Browse Source

Added some todos

Conflicts:
	src/storm/modelchecker/prctl/helper/SparseMdpPrctlHelper.cpp
	src/storm/storage/Scheduler.h
tempestpy_adaptions
Tim Quatmann 3 years ago
committed by Stefan Pranger
parent
commit
5c204182eb
  1. 284
      src/storm/modelchecker/prctl/helper/SparseMdpPrctlHelper.cpp
  2. 8
      src/storm/storage/Scheduler.h
  3. 2
      src/storm/storage/memorystructure/MemoryStructureBuilder.h

284
src/storm/modelchecker/prctl/helper/SparseMdpPrctlHelper.cpp

@ -52,19 +52,19 @@ namespace storm {
namespace modelchecker {
namespace helper {
template<typename ValueType>
std::map<storm::storage::sparse::state_type, ValueType> SparseMdpPrctlHelper<ValueType>::computeRewardBoundedValues(Environment const& env, OptimizationDirection dir, rewardbounded::MultiDimensionalRewardUnfolding<ValueType, true>& rewardUnfolding, storm::storage::BitVector const& initialStates) {
storm::utility::Stopwatch swAll(true), swBuild, swCheck;
// Get lower and upper bounds for the solution.
auto lowerBound = rewardUnfolding.getLowerObjectiveBound();
auto upperBound = rewardUnfolding.getUpperObjectiveBound();
// Initialize epoch models
auto initEpoch = rewardUnfolding.getStartEpoch();
auto epochOrder = rewardUnfolding.getEpochComputationOrder(initEpoch);
// initialize data that will be needed for each epoch
std::vector<ValueType> x, b;
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> minMaxSolver;
@ -72,7 +72,7 @@ namespace storm {
ValueType precision = rewardUnfolding.getRequiredEpochModelPrecision(initEpoch, storm::utility::convertNumber<ValueType>(storm::settings::getModule<storm::settings::modules::GeneralSettings>().getPrecision()));
Environment preciseEnv = env;
preciseEnv.solver().minMax().setPrecision(storm::utility::convertNumber<storm::RationalNumber>(precision));
// In case of cdf export we store the necessary data.
std::vector<std::vector<ValueType>> cdfData;
@ -101,14 +101,14 @@ namespace storm {
break;
}
}
std::map<storm::storage::sparse::state_type, ValueType> result;
for (auto initState : initialStates) {
result[initState] = rewardUnfolding.getInitialStateResult(initEpoch, initState);
}
swAll.stop();
if (storm::settings::getModule<storm::settings::modules::IOSettings>().isExportCdfSet()) {
std::vector<std::string> headers;
for (uint64_t i = 0; i < rewardUnfolding.getEpochManager().getDimensionCount(); ++i) {
@ -118,7 +118,7 @@ namespace storm {
storm::utility::exportDataToCSVFile<ValueType, std::string, std::string>(storm::settings::getModule<storm::settings::modules::IOSettings>().getExportCdfDirectory() + "cdf.csv", cdfData, headers);
}
if (storm::settings::getModule<storm::settings::modules::CoreSettings>().isShowStatisticsSet()) {
STORM_PRINT_AND_LOG("---------------------------------" << std::endl);
STORM_PRINT_AND_LOG("Statistics:" << std::endl);
@ -129,7 +129,7 @@ namespace storm {
STORM_PRINT_AND_LOG("Epoch Model checking Time: " << swCheck << "." << std::endl);
STORM_PRINT_AND_LOG("---------------------------------" << std::endl);
}
return result;
}
@ -154,7 +154,7 @@ namespace storm {
return MDPSparseModelCheckingHelperReturnType<ValueType>(std::move(result), std::move(allStates), nullptr, std::move(choiceValues));
}
template<typename ValueType>
std::vector<uint_fast64_t> computeValidSchedulerHint(Environment const& env, SolutionType const& type, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& maybeStates, storm::storage::BitVector const& filterStates, storm::storage::BitVector const& targetStates) {
storm::storage::Scheduler<ValueType> validScheduler(maybeStates.size());
@ -166,7 +166,7 @@ namespace storm {
} else {
STORM_LOG_ASSERT(false, "Unexpected equation system type.");
}
// Extract the relevant parts of the scheduler for the solver.
std::vector<uint_fast64_t> schedulerHint(maybeStates.getNumberOfSetBits());
auto maybeIt = maybeStates.begin();
@ -176,13 +176,13 @@ namespace storm {
}
return schedulerHint;
}
template<typename ValueType>
struct SparseMdpHintType {
SparseMdpHintType() : eliminateEndComponents(false), computeUpperBounds(false), uniqueSolution(false), noEndComponents(false) {
// Intentionally left empty.
