call before?");
STORM_LOG_ASSERT(this->_infSets.is_initialized(), "Was there a computation call before?");
STORM_LOG_ASSERT(this->_accInfSets.is_initialized(), "Was there a computation call before?");
// Compute size of the resulting memory structure: A state <q, infSet> is encoded as (q* (|infSets|+1))+ |infSet|
uint64 numMemoryStates = (numDaStates) * (_infSets.get().size()+1); //+1 for states outside accECs
_dontCareStates.emplace(numMemoryStates, storm::storage::BitVector(this->_transitionMatrix.getRowGroupCount(), false));
// Set choices for states or consider them "dontCare"
for (storm::storage::sparse::state_type automatonState= 0; automatonState < numDaStates; ++automatonState) {
for (storm::storage::sparse::state_type modelState = 0; modelState < this->_transitionMatrix.getRowGroupCount(); ++modelState) {
if (!product->isValidProductState(modelState, automatonState)) {
// If the state <s,q> does not occur in the product model, all the infSet combinations are irrelevant for the scheduler.
for (uint_fast64_t infSet = 0; infSet < _infSets.get().size()+1; ++infSet) {
_dontCareStates.get()[getMemoryState(automatonState, infSet)].set(modelState, true);
}
} else {
auto pState = product->getProductStateIndex(modelState, automatonState);
if (acceptingProductStates.get(pState)) {
// For states in accepting ECs set the missing MEC-scheduler combinations are "dontCare", they are not reachable using the scheduler choices. //TODO is this correct?
for (uint_fast64_t infSet = 0; infSet < _infSets.get().size()+1; ++infSet) {
if (_producedChoices.get().find(std::make_tuple(product->getModelState(pState), product->getAutomatonState(pState), infSet)) == _producedChoices.get().end() ) {
_dontCareStates.get()[getMemoryState(product->getAutomatonState(pState), infSet)].set(product->getModelState(pState), true);
}
}
} else {
// Extract the choices of the REACH-scheduler (choices to reach an acc. MEC) for the MDP-DA product: <s,q> -> choice. The memory structure corresponds to the "last" copy of the DA (_infSets.get().size()).
this->_accInfSets.get()[pState] = std::set<uint_fast64_t>({_infSets.get().size()});
if (reachScheduler->isDontCare(pState)) {
// Mark the maybe States of the untilProbability scheduler as "dontCare"
_dontCareStates.get()[getMemoryState(product->getAutomatonState(pState), _infSets.get().size())].set(product->getModelState(pState), true);
} else {
// Set choice For non-accepting states that are not in any accepting EC
this->_producedChoices.get().insert({std::make_tuple(product->getModelState(pState),product->getAutomatonState(pState),_infSets.get().size()),reachScheduler->getChoice(pState)});
};
// All other InfSet combinations are unreachable (dontCare)
for (uint_fast64_t infSet = 0; infSet < _infSets.get().size(); ++infSet) {
_dontCareStates.get()[getMemoryState(product->getAutomatonState(pState), infSet)].set(product->getModelState(pState), true);
}
}
}
}
}
// Prepare the memory structure. For that, we need: transitions, initialMemoryStates (and memoryStateLabeling)
// The next move function of the memory, will be build based on the transitions of the DA and jumps between InfSets.
_memoryTransitions.emplace(numMemoryStates, std::vector<storm::storage::BitVector>(numMemoryStates, storm::storage::BitVector(_transitionMatrix.getRowGroupCount(), false)));
for (storm::storage::sparse::state_type automatonFrom = 0; automatonFrom < numDaStates; ++automatonFrom) {
for (storm::storage::sparse::state_type modelState = 0; modelState < _transitionMatrix.getRowGroupCount(); ++modelState) {
uint_fast64_t automatonTo = productBuilder.getSuccessor(automatonFrom, modelState);
if (product->isValidProductState(modelState, automatonTo)) {
// Add the modelState to one outgoing transition of all states of the form <automatonFrom, InfSet> (Inf=lenInfSet equals not in MEC)
// For non-accepting states that are not in any accepting EC we use the 'last' copy of the DA
// and for the accepting states we jump through copies of the DA wrt. the infinity sets.
for (uint_fast64_t infSet = 0; infSet < _infSets.get().size()+1; ++infSet) {
// Check if we need to switch the acceptance condition
STORM_LOG_ASSERT(_accInfSets.get()[product->getProductStateIndex(modelState, automatonTo)] != boost::none, "The list of InfSets for the product state <" <<modelState<< ", " << automatonTo<<"> is undefined.");
if (_accInfSets.get()[product->getProductStateIndex(modelState, automatonTo)].get().count(infSet) == 0) {
// the state is is in a different accepting MEC with a different accepting conjunction of InfSets.
auto newInfSet = _accInfSets.get()[product->getProductStateIndex(modelState, automatonTo)].get().begin();
_memoryTransitions.get()[getMemoryState(automatonFrom, infSet)][getMemoryState(automatonTo, *newInfSet)].set(modelState);
} else {
// Continue looking for any accepting EC (if we haven't reached one yet) or stay in the corresponding accepting EC, test whether we have reached the next infSet.
if (infSet == _infSets.get().size() || !(_infSets.get()[infSet].get(product->getProductStateIndex(modelState, automatonTo)))) {
// <modelState, automatonTo> is not in any accepting EC or does not satisfy the InfSet, we stay there.
