Browse Source

considered solver requirements for multiobjective model checking

tempestpy_adaptions
TimQu 7 years ago
parent
commit
64ca58494d
  1. 15
      src/storm/modelchecker/multiobjective/SparseMultiObjectivePreprocessor.cpp
  2. 3
      src/storm/modelchecker/multiobjective/SparseMultiObjectivePreprocessor.h
  3. 21
      src/storm/modelchecker/multiobjective/pcaa/SparseMaPcaaWeightVectorChecker.cpp
  4. 2
      src/storm/modelchecker/multiobjective/pcaa/SparseMaPcaaWeightVectorChecker.h
  5. 72
      src/storm/modelchecker/multiobjective/pcaa/SparsePcaaWeightVectorChecker.cpp
  6. 10
      src/storm/modelchecker/multiobjective/pcaa/SparsePcaaWeightVectorChecker.h

15
src/storm/modelchecker/multiobjective/SparseMultiObjectivePreprocessor.cpp

@ -35,6 +35,7 @@ namespace storm {
data.objectives.push_back(std::make_shared<Objective<ValueType>>());
data.objectives.back()->originalFormula = subFormula;
data.finiteRewardCheckObjectives.resize(data.objectives.size(), false);
data.upperResultBoundObjectives.resize(data.objectives.size(), false);
if (data.objectives.back()->originalFormula->isOperatorFormula()) {
preprocessOperatorFormula(data.objectives.back()->originalFormula->asOperatorFormula(), data);
} else {
@ -69,6 +70,16 @@ namespace storm {
}
preprocessedModel->restrictRewardModels(relevantRewardModels);
// Compute upper result bounds wherever this is necessarry
for (auto const& objIndex : data.upperResultBoundObjectives) {
auto const& formula = data.objectives[objIndex]->formula->asRewardOperatorFormula();
auto const& rewModel = preprocessedModel->getRewardModel(formula.getRewardModelName());
// BaierUpperRewardBoundsComputer<ValueType> baier(submatrix, choiceRewards, oneStepTargetProbabilities);
// hintInformation.upperResultBound = baier.computeUpperBound();
}
// Build the actual result
return buildResult(originalModel, originalFormula, data, preprocessedModel, backwardTransitions);
}
@ -330,13 +341,12 @@ namespace storm {
auto totalRewardFormula = std::make_shared<storm::logic::TotalRewardFormula>();
data.objectives.back()->formula = std::make_shared<storm::logic::RewardOperatorFormula>(totalRewardFormula, auxRewardModelName, opInfo);
data.finiteRewardCheckObjectives.set(data.objectives.size() - 1, true);
data.upperResultBoundObjectives.set(data.objectives.size() - 1, true);
if (formula.isReachabilityRewardFormula()) {
assert(optionalRewardModelName.is_initialized());
data.tasks.push_back(std::make_shared<SparseMultiObjectivePreprocessorReachRewToTotalRewTask<SparseModelType>>(data.objectives.back(), relevantStatesFormula, optionalRewardModelName.get()));
data.finiteRewardCheckObjectives.set(data.objectives.size() - 1);
} else if (formula.isReachabilityTimeFormula() && data.originalModel.isOfType(storm::models::ModelType::MarkovAutomaton)) {
data.finiteRewardCheckObjectives.set(data.objectives.size() - 1);
data.tasks.push_back(std::make_shared<SparseMultiObjectivePreprocessorReachTimeToTotalRewTask<SparseModelType>>(data.objectives.back(), relevantStatesFormula));
} else {
STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The formula " << formula << " neither considers reachability probabilities nor reachability rewards " << (data.originalModel.isOfType(storm::models::ModelType::MarkovAutomaton) ? "nor reachability time" : "") << ". This is not supported.");
@ -358,6 +368,7 @@ namespace storm {
auto totalRewardFormula = std::make_shared<storm::logic::TotalRewardFormula>();
data.objectives.back()->formula = std::make_shared<storm::logic::RewardOperatorFormula>(totalRewardFormula, *optionalRewardModelName, opInfo);
data.finiteRewardCheckObjectives.set(data.objectives.size() - 1, true);
data.upperResultBoundObjectives.set(data.objectives.size() - 1, true);
}
template<typename SparseModelType>

