Browse Source

Added struct for Unif+ vectors

tempestpy_adaptions
Matthias Volk 6 years ago
parent
commit
6066ecd590
  1. 82
      src/storm/modelchecker/csl/helper/SparseMarkovAutomatonCslHelper.cpp

82
src/storm/modelchecker/csl/helper/SparseMarkovAutomatonCslHelper.cpp

@ -36,27 +36,35 @@ namespace storm {
namespace helper { namespace helper {
template<typename ValueType> template<typename ValueType>
void calculateUnifPlusVector(Environment const& env, uint64_t k, uint64_t state, uint64_t const kind, ValueType lambda, uint64_t numberOfProbabilisticChoices, std::vector<std::vector<ValueType>> const & relativeReachability, OptimizationDirection dir, std::vector<std::vector<std::vector<ValueType>>>& unifVectors, storm::storage::SparseMatrix<ValueType> const& fullTransitionMatrix, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> const& solver, storm::utility::numerical::FoxGlynnResult<ValueType> const& poisson, bool cycleFree) {
struct UnifPlusVectors {
std::vector<std::vector<ValueType>> resLower;
std::vector<std::vector<ValueType>> resUpper;
std::vector<std::vector<ValueType>> wUpper;
};
if (unifVectors[kind][k][state] != -1) {
template<typename ValueType>
void calculateUnifPlusVector(Environment const& env, uint64_t k, uint64_t state, bool calcLower, ValueType lambda, uint64_t numberOfProbabilisticChoices, std::vector<std::vector<ValueType>> const & relativeReachability, OptimizationDirection dir, UnifPlusVectors<ValueType>& unifVectors, storm::storage::SparseMatrix<ValueType> const& fullTransitionMatrix, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> const& solver, storm::utility::numerical::FoxGlynnResult<ValueType> const& poisson, bool cycleFree) {
std::vector<std::vector<ValueType>>& resVector = calcLower ? unifVectors.resLower : unifVectors.wUpper;
if (resVector[k][state] != -1) {
// Result already calculated. // Result already calculated.
return; return;
} }
auto numberOfStates = fullTransitionMatrix.getRowGroupCount(); auto numberOfStates = fullTransitionMatrix.getRowGroupCount();
uint64_t N = unifVectors[kind].size() - 1;
uint64_t N = resVector.size() - 1;
auto const& rowGroupIndices = fullTransitionMatrix.getRowGroupIndices(); auto const& rowGroupIndices = fullTransitionMatrix.getRowGroupIndices();
ValueType res; ValueType res;
// First case, k==N, independent from kind of state. // First case, k==N, independent from kind of state.
if (k == N) { if (k == N) {
unifVectors[kind][k][state] = storm::utility::zero<ValueType>();
resVector[k][state] = storm::utility::zero<ValueType>();
return; return;
} }
// Goal state, independent from kind of state. // Goal state, independent from kind of state.
if (psiStates[state]) { if (psiStates[state]) {
if (kind == 0) {
if (calcLower) {
// Vd // Vd
res = storm::utility::zero<ValueType>(); res = storm::utility::zero<ValueType>();
for (uint64_t i = k; i < N; ++i){ for (uint64_t i = k; i < N; ++i){
@ -65,10 +73,10 @@ namespace storm {
res += between; res += between;
} }
} }
unifVectors[kind][k][state] = res;
resVector[k][state] = res;
} else { } else {
// WU // WU
unifVectors[kind][k][state] = storm::utility::one<ValueType>();
resVector[k][state] = storm::utility::one<ValueType>();
} }
return; return;
} }
@ -78,12 +86,12 @@ namespace storm {
res = storm::utility::zero<ValueType>(); res = storm::utility::zero<ValueType>();
for (auto const& element : fullTransitionMatrix.getRow(rowGroupIndices[state])) { for (auto const& element : fullTransitionMatrix.getRow(rowGroupIndices[state])) {
uint64_t to = element.getColumn(); uint64_t to = element.getColumn();
if (unifVectors[kind][k+1][to] == -1) {
calculateUnifPlusVector(env, k+1, to, kind, lambda, numberOfProbabilisticChoices, relativeReachability, dir, unifVectors, fullTransitionMatrix, markovianStates, psiStates, solver, poisson, cycleFree);
if (resVector[k+1][to] == -1) {
calculateUnifPlusVector(env, k+1, to, calcLower, lambda, numberOfProbabilisticChoices, relativeReachability, dir, unifVectors, fullTransitionMatrix, markovianStates, psiStates, solver, poisson, cycleFree);