// Add modelState to the transition from <automatonFrom, InfSet> to <automatonTo, InfSet>
_memoryTransitions.get()[getMemoryState(automatonFrom, infSet)][getMemoryState(automatonTo, infSet)].set(modelState);
} else {
STORM_LOG_ASSERT(_accInfSets.get()[product->getProductStateIndex(modelState, automatonTo)] != boost::none, "The list of InfSets for the product state <" <<modelState<< ", " << automatonTo<<"> is undefined.");
// <modelState, automatonTo> satisfies the InfSet, find the next one.
auto nextInfSet = std::find(_accInfSets.get()[product->getProductStateIndex(modelState, automatonTo)].get().begin(), _accInfSets.get()[product->getProductStateIndex(modelState, automatonTo)].get().end(), infSet);
STORM_LOG_ASSERT(nextInfSet != _accInfSets.get()[product->getProductStateIndex(modelState, automatonTo)].get().end(), "The list of InfSets for the product state <" <<modelState<< ", " << automatonTo<<"> does not contain the infSet " << infSet);
nextInfSet++;
if (nextInfSet == _accInfSets.get()[product->getProductStateIndex(modelState, automatonTo)].get().end()) {
// Start again.
nextInfSet = _accInfSets.get()[product->getProductStateIndex(modelState, automatonTo)].get().begin();
}
// Add modelState to the transition from <automatonFrom <mec, InfSet>> to <automatonTo, <mec, NextInfSet>>.
_memoryTransitions.get()[getMemoryState(automatonFrom, infSet)][getMemoryState(automatonTo, *nextInfSet)].set(modelState);
}
}
}
}
}
}
// Finished creation of transitions.
// Find initial memory states
this->_memoryInitialStates.emplace();
this->_memoryInitialStates->resize(this->_transitionMatrix.getRowGroupCount());
// Save for each relevant model state its initial memory state (get the s-successor q of q0)
for (storm::storage::sparse::state_type modelState : modelStatesOfInterest) {
storm::storage::sparse::state_type automatonState = productBuilder.getInitialState(modelState);
STORM_LOG_ASSERT(product->isValidProductState(modelState, automatonState), "The memory successor state for the model state "<< modelState << "does not exist in the DA-Model Product.");
if (acceptingProductStates[product->getProductStateIndex(modelState, automatonState)]) {
STORM_LOG_ASSERT(_accInfSets.get()[product->getProductStateIndex(modelState, automatonState)] != boost::none, "The list of InfSets for the product state <" <<modelState<< ", " << automatonState<<"> is undefined.");
// If <s, q> is an accepting state start in the first InfSet of <s, q>.
auto infSet = _accInfSets.get()[product->getProductStateIndex(modelState, automatonState)].get().begin();
_memoryInitialStates.get()[modelState] = getMemoryState(automatonState, *infSet);
} else {
_memoryInitialStates.get()[modelState] = getMemoryState(automatonState, _infSets.get().size());
}
}
}
template<typename ValueType, bool Nondeterministic>
std::vector<ValueType> SparseLTLHelper<ValueType, Nondeterministic>::computeDAProductProbabilities(Environment const& env, storm::automata::DeterministicAutomaton const& da, std::map<std::string, storm::storage::BitVector>& apSatSets) {
@ -497,6 +227,12 @@ namespace storm {
STORM_LOG_INFO("Product "+ (Nondeterministic ? std::string("MDP-DA") : std::string("DTMC-DA")) +" has " << product->getProductModel().getNumberOfStates() << " states and "
<< product->getProductModel().getNumberOfTransitions() << " transitions.");
// Prepare scheduler
if (this->isProduceSchedulerSet()) {
STORM_LOG_THROW(Nondeterministic, storm::exceptions::InvalidOperationException, "Scheduler export only supported for nondeterministic models.");
this->_schedulerHelper.emplace(product->getProductModel().getNumberOfStates());
}
// Compute accepting states
storm::storage::BitVector acceptingStates;
if (Nondeterministic) {
@ -511,8 +247,10 @@ namespace storm {
if (acceptingStates.empty()) {
STORM_LOG_INFO("No accepting states, skipping probability computation.");
if (this->isProduceSchedulerSet()) {
this->_schedulerHelper.get().setRandom();
}
std::vector<ValueType> numericResult(this->_transitionMatrix.getRowGroupCount(), storm::utility::zero<ValueType>());
this->_randomScheduler = true;
return numericResult;
}
@ -546,7 +284,7 @@ namespace storm {
prodNumericResult = std::move(prodCheckResult.values);
if (this->isProduceSchedulerSet()) {
prepareScheduler(da.getNumberOfStates(), acceptingStates, std::move(prodCheckResult.scheduler), productBuilder, product, statesOfInterest);
this->_schedulerHelper.get().prepareScheduler(da.getNumberOfStates(), acceptingStates, std::move(prodCheckResult.scheduler), productBuilder, product, statesOfInterest, this->_transitionMatrix);
}
} else {

63
src/storm/modelchecker/helper/ltl/SparseLTLHelper.h

@ -1,7 +1,8 @@
#include "storm/modelchecker/helper/SingleValueModelCheckerHelper.h"
#include "storm/modelchecker/helper/ltl/internal/SparseLTLSchedulerHelper.h"
#include "storm/storage/SparseMatrix.h"
#include "storm/storage/Scheduler.h"
#include "storm/models/sparse/Dtmc.h"
#include "storm/models/sparse/Mdp.h"
#include "storm/transformer/DAProductBuilder.h"
@ -25,7 +26,7 @@ namespace storm {
/*!