}
bool hasSchedulerHint() const {
return static_cast<bool>(schedulerHint);
}
@ -198,11 +198,11 @@ namespace storm {
ValueType const& getLowerResultBound() const {
return lowerResultBound.get();
}
bool hasUpperResultBound() const {
return static_cast<bool>(upperResultBound);
}
bool hasUpperResultBounds() const {
return static_cast<bool>(upperResultBounds);
}
@ -214,19 +214,19 @@ namespace storm {
std::vector<ValueType>& getUpperResultBounds() {
return upperResultBounds.get();
}
std::vector<ValueType> const& getUpperResultBounds() const {
return upperResultBounds.get();
}
std::vector<uint64_t>& getSchedulerHint() {
return schedulerHint.get();
}
std::vector<ValueType>& getValueHint() {
return valueHint.get();
}
bool getEliminateEndComponents() const {
return eliminateEndComponents;
}
@ -238,11 +238,11 @@ namespace storm {
bool hasUniqueSolution() const {
return uniqueSolution;
}
bool hasNoEndComponents() const {
return noEndComponents;
}
boost::optional<std::vector<uint64_t>> schedulerHint;
boost::optional<std::vector<ValueType>> valueHint;
boost::optional<ValueType> lowerResultBound;
@ -253,10 +253,10 @@ namespace storm {
bool uniqueSolution;
bool noEndComponents;
};
template<typename ValueType>
void extractValueAndSchedulerHint(SparseMdpHintType<ValueType>& hintStorage, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& maybeStates, boost::optional<storm::storage::BitVector> const& selectedChoices, ModelCheckerHint const& hint, bool skipECWithinMaybeStatesCheck) {
// Deal with scheduler hint.
if (hint.isExplicitModelCheckerHint() && hint.template asExplicitModelCheckerHint<ValueType>().hasSchedulerHint()) {
if (hintStorage.hasSchedulerHint()) {
@ -276,7 +276,7 @@ namespace storm {
} else {
hintApplicable = true;
}
if (hintApplicable) {
// Compute the hint w.r.t. the given subsystem.
hintChoices.clear();
@ -297,13 +297,13 @@ namespace storm {
}
}
}
// Deal with solution value hint. Only applicable if there are no End Components consisting of maybe states.
if (hint.isExplicitModelCheckerHint() && hint.template asExplicitModelCheckerHint<ValueType>().hasResultHint() && (skipECWithinMaybeStatesCheck || hintStorage.hasSchedulerHint() || storm::utility::graph::performProb1A(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, maybeStates, ~maybeStates).full())) {
hintStorage.valueHint = storm::utility::vector::filterVector(hint.template asExplicitModelCheckerHint<ValueType>().getResultHint(), maybeStates);
}
}
template<typename ValueType>
SparseMdpHintType<ValueType> computeHints(Environment const& env, SolutionType const& type, ModelCheckerHint const& hint, storm::OptimizationDirection const& dir, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& maybeStates, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& targetStates, bool produceScheduler, boost::optional<storm::storage::BitVector> const& selectedChoices = boost::none) {
SparseMdpHintType<ValueType> result;
@ -313,11 +313,11 @@ namespace storm {
result.noEndComponents = (dir == storm::solver::OptimizationDirection::Minimize && type == SolutionType::UntilProbabilities)
|| (dir == storm::solver::OptimizationDirection::Maximize && type == SolutionType::ExpectedRewards)
|| (hint.isExplicitModelCheckerHint() && hint.asExplicitModelCheckerHint<ValueType>().getNoEndComponentsInMaybeStates());
// If there are no end components, the solution is unique. (Note that the other direction does not hold,
// e.g., end components in which infinite reward is collected.
result.uniqueSolution = result.hasNoEndComponents();
// Check for requirements of the solver.
bool hasSchedulerHint = hint.isExplicitModelCheckerHint() && hint.template asExplicitModelCheckerHint<ValueType>().hasSchedulerHint();
storm::solver::GeneralMinMaxLinearEquationSolverFactory<ValueType> minMaxLinearEquationSolverFactory;
@ -335,14 +335,14 @@ namespace storm {
// Note that in the case of minimizing expected rewards there might still be end components in which reward is collected.
result.noEndComponents = (type == SolutionType::UntilProbabilities);
}
// If the solver requires an initial scheduler, compute one now. Note that any scheduler is valid if there are no end components.
if (requirements.validInitialScheduler() && !result.noEndComponents) {
STORM_LOG_DEBUG("Computing valid scheduler, because the solver requires it.");
result.schedulerHint = computeValidSchedulerHint(env, type, transitionMatrix, backwardTransitions, maybeStates, phiStates, targetStates);
requirements.clearValidInitialScheduler();
}
// Finally, we have information on the bounds depending on the problem type.
if (type == SolutionType::UntilProbabilities) {
requirements.clearBounds();
@ -373,7 +373,7 @@ namespace storm {
if (!result.hasUpperResultBound() && type == SolutionType::UntilProbabilities) {
result.upperResultBound = storm::utility::one<ValueType>();
}
// If we received an upper bound, we can drop the requirement to compute one.
if (result.hasUpperResultBound()) {
result.computeUpperBounds = false;
@ -381,35 +381,35 @@ namespace storm {
return result;
}
template<typename ValueType>
struct MaybeStateResult {
MaybeStateResult(std::vector<ValueType>&& values) : values(std::move(values)) {
// Intentionally left empty.