} }
res += element.getValue()*unifVectors[kind][k+1][to];
res += element.getValue()*resVector[k+1][to];
} }
unifVectors[kind][k][state]=res;
resVector[k][state]=res;
return; return;
} }
@ -102,10 +110,10 @@ namespace storm {
continue; continue;
} }
if (unifVectors[kind][k][successor] == -1) {
calculateUnifPlusVector(env, k, successor, kind, lambda, numberOfProbabilisticChoices, relativeReachability, dir, unifVectors, fullTransitionMatrix, markovianStates, psiStates, solver, poisson, cycleFree);
if (resVector[k][successor] == -1) {
calculateUnifPlusVector(env, k, successor, calcLower, lambda, numberOfProbabilisticChoices, relativeReachability, dir, unifVectors, fullTransitionMatrix, markovianStates, psiStates, solver, poisson, cycleFree);
} }
between += element.getValue() * unifVectors[kind][k][successor];
between += element.getValue() * resVector[k][successor];
} }
if (maximize(dir)) { if (maximize(dir)) {
res = storm::utility::max(res, between); res = storm::utility::max(res, between);
@ -117,7 +125,7 @@ namespace storm {
} }
} }
} }
unifVectors[kind][k][state] = res;
resVector[k][state] = res;
return; return;
} }
@ -142,10 +150,10 @@ namespace storm {
continue; continue;
} }
if (unifVectors[kind][k][successor] == -1) {
calculateUnifPlusVector(env, k, successor, kind, lambda, numberOfProbabilisticStates, relativeReachability, dir, unifVectors, fullTransitionMatrix, markovianStates, psiStates, solver, poisson, cycleFree);
if (resVector[k][successor] == -1) {
calculateUnifPlusVector(env, k, successor, calcLower, lambda, numberOfProbabilisticStates, relativeReachability, dir, unifVectors, fullTransitionMatrix, markovianStates, psiStates, solver, poisson, cycleFree);
} }
res = res + relativeReachability[j][stateCount] * unifVectors[kind][k][successor];
res = res + relativeReachability[j][stateCount] * resVector[k][successor];
++stateCount; ++stateCount;
} }
@ -158,28 +166,28 @@ namespace storm {
solver->solveEquations(env, dir, x, b); solver->solveEquations(env, dir, x, b);
// Expand the solution for the probabilistic states to all states. // Expand the solution for the probabilistic states to all states.
storm::utility::vector::setVectorValues(unifVectors[kind][k], ~markovianStates, x);
storm::utility::vector::setVectorValues(resVector[k], ~markovianStates, x);
} }
template <typename ValueType> template <typename ValueType>
void calculateVu(Environment const& env, std::vector<std::vector<ValueType>> const& relativeReachability, OptimizationDirection dir, uint64_t k, uint64_t state, uint64_t const kind, ValueType lambda, uint64_t numberOfProbabilisticStates, std::vector<std::vector<std::vector<ValueType>>>& unifVectors, storm::storage::SparseMatrix<ValueType> const& fullTransitionMatrix, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> const& solver, storm::utility::numerical::FoxGlynnResult<ValueType> const & poisson, bool cycleFree) {
void calculateResUpper(Environment const& env, std::vector<std::vector<ValueType>> const& relativeReachability, OptimizationDirection dir, uint64_t k, uint64_t state, ValueType lambda, uint64_t numberOfProbabilisticStates, UnifPlusVectors<ValueType>& unifVectors, storm::storage::SparseMatrix<ValueType> const& fullTransitionMatrix, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> const& solver, storm::utility::numerical::FoxGlynnResult<ValueType> const & poisson, bool cycleFree) {
// Avoiding multiple computation of the same value. // Avoiding multiple computation of the same value.
if (unifVectors[1][k][state] != -1) {
if (unifVectors.resUpper[k][state] != -1) {
return; return;
} }
uint64_t N = unifVectors[1].size() - 1;
uint64_t N = unifVectors.resUpper.size() - 1;
ValueType res = storm::utility::zero<ValueType>(); ValueType res = storm::utility::zero<ValueType>();
for (uint64_t i = k; i < N; ++i) { for (uint64_t i = k; i < N; ++i) {
if (unifVectors[2][N-1-(i-k)][state] == -1) {
calculateUnifPlusVector(env, N-1-(i-k), state, 2, lambda, numberOfProbabilisticStates, relativeReachability, dir, unifVectors, fullTransitionMatrix, markovianStates, psiStates, solver, poisson, cycleFree);