* Helper class for LTL model checking
* @tparam ValueType the type a value can have
* @tparam Nondeterministic true if there is nondeterminism in the Model (MDP)
* @tparam Nondeterministic A flag indicating if there is nondeterminism in the Model (MDP)
*/
template<typename ValueType, bool Nondeterministic>
class SparseLTLHelper: public SingleValueModelCheckerHelper<ValueType, storm::models::ModelRepresentation::Sparse> {
@ -35,30 +36,28 @@ namespace storm {
typedef std::function<storm::storage::BitVector(storm::logic::Formula const&)> CheckFormulaCallback;
/*!
* The type of the product automaton (DTMC or MDP) that is used during the computation.
* The type of the product model (DTMC or MDP) that is used during the computation.
*/
using productModelType = typename std::conditional<Nondeterministic, storm::models::sparse::Mdp<ValueType>, storm::models::sparse::Dtmc<ValueType>>::type;
/*!
* Initializes the helper for a discrete time model (i.e. DTMC, MDP)
* @param the transition matrix of the model
* @param the number of states of the model
* @param transitionMatrix the transition matrix of the model
*/
SparseLTLHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix);
/*!
* @pre before calling this, a computation call should have been performed during which scheduler production was enabled.
* @param the model
* @param model the model
* @return a new scheduler containing optimal choices for each state that yield the long run average values of the most recent call.
*/
storm::storage::Scheduler<ValueType> extractScheduler(storm::models::sparse::Model<ValueType> const& model);
/*!
* Computes the LTL probabilities
* @param the LTL formula (allowing PCTL* like nesting)
* @param formulaChecker lambda that evaluates sub-formulas checks the provided formula and returns the set of states in which the formula holds
* @param the atomic propositions occuring in the formula together with the satisfaction sets
* @param formula the LTL formula (allowing PCTL* like nesting)
* @param formulaChecker lambda that evaluates sub-formulas checks the provided formula and returns the set of states in which the formula holds<
* @return a value for each state
*/
std::vector<ValueType> computeLTLProbabilities(Environment const &env, storm::logic::PathFormula const& formula, CheckFormulaCallback const& formulaChecker);
@ -73,9 +72,8 @@ namespace storm {
/*!
* Computes the (maximizing) probabilities for the constructed DA product
* @param the DA to build the product with
* @param the atomic propositions and satisfaction sets
* @param a flag indicating whether qualitative model checking is performed
* @param da the DA to build the product with
* @param apSatSets the atomic propositions and satisfaction sets
* @return a value for each state
*/
std::vector<ValueType> computeDAProductProbabilities(Environment const& env, storm::automata::DeterministicAutomaton const& da, std::map<std::string, storm::storage::BitVector>& apSatSets);
@ -97,50 +95,23 @@ namespace storm {
* P1acc be the set of states that satisfy Pmax=1[ F accEC ].
* This function then computes a set that contains accEC and is contained by P1acc.
* However, if the acceptance condition consists of 'true', the whole state space can be returned.
* @param the acceptance condition (in DNF)
* @param the transition matrix of the model
* @param the reversed transition relation
* @param acceptance the acceptance condition (in DNF)
* @param transitionMatrix the transition matrix of the model
* @param backwardTransitions the reversed transition relation
*/
storm::storage::BitVector computeAcceptingECs(automata::AcceptanceCondition const& acceptance, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, typename transformer::DAProduct<productModelType>::ptr product);
/**
/*!
* Computes a set S of states that are contained in BSCCs that satisfy the given acceptance conditon.
* @param the acceptance condition
* @param the transition matrix of the model
* @param acceptance the acceptance condition
* @param transitionMatrix the transition matrix of the model
*/
storm::storage::BitVector computeAcceptingBCCs(automata::AcceptanceCondition const& acceptance, storm::storage::SparseMatrix<ValueType> const& transitionMatrix);
/**
* Helper function, extracts scheduler choices and creates the memory structure for the LTL-Scheduler.