3
src/storm/modelchecker/multiobjective/SparseMultiObjectivePreprocessor.h

@ -41,6 +41,9 @@ namespace storm {
// Indices of the objectives that require a check for finite reward
storm::storage::BitVector finiteRewardCheckObjectives;
// Indices of the objectives for which we need to compute an upper bound for the result
storm::storage::BitVector upperResultBoundObjectives;
std::string memoryLabelPrefix;
std::string rewardModelNamePrefix;

21
src/storm/modelchecker/multiobjective/pcaa/SparseMaPcaaWeightVectorChecker.cpp

@ -13,6 +13,7 @@
#include "storm/exceptions/InvalidOperationException.h"
#include "storm/exceptions/InvalidPropertyException.h"
#include "storm/exceptions/UnexpectedException.h"
#include "storm/exceptions/UncheckedRequirementException.h"
namespace storm {
namespace modelchecker {
@ -72,7 +73,7 @@ namespace storm {
// Initialize a minMaxSolver to compute an optimal scheduler (w.r.t. PS) for each epoch
// No EC elimination is necessary as we assume non-zenoness
std::unique_ptr<MinMaxSolverData> minMax = initMinMaxSolver(PS);
std::unique_ptr<MinMaxSolverData> minMax = initMinMaxSolver(PS, weightVector);
// create a linear equation solver for the model induced by the optimal choice vector.
// the solver will be updated whenever the optimal choice vector has changed.
@ -294,13 +295,27 @@ namespace storm {
}
template <class SparseMaModelType>
std::unique_ptr<typename SparseMaPcaaWeightVectorChecker<SparseMaModelType>::MinMaxSolverData> SparseMaPcaaWeightVectorChecker<SparseMaModelType>::initMinMaxSolver(SubModel const& PS) const {
std::unique_ptr<typename SparseMaPcaaWeightVectorChecker<SparseMaModelType>::MinMaxSolverData> SparseMaPcaaWeightVectorChecker<SparseMaModelType>::initMinMaxSolver(SubModel const& PS, std::vector<ValueType> const& weightVector) const {
std::unique_ptr<MinMaxSolverData> result(new MinMaxSolverData());
storm::solver::GeneralMinMaxLinearEquationSolverFactory<ValueType> minMaxSolverFactory;
result->solver = minMaxSolverFactory.create(PS.toPS);
result->solver->setOptimizationDirection(storm::solver::OptimizationDirection::Maximize);
result->solver->setTrackScheduler(true);
result->solver->setCachingEnabled(true);
auto req = result->solver->getRequirements(storm::solver::EquationSystemType::StochasticShortestPath);
req.clearNoEndComponents();
boost::optional<ValueType> lowerBound = this->computeWeightedResultBound(true, weightVector, storm::storage::BitVector(weightVector.size(), true));
if (lowerBound) {
result->solver->setLowerBound(lowerBound.get());
req.clearLowerBounds();
}
boost::optional<ValueType> upperBound = this->computeWeightedResultBound(false, weightVector, storm::storage::BitVector(weightVector.size(), true));
if (upperBound) {
result->solver->setUpperBound(upperBound.get());
req.clearUpperBounds();
}
STORM_LOG_THROW(req.empty(), storm::exceptions::UncheckedRequirementException, "At least one requirement of the MinMaxSolver was not met.");
result->solver->setRequirementsChecked(true);
result->solver->setOptimizationDirection(storm::solver::OptimizationDirection::Maximize);
result->b.resize(PS.getNumberOfChoices());

2
src/storm/modelchecker/multiobjective/pcaa/SparseMaPcaaWeightVectorChecker.h

@ -117,7 +117,7 @@ namespace storm {
/*!
* Initializes the data for the MinMax solver
*/
std::unique_ptr<MinMaxSolverData> initMinMaxSolver(SubModel const& PS) const;
std::unique_ptr<MinMaxSolverData> initMinMaxSolver(SubModel const& PS, std::vector<ValueType> const& weightVector) const;
/*!
* Initializes the data for the LinEq solver