}
bool hasScheduler() const {
return static_cast<bool>(scheduler);
}
std::vector<uint64_t> const& getScheduler() const {
return scheduler.get();
}
std::vector<ValueType> const& getValues() const {
return values;
}
std::vector<ValueType> values;
boost::optional<std::vector<uint64_t>> scheduler;
};
template<typename ValueType>
MaybeStateResult<ValueType> computeValuesForMaybeStates(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType>&& submatrix, std::vector<ValueType> const& b, bool produceScheduler, SparseMdpHintType<ValueType>& hint) {
// Initialize the solution vector.
std::vector<ValueType> x = hint.hasValueHint() ? std::move(hint.getValueHint()) : std::vector<ValueType>(submatrix.getRowGroupCount(), hint.hasLowerResultBound() ? hint.getLowerResultBound() : storm::utility::zero<ValueType>());
// Set up the solver.
storm::solver::GeneralMinMaxLinearEquationSolverFactory<ValueType> minMaxLinearEquationSolverFactory;
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver = storm::solver::configureMinMaxLinearEquationSolver(env, std::move(goal), minMaxLinearEquationSolverFactory, std::move(submatrix));
@ -429,10 +429,10 @@ namespace storm {
solver->setInitialScheduler(std::move(hint.getSchedulerHint()));
}
solver->setTrackScheduler(produceScheduler);
// Solve the corresponding system of equations.
solver->solveEquations(env, x, b);
#ifndef NDEBUG
// As a sanity check, make sure our local upper bounds were in fact correct.
if (solver->hasUpperBound(storm::solver::AbstractEquationSolver<ValueType>::BoundType::Local)) {
@ -443,7 +443,7 @@ namespace storm {
}
}
#endif
// Create result.
MaybeStateResult<ValueType> result(std::move(x));
@ -453,18 +453,18 @@ namespace storm {
}
return result;
}
struct QualitativeStateSetsUntilProbabilities {
storm::storage::BitVector maybeStates;
storm::storage::BitVector statesWithProbability0;
storm::storage::BitVector statesWithProbability1;
};
template<typename ValueType>
QualitativeStateSetsUntilProbabilities getQualitativeStateSetsUntilProbabilitiesFromHint(ModelCheckerHint const& hint) {
QualitativeStateSetsUntilProbabilities result;
result.maybeStates = hint.template asExplicitModelCheckerHint<ValueType>().getMaybeStates();
// Treat the states with probability zero/one.
std::vector<ValueType> const& resultsForNonMaybeStates = hint.template asExplicitModelCheckerHint<ValueType>().getResultHint();
result.statesWithProbability1 = storm::storage::BitVector(result.maybeStates.size());
@ -478,10 +478,10 @@ namespace storm {
result.statesWithProbability0.set(state, true);
}
}
return result;
}
template<typename ValueType>
QualitativeStateSetsUntilProbabilities computeQualitativeStateSetsUntilProbabilities(storm::solver::SolveGoal<ValueType> const& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
QualitativeStateSetsUntilProbabilities result;
@ -496,10 +496,10 @@ namespace storm {
result.statesWithProbability0 = std::move(statesWithProbability01.first);
result.statesWithProbability1 = std::move(statesWithProbability01.second);
result.maybeStates = ~(result.statesWithProbability0 | result.statesWithProbability1);
return result;
}
template<typename ValueType>
QualitativeStateSetsUntilProbabilities getQualitativeStateSetsUntilProbabilities(storm::solver::SolveGoal<ValueType> const& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, ModelCheckerHint const& hint) {
if (hint.isExplicitModelCheckerHint() && hint.template asExplicitModelCheckerHint<ValueType>().getComputeOnlyMaybeStates()) {
@ -508,7 +508,7 @@ namespace storm {
return computeQualitativeStateSetsUntilProbabilities(goal, transitionMatrix, backwardTransitions, phiStates, psiStates);
}
}
template<typename ValueType>
void extractSchedulerChoices(storm::storage::Scheduler<ValueType>& scheduler, std::vector<uint_fast64_t> const& subChoices, storm::storage::BitVector const& maybeStates) {
auto subChoiceIt = subChoices.begin();
@ -518,10 +518,10 @@ namespace storm {
}
assert(subChoiceIt == subChoices.end());
}
template<typename ValueType>
void extendScheduler(storm::storage::Scheduler<ValueType>& scheduler, storm::solver::SolveGoal<ValueType> const& goal, QualitativeStateSetsUntilProbabilities const& qualitativeStateSets, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates) {
// Finally, if we need to produce a scheduler, we also need to figure out the parts of the scheduler for
// the states with probability 1 or 0 (depending on whether we maximize or minimize).