if (unifVectors.wUpper[N-1-(i-k)][state] == -1) {
calculateUnifPlusVector(env, N-1-(i-k), state, false, lambda, numberOfProbabilisticStates, relativeReachability, dir, unifVectors, fullTransitionMatrix, markovianStates, psiStates, solver, poisson, cycleFree);
} }
if (i >= poisson.left && i <= poisson.right) { if (i >= poisson.left && i <= poisson.right) {
res += poisson.weights[i - poisson.left] * unifVectors[2][N-1-(i-k)][state];
res += poisson.weights[i - poisson.left] * unifVectors.wUpper[N-1-(i-k)][state];
} }
} }
unifVectors[1][k][state] = res;
unifVectors.resUpper[k][state] = res;
} }
template <typename ValueType> template <typename ValueType>
@ -229,7 +237,7 @@ namespace storm {
bool cycleFree = sccDecomposition.empty(); bool cycleFree = sccDecomposition.empty();
// Vectors to store computed vectors. // Vectors to store computed vectors.
std::vector<std::vector<std::vector<ValueType>>> unifVectors(3);
UnifPlusVectors<ValueType> unifVectors;
// Transitions from goal states will be ignored. However, we mark them as non-probabilistic to make sure // Transitions from goal states will be ignored. However, we mark them as non-probabilistic to make sure
// we do not apply the MDP algorithm to them. // we do not apply the MDP algorithm to them.
@ -349,24 +357,22 @@ namespace storm {
// (4) Define vectors/matrices. // (4) Define vectors/matrices.
std::vector<std::vector<ValueType>> v = std::vector<std::vector<ValueType>>(N + 1, init); std::vector<std::vector<ValueType>> v = std::vector<std::vector<ValueType>>(N + 1, init);
unifVectors.resLower = v;
unifVectors.resUpper = v;
unifVectors.wUpper = v;
unifVectors[0] = v;
unifVectors[1] = v;
unifVectors[2] = v;
// Define 0=vd, 1=vu, 2=wu.
// (5) Compute vectors and maxNorm. // (5) Compute vectors and maxNorm.
for (uint64_t i = 0; i < numberOfStates; ++i) { for (uint64_t i = 0; i < numberOfStates; ++i) {
for (uint64_t k = N; k <= N; --k) {
calculateUnifPlusVector(env, k, i, 0, lambda, numberOfProbabilisticChoices, relativeReachabilities, dir, unifVectors, fullTransitionMatrix, markovianAndGoalStates, psiStates, solver, foxGlynnResult, cycleFree);
calculateUnifPlusVector(env, k, i, 2, lambda, numberOfProbabilisticChoices, relativeReachabilities, dir, unifVectors, fullTransitionMatrix, markovianAndGoalStates, psiStates, solver, foxGlynnResult, cycleFree);
calculateVu(env, relativeReachabilities, dir, k, i, 1, lambda, numberOfProbabilisticChoices, unifVectors, fullTransitionMatrix, markovianAndGoalStates, psiStates, solver, foxGlynnResult, cycleFree);
for (int64_t k = N; k >= 0; --k) {
calculateUnifPlusVector(env, k, i, true, lambda, numberOfProbabilisticChoices, relativeReachabilities, dir, unifVectors, fullTransitionMatrix, markovianAndGoalStates, psiStates, solver, foxGlynnResult, cycleFree);
calculateUnifPlusVector(env, k, i, false, lambda, numberOfProbabilisticChoices, relativeReachabilities, dir, unifVectors, fullTransitionMatrix, markovianAndGoalStates, psiStates, solver, foxGlynnResult, cycleFree);
calculateResUpper(env, relativeReachabilities, dir, k, i, lambda, numberOfProbabilisticChoices, unifVectors, fullTransitionMatrix, markovianAndGoalStates, psiStates, solver, foxGlynnResult, cycleFree);
} }
} }
// Only iterate over result vector, as the results can only get more precise. // Only iterate over result vector, as the results can only get more precise.
for (uint64_t i = 0; i < numberOfStates; i++){ for (uint64_t i = 0; i < numberOfStates; i++){
ValueType diff = storm::utility::abs(unifVectors[0][0][i] - unifVectors[1][0][i]);
ValueType diff = storm::utility::abs(unifVectors.resUpper[0][i] - unifVectors.resLower[0][i]);
maxNorm = std::max(maxNorm, diff); maxNorm = std::max(maxNorm, diff);
} }
@ -376,7 +382,7 @@ namespace storm {
} while (maxNorm > epsilon * (1 - kappa)); } while (maxNorm > epsilon * (1 - kappa));
return unifVectors[0][0];
return unifVectors.resLower[0];
} }
template <typename ValueType> template <typename ValueType>

Loading…
Cancel
Save