72
src/storm/modelchecker/multiobjective/pcaa/SparsePcaaWeightVectorChecker.cpp

@ -19,6 +19,7 @@
#include "storm/exceptions/UnexpectedException.h"
#include "storm/exceptions/NotImplementedException.h"
#include "storm/exceptions/NotSupportedException.h"
#include "storm/exceptions/UncheckedRequirementException.h"
namespace storm {
namespace modelchecker {
@ -92,39 +93,17 @@ namespace storm {
void SparsePcaaWeightVectorChecker<SparseModelType>::check(std::vector<ValueType> const& weightVector) {
checkHasBeenCalled = true;
STORM_LOG_INFO("Invoked WeightVectorChecker with weights " << std::endl << "\t" << storm::utility::vector::toString(storm::utility::vector::convertNumericVector<double>(weightVector)));
std::vector<ValueType> weightedRewardVector(transitionMatrix.getRowCount(), storm::utility::zero<ValueType>());
boost::optional<ValueType> weightedLowerResultBound = storm::utility::zero<ValueType>();
boost::optional<ValueType> weightedUpperResultBound = storm::utility::zero<ValueType>();
for (auto objIndex : objectivesWithNoUpperTimeBound) {
auto const& obj = this->objectives[objIndex];
if (storm::solver::minimize(this->objectives[objIndex].formula->getOptimalityType())) {
if (obj.lowerResultBound && weightedUpperResultBound) {
weightedUpperResultBound.get() -= weightVector[objIndex] * obj.lowerResultBound.get();
} else {
weightedUpperResultBound = boost::none;
}
if (obj.upperResultBound && weightedLowerResultBound) {
weightedLowerResultBound.get() -= weightVector[objIndex] * obj.upperResultBound.get();
} else {
weightedLowerResultBound = boost::none;
}
storm::utility::vector::addScaledVector(weightedRewardVector, actionRewards[objIndex], -weightVector[objIndex]);
} else {
if (obj.lowerResultBound && weightedLowerResultBound) {
weightedLowerResultBound.get() += weightVector[objIndex] * obj.lowerResultBound.get();
} else {
weightedLowerResultBound = boost::none;
}
if (obj.upperResultBound && weightedUpperResultBound) {
weightedUpperResultBound.get() += weightVector[objIndex] * obj.upperResultBound.get();
} else {
weightedUpperResultBound = boost::none;
}
storm::utility::vector::addScaledVector(weightedRewardVector, actionRewards[objIndex], weightVector[objIndex]);
}
}
unboundedWeightedPhase(weightedRewardVector, weightedLowerResultBound, weightedUpperResultBound);
unboundedWeightedPhase(weightedRewardVector, weightVector);
unboundedIndividualPhase(weightVector);
// Only invoke boundedPhase if necessarry, i.e., if there is at least one objective with a time bound
@ -180,7 +159,28 @@ namespace storm {
}
template <class SparseModelType>
void SparsePcaaWeightVectorChecker<SparseModelType>::unboundedWeightedPhase(std::vector<ValueType> const& weightedRewardVector, boost::optional<ValueType> const& lowerResultBound, boost::optional<ValueType> const& upperResultBound) {
boost::optional<typename SparseModelType::ValueType> SparsePcaaWeightVectorChecker<SparseModelType>::computeWeightedResultBound(bool lower, std::vector<ValueType> const& weightVector, storm::storage::BitVector const& objectiveFilter) const {
ValueType result = storm::utility::zero<ValueType>();
for (auto const& objIndex : objectiveFilter) {
boost::optional<ValueType> const& objBound = (lower == storm::solver::minimize(this->objectives[objIndex].formula->getOptimalityType())) ? this->objectives[objIndex].upperResultBound : this->objectives[objIndex].lowerResultBound;
if (objBound) {
if (storm::solver::minimize(this->objectives[objIndex].formula->getOptimalityType())) {
result -= objBound.get() * weightVector[objIndex];
} else {
result += objBound.get() * weightVector[objIndex];
}
} else {
// If there is an objective without the corresponding bound we can not give guarantees for the weighted sum
return boost::none;
}
}
return result;
}
template <class SparseModelType>
void SparsePcaaWeightVectorChecker<SparseModelType>::unboundedWeightedPhase(std::vector<ValueType> const& weightedRewardVector, std::vector<ValueType> const& weightVector) {
if (this->objectivesWithNoUpperTimeBound.empty() || !storm::utility::vector::hasNonZeroEntry(weightedRewardVector)) {
this->weightedResult = std::vector<ValueType>(transitionMatrix.getRowGroupCount(), storm::utility::zero<ValueType>());
@ -194,14 +194,22 @@ namespace storm {
storm::solver::GeneralMinMaxLinearEquationSolverFactory<ValueType> solverFactory;
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = solverFactory.create(ecQuotient->matrix);
solver->setOptimizationDirection(storm::solver::OptimizationDirection::Maximize);
solver->setTrackScheduler(true);
if (lowerResultBound) {
solver->setLowerBound(*lowerResultBound);
auto req = solver->getRequirements(storm::solver::EquationSystemType::StochasticShortestPath);
req.clearNoEndComponents();
boost::optional<ValueType> lowerBound = computeWeightedResultBound(true, weightVector, objectivesWithNoUpperTimeBound);
if (lowerBound) {
solver->setLowerBound(lowerBound.get());
req.clearLowerBounds();
}
if (upperResultBound) {
solver->setUpperBound(*upperResultBound);
boost::optional<ValueType> upperBound = computeWeightedResultBound(false, weightVector, objectivesWithNoUpperTimeBound);
if (upperBound) {
solver->setUpperBound(upperBound.get());
req.clearUpperBounds();
}
STORM_LOG_THROW(req.empty(), storm::exceptions::UncheckedRequirementException, "At least one requirement of the MinMaxSolver was not met.");
solver->setRequirementsChecked(true);
solver->setOptimizationDirection(storm::solver::OptimizationDirection::Maximize);
// Use the (0...0) vector as initial guess for the solution.
std::fill(ecQuotient->auxStateValues.begin(), ecQuotient->auxStateValues.end(), storm::utility::zero<ValueType>());
@ -273,12 +281,16 @@ namespace storm {
// Now solve the resulting equation system.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(std::move(submatrix));
auto req = solver->getRequirements();
if (obj.lowerResultBound) {
req.clearLowerBounds();
solver->setLowerBound(*obj.lowerResultBound);
}
if (obj.upperResultBound) {
solver->setUpperBound(*obj.upperResultBound);
req.clearUpperBounds();
}
STORM_LOG_THROW(req.empty(), storm::exceptions::UncheckedRequirementException, "At least one requirement of the LinearEquationSolver was not met.");
solver->solveEquations(x, b);
// Set the result for this objective accordingly