// We also need to define some arbitrary choice for the remaining states to obtain a fully defined scheduler.
@ -537,40 +537,40 @@ namespace storm {
}
}
}
template<typename ValueType>
void computeFixedPointSystemUntilProbabilities(storm::solver::SolveGoal<ValueType>& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, QualitativeStateSetsUntilProbabilities const& qualitativeStateSets, storm::storage::SparseMatrix<ValueType>& submatrix, std::vector<ValueType>& b) {
// First, we can eliminate the rows and columns from the original transition probability matrix for states
// whose probabilities are already known.
submatrix = transitionMatrix.getSubmatrix(true, qualitativeStateSets.maybeStates, qualitativeStateSets.maybeStates, false);
// Prepare the right-hand side of the equation system. For entry i this corresponds to
// the accumulated probability of going from state i to some state that has probability 1.
b = transitionMatrix.getConstrainedRowGroupSumVector(qualitativeStateSets.maybeStates, qualitativeStateSets.statesWithProbability1);
// If the solve goal has relevant values, we need to adjust them.
goal.restrictRelevantValues(qualitativeStateSets.maybeStates);
}
template<typename ValueType>
boost::optional<SparseMdpEndComponentInformation<ValueType>> computeFixedPointSystemUntilProbabilitiesEliminateEndComponents(storm::solver::SolveGoal<ValueType>& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, QualitativeStateSetsUntilProbabilities const& qualitativeStateSets, storm::storage::SparseMatrix<ValueType>& submatrix, std::vector<ValueType>& b, bool produceScheduler) {
// Get the set of states that (under some scheduler) can stay in the set of maybestates forever
storm::storage::BitVector candidateStates = storm::utility::graph::performProb0E(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, qualitativeStateSets.maybeStates, ~qualitativeStateSets.maybeStates);
bool doDecomposition = !candidateStates.empty();
storm::storage::MaximalEndComponentDecomposition<ValueType> endComponentDecomposition;
if (doDecomposition) {
// Compute the states that are in MECs.
endComponentDecomposition = storm::storage::MaximalEndComponentDecomposition<ValueType>(transitionMatrix, backwardTransitions, candidateStates);
}
// Only do more work if there are actually end-components.
if (doDecomposition && !endComponentDecomposition.empty()) {
STORM_LOG_DEBUG("Eliminating " << endComponentDecomposition.size() << " EC(s).");
SparseMdpEndComponentInformation<ValueType> result = SparseMdpEndComponentInformation<ValueType>::eliminateEndComponents(endComponentDecomposition, transitionMatrix, qualitativeStateSets.maybeStates, &qualitativeStateSets.statesWithProbability1, nullptr, nullptr, submatrix, &b, nullptr, produceScheduler);
// If the solve goal has relevant values, we need to adjust them.
if (goal.hasRelevantValues()) {
storm::storage::BitVector newRelevantValues(submatrix.getRowGroupCount());
@ -583,38 +583,38 @@ namespace storm {
goal.setRelevantValues(std::move(newRelevantValues));
}
}
return result;
} else {
STORM_LOG_DEBUG("Not eliminating ECs as there are none.");
computeFixedPointSystemUntilProbabilities(goal, transitionMatrix, qualitativeStateSets, submatrix, b);
return boost::none;
}
}
template<typename ValueType>
MDPSparseModelCheckingHelperReturnType<ValueType> SparseMdpPrctlHelper<ValueType>::computeUntilProbabilities(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, bool produceScheduler, ModelCheckerHint const& hint) {
STORM_LOG_THROW(!qualitative || !produceScheduler, storm::exceptions::InvalidSettingsException, "Cannot produce scheduler when performing qualitative model checking only.");
// Prepare resulting vector.
std::vector<ValueType> result(transitionMatrix.getRowGroupCount(), storm::utility::zero<ValueType>());
// We need to identify the maybe states (states which have a probability for satisfying the until formula
// that is strictly between 0 and 1) and the states that satisfy the formula with probablity 1 and 0, respectively.