* @param number of DA-states
* @param states in accepting end components of the model-DA product
* @param the scheduler ensuring to reach some acceptingState, defined on the model-DA product
* @param the product builder
* @param the model-DA product
* @param relevant states of the model
*/
void prepareScheduler(uint_fast64_t numDaStates, storm::storage::BitVector const& acceptingProductStates, std::unique_ptr<storm::storage::Scheduler<ValueType>> reachScheduler, transformer::DAProductBuilder const& productBuilder, typename transformer::DAProduct<productModelType>::ptr product, storm::storage::BitVector const& modelStatesOfInterest);
/**
* Helper function, computes the memory state for a given DA-state and infSet ID.
* Encoded as (DA-state * (numberOfInfSets+1)) + infSet. (+1 because an additional "copy" of the DA is used for states outside accepting ECs)
* @param DA-state
* @param infSet ID
*/
uint_fast64_t getMemoryState(uint_fast64_t daState, uint_fast64_t infSet);
storm::storage::SparseMatrix<ValueType> const& _transitionMatrix;
// scheduler
bool _randomScheduler = false;
boost::optional<std::map <std::tuple<uint_fast64_t, uint_fast64_t, uint_fast64_t>, storm::storage::SchedulerChoice<ValueType>>> _producedChoices; // <s, q, len(_infSets)> ---> ReachChoice and <s, q, InfSet> ---> MecChoice
boost::optional<std::vector<storm::storage::BitVector>> _dontCareStates; // memory state combinations that are never visited
boost::optional<std::vector<storm::storage::BitVector>> _infSets; // Save the InfSets of the Acceptance condition.
boost::optional<std::vector<boost::optional<std::set<uint_fast64_t>>>> _accInfSets; // Save for each product state (which is assigned to an acceptingMEC), the infSets that need to be visited inf often to satisfy the acceptance condition. Remaining states belonging to no accepting EC, are assigned len(_infSets) (REACH scheduler)
// Memory structure
boost::optional<std::vector<std::vector<storm::storage::BitVector>>> _memoryTransitions; // The BitVector contains the model states that lead from startState <q, mec, infSet> to <q', mec', infSet'>. This is deterministic, because each state <s, q> is assigned to a unique MEC (scheduler).
boost::optional<std::vector<uint_fast64_t>> _memoryInitialStates; // Save for each relevant state (initial or all) s its unique initial memory state (which memory state is reached from the initial state after reading s)
boost::optional<storm::modelchecker::helper::internal::SparseLTLSchedulerHelper<ValueType, Nondeterministic>> _schedulerHelper;
};
}

308
src/storm/modelchecker/helper/ltl/internal/SparseLTLSchedulerHelper.cpp

@ -0,0 +1,308 @@
#include "SparseLTLSchedulerHelper.h"
#include "storm/storage/memorystructure/MemoryStructure.h"
#include "storm/storage/memorystructure/MemoryStructureBuilder.h"
#include "storm/transformer/DAProductBuilder.h"
#include "storm/utility/graph.h"
namespace storm {
namespace modelchecker {
namespace helper {
namespace internal {
template<typename ValueType, bool Nondeterministic>
SparseLTLSchedulerHelper<ValueType, Nondeterministic>::SparseLTLSchedulerHelper(uint_fast64_t numProductStates) : _randomScheduler(false), _producedChoices(), _infSets(), _accInfSets(numProductStates, boost::none) {
// Intentionally left empty.
}
template<typename ValueType, bool Nondeterministic>
uint_fast64_t SparseLTLSchedulerHelper<ValueType, Nondeterministic>::SparseLTLSchedulerHelper::getMemoryState(uint_fast64_t daState, uint_fast64_t infSet) {
return (daState * (_infSets.size()+1))+ infSet;
}
template<typename ValueType, bool Nondeterministic>
void SparseLTLSchedulerHelper<ValueType, Nondeterministic>::SparseLTLSchedulerHelper::setRandom() {
this->_randomScheduler = true;
}
template<typename ValueType, bool Nondeterministic>
void SparseLTLSchedulerHelper<ValueType, Nondeterministic>::saveProductEcChoices(automata::AcceptanceCondition const& acceptance, storm::storage::MaximalEndComponent const& mec, std::vector<automata::AcceptanceCondition::acceptance_expr::ptr> const& conjunction, typename transformer::DAProduct<productModelType>::ptr product) {
// Save all states contained in this MEC
storm::storage::BitVector mecStates(product->getProductModel().getNumberOfStates(), false);
for (auto const &stateChoicePair : mec) {
mecStates.set(stateChoicePair.first);
}
// We know the MEC satisfied the conjunction: Save InfSets.