10
src/storm/modelchecker/multiobjective/pcaa/SparsePcaaWeightVectorChecker.h

@ -66,18 +66,24 @@ namespace storm {
void initialize(SparseMultiObjectivePreprocessorResult<SparseModelType> const& preprocessorResult);
virtual void initializeModelTypeSpecificData(SparseModelType const& model) = 0;
/*!
* Computes the weighted lower and upper bounds for the provided set of objectives.
* @param lower if true, lower result bounds are computed. otherwise upper result bounds
* @param weightVector the weight vector ooof the current check
*/
boost::optional<ValueType> computeWeightedResultBound(bool lower, std::vector<ValueType> const& weightVector, storm::storage::BitVector const& objectiveFilter) const;
/*!
* Determines the scheduler that optimizes the weighted reward vector of the unbounded objectives
*
* @param weightedRewardVector the weighted rewards (only considering the unbounded objectives)
*/
void unboundedWeightedPhase(std::vector<ValueType> const& weightedRewardVector, boost::optional<ValueType> const& lowerResultBound, boost::optional<ValueType> const& upperResultBound);
void unboundedWeightedPhase(std::vector<ValueType> const& weightedRewardVector, std::vector<ValueType> const& weightVector);
/*!
* Computes the values of the objectives that do not have a stepBound w.r.t. the scheduler computed in the unboundedWeightedPhase
*
* @param weightVector the weight vector of the current check
*/
void unboundedIndividualPhase(std::vector<ValueType> const& weightVector);
Loading…
Cancel
Save