QualitativeStateSetsUntilProbabilities qualitativeStateSets = getQualitativeStateSetsUntilProbabilities(goal, transitionMatrix, backwardTransitions, phiStates, psiStates, hint);
STORM_LOG_INFO("Preprocessing: " << qualitativeStateSets.statesWithProbability1.getNumberOfSetBits() << " states with probability 1, " << qualitativeStateSets.statesWithProbability0.getNumberOfSetBits() << " with probability 0 (" << qualitativeStateSets.maybeStates.getNumberOfSetBits() << " states remaining).");
// Set values of resulting vector that are known exactly.
storm::utility::vector::setVectorValues<ValueType>(result, qualitativeStateSets.statesWithProbability1, storm::utility::one<ValueType>());
// If requested, we will produce a scheduler.
std::unique_ptr<storm::storage::Scheduler<ValueType>> scheduler;
if (produceScheduler) {
scheduler = std::make_unique<storm::storage::Scheduler<ValueType>>(transitionMatrix.getRowGroupCount());
}
// Check if the values of the maybe states are relevant for the SolveGoal
bool maybeStatesNotRelevant = goal.hasRelevantValues() && goal.relevantValues().isDisjointFrom(qualitativeStateSets.maybeStates);
@ -629,7 +629,7 @@ namespace storm {
}
std::vector<ValueType> maybeStateChoiceValues = std::vector<ValueType>(sizeMaybeStateChoiceValues, storm::utility::zero<ValueType>());
// TODO: if a scheduler is to be produced and maybestatesNotRelevant is true, we have to set the scheduler for maybsetsates as "unreachable" TODO
// Check whether we need to compute exact probabilities for some states.
if ((qualitative || maybeStatesNotRelevant) && !goal.isShieldingTask()) {
// Set the values for all maybe-states to 0.5 to indicate that their probability values are neither 0 nor 1.
@ -640,7 +640,7 @@ namespace storm {
// Obtain proper hint information either from the provided hint or from requirements of the solver.
SparseMdpHintType<ValueType> hintInformation = computeHints(env, SolutionType::UntilProbabilities, hint, goal.direction(), transitionMatrix, backwardTransitions, qualitativeStateSets.maybeStates, phiStates, qualitativeStateSets.statesWithProbability1, produceScheduler);
// Declare the components of the equation system we will solve.
storm::storage::SparseMatrix<ValueType> submatrix;
std::vector<ValueType> b;
@ -710,7 +710,7 @@ namespace storm {
if (produceScheduler) {
extendScheduler(*scheduler, goal, qualitativeStateSets, transitionMatrix, backwardTransitions, phiStates, psiStates);
}
// Sanity check for created scheduler.
STORM_LOG_ASSERT(!produceScheduler || scheduler, "Expected that a scheduler was obtained.");
STORM_LOG_ASSERT((!produceScheduler && !scheduler) || !scheduler->isPartialScheduler(), "Expected a fully defined scheduler");
@ -745,42 +745,42 @@ namespace storm {
return result;
}
}
template<typename ValueType>
template<typename RewardModelType>
std::vector<ValueType> SparseMdpPrctlHelper<ValueType>::computeInstantaneousRewards(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, RewardModelType const& rewardModel, uint_fast64_t stepCount) {
// Only compute the result if the model has a state-based reward this->getModel().
STORM_LOG_THROW(rewardModel.hasStateRewards(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Initialize result to state rewards of the this->getModel().
std::vector<ValueType> result(rewardModel.getStateRewardVector());
auto multiplier = storm::solver::MultiplierFactory<ValueType>().create(env, transitionMatrix);
multiplier->repeatedMultiplyAndReduce(env, goal.direction(), result, nullptr, stepCount);
return result;
}
template<typename ValueType>
template<typename RewardModelType>
std::vector<ValueType> SparseMdpPrctlHelper<ValueType>::computeCumulativeRewards(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, RewardModelType const& rewardModel, uint_fast64_t stepBound) {
// Only compute the result if the model has at least one reward this->getModel().
STORM_LOG_THROW(!rewardModel.empty(), storm::exceptions::InvalidPropertyException, "Missing reward model for formula. Skipping formula.");
// Compute the reward vector to add in each step based on the available reward models.
std::vector<ValueType> totalRewardVector = rewardModel.getTotalRewardVector(transitionMatrix);
// Initialize result to the zero vector.