std::set<uint_fast64_t> infSetIds;
for (auto const& literal : conjunction) {
storm::storage::BitVector infSet;
if (literal->isTRUE()) {
// All states
infSet = storm::storage::BitVector(product->getProductModel().getNumberOfStates(), true);
} else if (literal->isAtom()) {
const cpphoafparser::AtomAcceptance &atom = literal->getAtom();
if (atom.getType() == cpphoafparser::AtomAcceptance::TEMPORAL_INF) {
if (atom.isNegated()) {
infSet = ~acceptance.getAcceptanceSet(atom.getAcceptanceSet());
} else {
infSet = acceptance.getAcceptanceSet(atom.getAcceptanceSet());
}
}
else if (atom.getType() == cpphoafparser::AtomAcceptance::TEMPORAL_FIN) {
// If there are FinSets in the conjunction we use the InfSet containing all states in this MEC
infSet = mecStates;
}
}
// Save new InfSets
if (infSet.size() > 0) {
auto it = std::find(_infSets.begin(), _infSets.end(), infSet);
if (it == _infSets.end()) {
infSetIds.insert(_infSets.size());
_infSets.emplace_back(infSet);
} else {
// save ID for accCond of the MEC states
infSetIds.insert(distance(_infSets.begin(), it));
}
}
}
// Save the InfSets into the _accInfSets for states in this MEC, but only if there weren't assigned to any other MEC yet.
storm::storage::BitVector newMecStates(product->getProductModel().getNumberOfStates(), false);
for (auto const &stateChoicePair : mec) {
if (_accInfSets[stateChoicePair.first] == boost::none) {
// state wasn't assigned to any other MEC yet.
_accInfSets[stateChoicePair.first].emplace(infSetIds);
newMecStates.set(stateChoicePair.first);
}
}
// Define scheduler choices for the states in this MEC (that are not in any other MEC)
for (uint_fast64_t id : infSetIds) {
// Scheduler that satisfies the MEC acceptance condition (visit each InfSet inf often, or switch to scheduler of another MEC)
storm::storage::Scheduler<ValueType> mecScheduler(product->getProductModel().getNumberOfStates());
// States not in InfSet: Compute a scheduler that, with prob=1, reaches the infSet via mecStates starting from states that are not yet in other MEC
storm::utility::graph::computeSchedulerProb1E<ValueType>(newMecStates, product->getProductModel().getTransitionMatrix(), product->getProductModel().getBackwardTransitions(), mecStates, _infSets[id] & mecStates, mecScheduler);
// States that already reached the InfSet
for (auto pState : (newMecStates & _infSets[id])) {
// Prob1E sets an arbitrary choice for the psi states, but we want to stay in this accepting MEC.
mecScheduler.setChoice(*mec.getChoicesForState(pState).begin() - product->getProductModel().getTransitionMatrix().getRowGroupIndices()[pState], pState);
}
// Extract scheduler choices (only for states that are already assigned a scheduler, i.e are in another MEC)
for (auto pState : newMecStates) {
// We want to reach the InfSet, save choice: <s, q, InfSetID> ---> choice
this->_producedChoices.insert({std::make_tuple(product->getModelState(pState), product->getAutomatonState(pState), id), mecScheduler.getChoice(pState)});
}
}
}
template<typename ValueType, bool Nondeterministic>
void SparseLTLSchedulerHelper<ValueType, Nondeterministic>::prepareScheduler(uint_fast64_t numDaStates, storm::storage::BitVector const& acceptingProductStates, std::unique_ptr<storm::storage::Scheduler<ValueType>> reachScheduler, transformer::DAProductBuilder const& productBuilder, typename transformer::DAProduct<productModelType>::ptr product, storm::storage::BitVector const& modelStatesOfInterest, storm::storage::SparseMatrix<ValueType> const& transitionMatrix) {
// Compute size of the resulting memory structure: A state <q, infSet> is encoded as (q* (|infSets|+1))+ |infSet|
uint64 numMemoryStates = (numDaStates) * (_infSets.size()+1); //+1 for states outside accECs
_dontCareStates = std::vector<storm::storage::BitVector>(numMemoryStates, storm::storage::BitVector(transitionMatrix.getRowGroupCount(), false));
// Set choices for states or consider them "dontCare"
for (storm::storage::sparse::state_type automatonState= 0; automatonState < numDaStates; ++automatonState) {
for (storm::storage::sparse::state_type modelState = 0; modelState < transitionMatrix.getRowGroupCount(); ++modelState) {
if (!product->isValidProductState(modelState, automatonState)) {
// If the state <s,q> does not occur in the product model, all the infSet combinations are irrelevant for the scheduler.
for (uint_fast64_t infSet = 0; infSet < _infSets.size()+1; ++infSet) {
_dontCareStates[getMemoryState(automatonState, infSet)].set(modelState, true);
}
} else {
auto pState = product->getProductStateIndex(modelState, automatonState);
if (acceptingProductStates.get(pState)) {
// For states in accepting ECs set the missing MEC-scheduler combinations are "dontCare", they are not reachable using the scheduler choices.
for (uint_fast64_t infSet = 0; infSet < _infSets.size()+1; ++infSet) {
if (_producedChoices.find(std::make_tuple(product->getModelState(pState), product->getAutomatonState(pState), infSet)) == _producedChoices.end() ) {
_dontCareStates[getMemoryState(product->getAutomatonState(pState), infSet)].set(product->getModelState(pState), true);
}
}
} else {
// Extract the choices of the REACH-scheduler (choices to reach an acc. MEC) for the MDP-DA product: <s,q> -> choice. The memory structure corresponds to the "last" copy of the DA (_infSets.get().size()).