std::vector<ValueType> result(transitionMatrix.getRowGroupCount(), storm::utility::zero<ValueType>());
auto multiplier = storm::solver::MultiplierFactory<ValueType>().create(env, transitionMatrix);
multiplier->repeatedMultiplyAndReduce(env, goal.direction(), result, &totalRewardVector, stepBound);
return result;
}
template<typename ValueType>
template<typename RewardModelType>
MDPSparseModelCheckingHelperReturnType<ValueType> SparseMdpPrctlHelper<ValueType>::computeTotalRewards(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, RewardModelType const& rewardModel, bool qualitative, bool produceScheduler, ModelCheckerHint const& hint) {
@ -804,7 +804,7 @@ namespace storm {
storm::storage::BitVector statesWithoutReward = rewardModel.getStatesWithZeroReward(transitionMatrix);
storm::storage::BitVector rew0AStates = storm::utility::graph::performProbGreater0E(backwardTransitions, statesWithoutReward, ~statesWithoutReward);
rew0AStates.complement();
// There might be end components that consists only of states/choices with zero rewards. The reachability reward semantics would assign such
// end components reward infinity. To avoid this, we potentially need to eliminate such end components
storm::storage::BitVector trueStates(transitionMatrix.getRowGroupCount(), true);
@ -819,7 +819,7 @@ namespace storm {
for (auto oldRew0AState : rew0AStates) {
newRew0AStates.set(ecElimResult.oldToNewStateMapping[oldRew0AState]);
}
MDPSparseModelCheckingHelperReturnType<ValueType> result = computeReachabilityRewardsHelper(env, std::move(goal), ecElimResult.matrix, ecElimResult.matrix.transpose(true),
[&] (uint_fast64_t rowCount, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& maybeStates) {
std::vector<ValueType> result;
@ -850,7 +850,7 @@ namespace storm {
}
return newChoicesWithoutReward;
});
std::vector<ValueType> resultInEcQuotient = std::move(result.values);
result.values.resize(ecElimResult.oldToNewStateMapping.size());
storm::utility::vector::selectVectorValues(result.values, ecElimResult.oldToNewStateMapping, resultInEcQuotient);
@ -858,7 +858,7 @@ namespace storm {
}
}
}
template<typename ValueType>
template<typename RewardModelType>
MDPSparseModelCheckingHelperReturnType<ValueType> SparseMdpPrctlHelper<ValueType>::computeReachabilityRewards(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, RewardModelType const& rewardModel, storm::storage::BitVector const& targetStates, bool qualitative, bool produceScheduler, ModelCheckerHint const& hint) {
@ -877,7 +877,7 @@ namespace storm {
},
hint);
}
template<typename ValueType>
MDPSparseModelCheckingHelperReturnType<ValueType> SparseMdpPrctlHelper<ValueType>::computeReachabilityTimes(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& targetStates, bool qualitative, bool produceScheduler, ModelCheckerHint const& hint) {
return computeReachabilityRewardsHelper(env, std::move(goal), transitionMatrix, backwardTransitions,
@ -893,7 +893,7 @@ namespace storm {
},
hint);
}
#ifdef STORM_HAVE_CARL
template<typename ValueType>
std::vector<ValueType> SparseMdpPrctlHelper<ValueType>::computeReachabilityRewards(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::models::sparse::StandardRewardModel<storm::Interval> const& intervalRewardModel, bool lowerBoundOfIntervals, storm::storage::BitVector const& targetStates, bool qualitative) {
@ -917,13 +917,13 @@ namespace storm {
return intervalRewardModel.getChoicesWithFilter(transitionMatrix, [&](storm::Interval const& i) {return storm::utility::isZero(lowerBoundOfIntervals ? i.lower() : i.upper());});
}).values;
}
template<>
std::vector<storm::RationalNumber> SparseMdpPrctlHelper<storm::RationalNumber>::computeReachabilityRewards(Environment const& env, storm::solver::SolveGoal<storm::RationalNumber>&&, storm::storage::SparseMatrix<storm::RationalNumber> const&, storm::storage::SparseMatrix<storm::RationalNumber> const&, storm::models::sparse::StandardRewardModel<storm::Interval> const&, bool, storm::storage::BitVector const&, bool) {
STORM_LOG_THROW(false, storm::exceptions::IllegalFunctionCallException, "Computing reachability rewards is unsupported for this data type.");
}
#endif
struct QualitativeStateSetsReachabilityRewards {
storm::storage::BitVector maybeStates;
storm::storage::BitVector infinityStates;
@ -934,7 +934,7 @@ namespace storm {
QualitativeStateSetsReachabilityRewards getQualitativeStateSetsReachabilityRewardsFromHint(ModelCheckerHint const& hint, storm::storage::BitVector const& targetStates) {
QualitativeStateSetsReachabilityRewards result;
result.maybeStates = hint.template asExplicitModelCheckerHint<ValueType>().getMaybeStates();
// Treat the states with reward zero/infinity.
std::vector<ValueType> const& resultsForNonMaybeStates = hint.template asExplicitModelCheckerHint<ValueType>().getResultHint();
result.infinityStates = storm::storage::BitVector(result.maybeStates.size());
@ -950,7 +950,7 @@ namespace storm {
}
return result;
}
template<typename ValueType>
QualitativeStateSetsReachabilityRewards computeQualitativeStateSetsReachabilityRewards(storm::solver::SolveGoal<ValueType> const& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& targetStates, std::function<storm::storage::BitVector()> const& zeroRewardStatesGetter, std::function<storm::storage::BitVector()> const& zeroRewardChoicesGetter) {
QualitativeStateSetsReachabilityRewards result;
@ -961,7 +961,7 @@ namespace storm {
result.infinityStates = storm::utility::graph::performProb1A(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, trueStates, targetStates);
}
result.infinityStates.complement();
if (storm::settings::getModule<storm::settings::modules::ModelCheckerSettings>().isFilterRewZeroSet()) {
if (goal.minimize()) {
result.rewardZeroStates = storm::utility::graph::performProb1E(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, trueStates, targetStates, zeroRewardChoicesGetter());
@ -974,7 +974,7 @@ namespace storm {
result.maybeStates = ~(result.rewardZeroStates | result.infinityStates);
return result;
}
template<typename ValueType>
QualitativeStateSetsReachabilityRewards getQualitativeStateSetsReachabilityRewards(storm::solver::SolveGoal<ValueType> const& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& targetStates, ModelCheckerHint const& hint, std::function<storm::storage::BitVector()> const& zeroRewardStatesGetter, std::function<storm::storage::BitVector()> const& zeroRewardChoicesGetter) {
if (hint.isExplicitModelCheckerHint() && hint.template asExplicitModelCheckerHint<ValueType>().getComputeOnlyMaybeStates()) {
@ -983,7 +983,7 @@ namespace storm {
return computeQualitativeStateSetsReachabilityRewards(goal, transitionMatrix, backwardTransitions, targetStates, zeroRewardStatesGetter, zeroRewardChoicesGetter);
}
}
template<typename ValueType>
void extendScheduler(storm::storage::Scheduler<ValueType>& scheduler, storm::solver::SolveGoal<ValueType> const& goal, QualitativeStateSetsReachabilityRewards const& qualitativeStateSets, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& targetStates, std::function<storm::storage::BitVector()> const& zeroRewardChoicesGetter) {
// Finally, if we need to produce a scheduler, we also need to figure out the parts of the scheduler for
@ -1000,7 +1000,7 @@ namespace storm {
}
}
}
template<typename ValueType>
void extractSchedulerChoices(storm::storage::Scheduler<ValueType>& scheduler, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<uint_fast64_t> const& subChoices, storm::storage::BitVector const& maybeStates, boost::optional<storm::storage::BitVector> const& selectedChoices) {
auto subChoiceIt = subChoices.begin();
@ -1023,7 +1023,7 @@ namespace storm {
}
assert(subChoiceIt == subChoices.end());
}
template<typename ValueType>
void computeFixedPointSystemReachabilityRewards(storm::solver::SolveGoal<ValueType>& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, QualitativeStateSetsReachabilityRewards const& qualitativeStateSets, boost::optional<storm::storage::BitVector> const& selectedChoices, std::function<std::vector<ValueType>(uint_fast64_t, storm::storage::SparseMatrix<ValueType> const&, storm::storage::BitVector const&)> const& totalStateRewardVectorGetter, storm::storage::SparseMatrix<ValueType>& submatrix, std::vector<ValueType>& b, std::vector<ValueType>* oneStepTargetProbabilities = nullptr) {
// Remove rows and columns from the original transition probability matrix for states whose reward values are already known.
@ -1042,20 +1042,20 @@ namespace storm {
(*oneStepTargetProbabilities) = transitionMatrix.getConstrainedRowSumVector(*selectedChoices, qualitativeStateSets.rewardZeroStates);
}
}
// If the solve goal has relevant values, we need to adjust them.
goal.restrictRelevantValues(qualitativeStateSets.maybeStates);
}
template<typename ValueType>
boost::optional<SparseMdpEndComponentInformation<ValueType>> computeFixedPointSystemReachabilityRewardsEliminateEndComponents(storm::solver::SolveGoal<ValueType>& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, QualitativeStateSetsReachabilityRewards const& qualitativeStateSets, boost::optional<storm::storage::BitVector> const& selectedChoices, std::function<std::vector<ValueType>(uint_fast64_t, storm::storage::SparseMatrix<ValueType> const&, storm::storage::BitVector const&)> const& totalStateRewardVectorGetter, storm::storage::SparseMatrix<ValueType>& submatrix, std::vector<ValueType>& b, boost::optional<std::vector<ValueType>>& oneStepTargetProbabilities, bool produceScheduler) {
// Start by computing the choices with reward 0, as we only want ECs within this fragment.
storm::storage::BitVector zeroRewardChoices(transitionMatrix.getRowCount());
// Get the rewards of all choices.
std::vector<ValueType> rewardVector = totalStateRewardVectorGetter(transitionMatrix.getRowCount(), transitionMatrix, storm::storage::BitVector(transitionMatrix.getRowGroupCount(), true));
uint64_t index = 0;
for (auto const& e : rewardVector) {
if (storm::utility::isZero(e)) {
@ -1063,40 +1063,40 @@ namespace storm {
}
++index;
}
// Compute the states that have some zero reward choice.