this->_accInfSets[pState] = std::set<uint_fast64_t>({_infSets.size()});
if (reachScheduler->isDontCare(pState)) {
// Mark the maybe States of the untilProbability scheduler as "dontCare"
_dontCareStates[getMemoryState(product->getAutomatonState(pState), _infSets.size())].set(product->getModelState(pState), true);
} else {
// Set choice For non-accepting states that are not in any accepting EC
this->_producedChoices.insert({std::make_tuple(product->getModelState(pState),product->getAutomatonState(pState),_infSets.size()),reachScheduler->getChoice(pState)});
};
// All other InfSet combinations are unreachable (dontCare)
for (uint_fast64_t infSet = 0; infSet < _infSets.size(); ++infSet) {
_dontCareStates[getMemoryState(product->getAutomatonState(pState), infSet)].set(product->getModelState(pState), true);
}
}
}
}
}
// Prepare the memory structure. For that, we need: transitions, initialMemoryStates (and memoryStateLabeling)
// The next move function of the memory, will be build based on the transitions of the DA and jumps between InfSets.
_memoryTransitions = std::vector<std::vector<storm::storage::BitVector>>(numMemoryStates, std::vector<storm::storage::BitVector>(numMemoryStates, storm::storage::BitVector(transitionMatrix.getRowGroupCount(), false)));
for (storm::storage::sparse::state_type automatonFrom = 0; automatonFrom < numDaStates; ++automatonFrom) {
for (storm::storage::sparse::state_type modelState = 0; modelState < transitionMatrix.getRowGroupCount(); ++modelState) {
uint_fast64_t automatonTo = productBuilder.getSuccessor(automatonFrom, modelState);
if (product->isValidProductState(modelState, automatonTo)) {
// Add the modelState to one outgoing transition of all states of the form <automatonFrom, InfSet> (Inf=lenInfSet equals not in MEC)
// For non-accepting states that are not in any accepting EC we use the 'last' copy of the DA
// and for the accepting states we jump through copies of the DA wrt. the infinity sets.
for (uint_fast64_t infSet = 0; infSet < _infSets.size()+1; ++infSet) {
// Check if we need to switch the acceptance condition
STORM_LOG_ASSERT(_accInfSets[product->getProductStateIndex(modelState, automatonTo)] != boost::none, "The list of InfSets for the product state <" <<modelState<< ", " << automatonTo<<"> is undefined.");
if (_accInfSets[product->getProductStateIndex(modelState, automatonTo)].get().count(infSet) == 0) {
// the state is is in a different accepting MEC with a different accepting conjunction of InfSets.
auto newInfSet = _accInfSets[product->getProductStateIndex(modelState, automatonTo)].get().begin();
_memoryTransitions[getMemoryState(automatonFrom, infSet)][getMemoryState(automatonTo, *newInfSet)].set(modelState);
} else {
// Continue looking for any accepting EC (if we haven't reached one yet) or stay in the corresponding accepting EC, test whether we have reached the next infSet.
if (infSet == _infSets.size() || !(_infSets[infSet].get(product->getProductStateIndex(modelState, automatonTo)))) {
// <modelState, automatonTo> is not in any accepting EC or does not satisfy the InfSet, we stay there.
// Add modelState to the transition from <automatonFrom, InfSet> to <automatonTo, InfSet>
_memoryTransitions[getMemoryState(automatonFrom, infSet)][getMemoryState(automatonTo, infSet)].set(modelState);
} else {
STORM_LOG_ASSERT(_accInfSets[product->getProductStateIndex(modelState, automatonTo)] != boost::none, "The list of InfSets for the product state <" <<modelState<< ", " << automatonTo<<"> is undefined.");
// <modelState, automatonTo> satisfies the InfSet, find the next one.
auto nextInfSet = std::find(_accInfSets[product->getProductStateIndex(modelState, automatonTo)].get().begin(), _accInfSets[product->getProductStateIndex(modelState, automatonTo)].get().end(), infSet);
STORM_LOG_ASSERT(nextInfSet != _accInfSets[product->getProductStateIndex(modelState, automatonTo)].get().end(), "The list of InfSets for the product state <" <<modelState<< ", " << automatonTo<<"> does not contain the infSet " << infSet);
nextInfSet++;
if (nextInfSet == _accInfSets[product->getProductStateIndex(modelState, automatonTo)].get().end()) {
// Start again.
nextInfSet = _accInfSets[product->getProductStateIndex(modelState, automatonTo)].get().begin();
}
// Add modelState to the transition from <automatonFrom <mec, InfSet>> to <automatonTo, <mec, NextInfSet>>.
_memoryTransitions[getMemoryState(automatonFrom, infSet)][getMemoryState(automatonTo, *nextInfSet)].set(modelState);
}
}
}
}
}
}
// Finished creation of transitions.
// Find initial memory states
this->_memoryInitialStates = std::vector<uint_fast64_t>(transitionMatrix.getRowGroupCount());
// Save for each relevant model state its initial memory state (get the s-successor q of q0)
for (storm::storage::sparse::state_type modelState : modelStatesOfInterest) {
storm::storage::sparse::state_type automatonState = productBuilder.getInitialState(modelState);
STORM_LOG_ASSERT(product->isValidProductState(modelState, automatonState), "The memory successor state for the model state "<< modelState << "does not exist in the DA-Model Product.");
if (acceptingProductStates[product->getProductStateIndex(modelState, automatonState)]) {
STORM_LOG_ASSERT(_accInfSets[product->getProductStateIndex(modelState, automatonState)] != boost::none, "The list of InfSets for the product state <" <<modelState<< ", " << automatonState<<"> is undefined.");
// If <s, q> is an accepting state start in the first InfSet of <s, q>.
auto infSet = _accInfSets[product->getProductStateIndex(modelState, automatonState)].get().begin();
_memoryInitialStates[modelState] = getMemoryState(automatonState, *infSet);
} else {
_memoryInitialStates[modelState] = getMemoryState(automatonState, _infSets.size());
}
}
}
template<typename ValueType, bool Nondeterministic>
storm::storage::Scheduler<ValueType> SparseLTLSchedulerHelper<ValueType, Nondeterministic>::SparseLTLSchedulerHelper::extractScheduler(storm::models::sparse::Model<ValueType> const& model, bool onlyInitialStatesRelevant) {
if (_randomScheduler) {
storm::storage::Scheduler<ValueType> scheduler(model.getNumberOfStates());
for (storm::storage::sparse::state_type state = 0; state < model.getNumberOfStates(); ++state) {
scheduler.setChoice(0, state);
}
return scheduler;
}
// Otherwise, we compute a scheduler with memory.
// Create a memory structure for the MDP scheduler with memory. If hasRelevantStates is set, we only consider initial model states relevant.
auto memoryBuilder = storm::storage::MemoryStructureBuilder<ValueType>(this->_memoryTransitions.size(), model, onlyInitialStatesRelevant);
// Build the transitions between the memory states: startState to goalState using modelStates (transitionVector).
for (storm::storage::sparse::state_type startState = 0; startState < this->_memoryTransitions.size(); ++startState) {
for (storm::storage::sparse::state_type goalState = 0; goalState < this->_memoryTransitions.size(); ++goalState) {
// Bitvector that represents modelStates the model states that trigger this transition.
memoryBuilder.setTransition(startState, goalState, this->_memoryTransitions[startState][goalState]);
}
}
// InitialMemoryStates: Assign an initial memory state model states
if (onlyInitialStatesRelevant) {
// Only consider initial model states
for (uint_fast64_t modelState : model.getInitialStates()) {
memoryBuilder.setInitialMemoryState(modelState, this->_memoryInitialStates[modelState]);
}
} else {
// All model states are relevant
for (uint_fast64_t modelState = 0; modelState < model.getNumberOfStates(); ++modelState) {
memoryBuilder.setInitialMemoryState(modelState, this->_memoryInitialStates[modelState]);
}
}
// Build the memoryStructure.
storm::storage::MemoryStructure memoryStructure = memoryBuilder.build();
// Create a scheduler (with memory) for the model from the REACH and MEC scheduler of the MDP-DA-product model.
storm::storage::Scheduler<ValueType> scheduler(model.getNumberOfStates(), memoryStructure);
// Use choices in the product model to create a choice based on model state and memory state
for (const auto &choice : this->_producedChoices) {
// <s, q, InfSet> -> choice
storm::storage::sparse::state_type modelState = std::get<0>(choice.first);
storm::storage::sparse::state_type daState = std::get<1>(choice.first);
uint_fast64_t infSet = std::get<2>(choice.first);
STORM_LOG_ASSERT(!this->_dontCareStates[getMemoryState(daState, infSet)].get(modelState), "Tried to set choice for dontCare state.");
scheduler.setChoice(choice.second, modelState, getMemoryState(daState, infSet));
}
// Set "dontCare" states
for (uint_fast64_t memoryState = 0; memoryState < this->_dontCareStates.size(); ++memoryState) {
for (auto state : this->_dontCareStates[memoryState]) {
scheduler.setDontCare(state, memoryState);
}
}
// Sanity check for created scheduler.
STORM_LOG_ASSERT(scheduler.isDeterministicScheduler(), "Expected a deterministic scheduler");
STORM_LOG_ASSERT(!scheduler.isPartialScheduler(), "Expected a fully defined scheduler");
return scheduler;
}
template class SparseLTLSchedulerHelper<double, false>;
template class SparseLTLSchedulerHelper<double, true>;
#ifdef STORM_HAVE_CARL
template class SparseLTLSchedulerHelper<storm::RationalNumber, false>;
template class SparseLTLSchedulerHelper<storm::RationalNumber, true>;
template class SparseLTLSchedulerHelper<storm::RationalFunction, false>;
#endif
}
}
}
}

102
src/storm/modelchecker/helper/ltl/internal/SparseLTLSchedulerHelper.h

@ -0,0 +1,102 @@
#include "storm/storage/Scheduler.h"
#include "storm/models/sparse/Dtmc.h"
#include "storm/models/sparse/Mdp.h"
#include "storm/storage/MaximalEndComponent.h"
#include "storm/transformer/DAProductBuilder.h"
namespace storm {
namespace modelchecker {
namespace helper {
namespace internal {
/*!
* Helper class for scheduler construction in LTL model checking
* @tparam ValueType the type a value can have
* @tparam Nondeterministic A flag indicating if there is nondeterminism in the Model (MDP)
*/
template<typename ValueType, bool Nondeterministic>
class SparseLTLSchedulerHelper {
public:
/*!
* The type of the product model (DTMC or MDP) that is used during the computation.
*/
using productModelType = typename std::conditional<Nondeterministic, storm::models::sparse::Mdp<ValueType>, storm::models::sparse::Dtmc<ValueType>>::type;
/*!
* Initializes the helper.
* @param numProductStates number of product states
*/
SparseLTLSchedulerHelper(uint_fast64_t numProductStates);
/*!
* Set the scheduler choices to random.
*/
void setRandom();
/*!
* Save choices for states in the accepting end component of the DA-Model product,
* but only set new choices for states that are not in any other EC yet.
* We know the EC satisfies the given conjunction of the acceptance condition. Therefore, we want to reach each infinity set in the conjunction infinitely often.
* Choices are of the Form <s, q, InfSetID> -> choice.
*
* @param acceptance the acceptance condition (in DNF)
* @param mec the accepting end component
* @param conjunction the conjunction satisfied by the end component
* @param product the product model
*/
void saveProductEcChoices(automata::AcceptanceCondition const& acceptance, storm::storage::MaximalEndComponent const& mec, std::vector<automata::AcceptanceCondition::acceptance_expr::ptr> const& conjunction, typename transformer::DAProduct<productModelType>::ptr product);
/*!
* Extracts scheduler choices and creates the memory structure for the LTL-Scheduler.
*
* @param numDaStates number of DA-states
* @param acceptingProductStates states in accepting end components of the model-DA product
* @param reachScheduler the scheduler ensuring to reach some acceptingState, defined on the model-DA product
* @param productBuilder the product builder
* @param product the model-DA product
* @param modelStatesOfInterest relevant states of the model
* @param transitionMatrix the transition matrix of the model
*/
void prepareScheduler(uint_fast64_t numDaStates, storm::storage::BitVector const& acceptingProductStates, std::unique_ptr<storm::storage::Scheduler<ValueType>> reachScheduler, transformer::DAProductBuilder const& productBuilder, typename transformer::DAProduct<productModelType>::ptr product, storm::storage::BitVector const& modelStatesOfInterest, storm::storage::SparseMatrix<ValueType> const& transitionMatrix);
/*!
* Returns a deterministic fully defined scheduler (except for dontCareStates) for the given model.
* The choices are random if isRandom was set to true.
*
* @param model the model to construct the scheduler for
* @param onlyInitialStatesRelevant flag indicating whether we only consider the fragment reachable from initial model states.
* @return the scheduler
*/
storm::storage::Scheduler<ValueType> extractScheduler(storm::models::sparse::Model<ValueType> const& model, bool onlyInitialStatesRelevant);
private:
/**
* Computes the memory state for a given DA-state and infSet ID.
* Encoded as (DA-state * (numberOfInfSets+1)) + infSet. (+1 because an additional "copy" of the DA is used for states outside accepting ECs)
* @param daState DA-state
* @param infSet infSet ID
*/
uint_fast64_t getMemoryState(uint_fast64_t daState, uint_fast64_t infSet);
bool _randomScheduler;
std::map <std::tuple<uint_fast64_t, uint_fast64_t, uint_fast64_t>, storm::storage::SchedulerChoice<ValueType>> _producedChoices; // <s, q, len(_infSets)> -> ReachChoice and <s, q, InfSet> -> MecChoice
std::vector<storm::storage::BitVector> _dontCareStates; // memorySate-modelState combinations that are never visited
std::vector<storm::storage::BitVector> _infSets; // Save the InfSets of the acceptance condition. The BitVector contains the product model states that are contained in the infSet
std::vector<boost::optional<std::set<uint_fast64_t>>> _accInfSets; // Save for each product state (which is assigned to an acceptingMEC), the infSets that need to be visited inf often to satisfy the acceptance condition. Remaining states belonging to no accepting EC, are assigned len(_infSets) (REACH scheduler)
// Memory structure
std::vector<std::vector<storm::storage::BitVector>> _memoryTransitions; // The BitVector contains the model states that lead from startState <q, mec, infSet> to <q', mec', infSet'>. This is deterministic, because each state <s, q> is assigned to a unique MEC (scheduler).
std::vector<uint_fast64_t> _memoryInitialStates; // Save for each relevant state (initial or all) s its unique initial memory state (which memory state is reached from the initial state after reading s)
};
}
}
}
}
Loading…
Cancel
Save