storm::storage::BitVector candidateStates(qualitativeStateSets.maybeStates);
for (auto state : qualitativeStateSets.maybeStates) {
bool keepState = false;
for (auto row = transitionMatrix.getRowGroupIndices()[state], rowEnd = transitionMatrix.getRowGroupIndices()[state + 1]; row < rowEnd; ++row) {
if (zeroRewardChoices.get(row)) {
keepState = true;
break;
}
}
if (!keepState) {
candidateStates.set(state, false);
}
}
// Only keep the candidate states that (under some scheduler) can stay in the set of candidates forever
candidateStates = storm::utility::graph::performProb0E(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, candidateStates, ~candidateStates);
bool doDecomposition = !candidateStates.empty();
storm::storage::MaximalEndComponentDecomposition<ValueType> endComponentDecomposition;
if (doDecomposition) {
// Then compute the states that are in MECs with zero reward.
endComponentDecomposition = storm::storage::MaximalEndComponentDecomposition<ValueType>(transitionMatrix, backwardTransitions, candidateStates, zeroRewardChoices);
}
// Only do more work if there are actually end-components.
if (doDecomposition && !endComponentDecomposition.empty()) {
STORM_LOG_DEBUG("Eliminating " << endComponentDecomposition.size() << " ECs.");
SparseMdpEndComponentInformation<ValueType> result = SparseMdpEndComponentInformation<ValueType>::eliminateEndComponents(endComponentDecomposition, transitionMatrix, qualitativeStateSets.maybeStates, oneStepTargetProbabilities ? &qualitativeStateSets.rewardZeroStates : nullptr, selectedChoices ? &selectedChoices.get() : nullptr, &rewardVector, submatrix, oneStepTargetProbabilities ? &oneStepTargetProbabilities.get() : nullptr, &b, produceScheduler);
// If the solve goal has relevant values, we need to adjust them.
if (goal.hasRelevantValues()) {
storm::storage::BitVector newRelevantValues(submatrix.getRowGroupCount());
@ -1109,7 +1109,7 @@ namespace storm {
goal.setRelevantValues(std::move(newRelevantValues));
}
}
return result;
} else {
STORM_LOG_DEBUG("Not eliminating ECs as there are none.");
@ -1117,10 +1117,10 @@ namespace storm {
return boost::none;
}
}
template<typename ValueType>
void computeUpperRewardBounds(SparseMdpHintType<ValueType>& hintInformation, storm::OptimizationDirection const& direction, storm::storage::SparseMatrix<ValueType> const& submatrix, std::vector<ValueType> const& choiceRewards, std::vector<ValueType> const& oneStepTargetProbabilities) {
// For the min-case, we use DS-MPI, for the max-case variant 2 of the Baier et al. paper (CAV'17).
if (direction == storm::OptimizationDirection::Minimize) {
DsMpiMdpUpperRewardBoundsComputer<ValueType> dsmpi(submatrix, choiceRewards, oneStepTargetProbabilities);
@ -1130,29 +1130,29 @@ namespace storm {
hintInformation.upperResultBound = baier.computeUpperBound();
}
}
template<typename ValueType>
MDPSparseModelCheckingHelperReturnType<ValueType> SparseMdpPrctlHelper<ValueType>::computeReachabilityRewardsHelper(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, std::function<std::vector<ValueType>(uint_fast64_t, storm::storage::SparseMatrix<ValueType> const&, storm::storage::BitVector const&)> const& totalStateRewardVectorGetter, storm::storage::BitVector const& targetStates, bool qualitative, bool produceScheduler, std::function<storm::storage::BitVector()> const& zeroRewardStatesGetter, std::function<storm::storage::BitVector()> const& zeroRewardChoicesGetter, ModelCheckerHint const& hint) {
// Prepare resulting vector.
std::vector<ValueType> result(transitionMatrix.getRowGroupCount(), storm::utility::zero<ValueType>());
// Determine which states have a reward that is infinity or less than infinity.
QualitativeStateSetsReachabilityRewards qualitativeStateSets = getQualitativeStateSetsReachabilityRewards(goal, transitionMatrix, backwardTransitions, targetStates, hint, zeroRewardStatesGetter, zeroRewardChoicesGetter);
STORM_LOG_INFO("Preprocessing: " << qualitativeStateSets.infinityStates.getNumberOfSetBits() << " states with reward infinity, " << qualitativeStateSets.rewardZeroStates.getNumberOfSetBits() << " states with reward zero (" << qualitativeStateSets.maybeStates.getNumberOfSetBits() << " states remaining).");
storm::utility::vector::setVectorValues(result, qualitativeStateSets.infinityStates, storm::utility::infinity<ValueType>());
// If requested, we will produce a scheduler.
std::unique_ptr<storm::storage::Scheduler<ValueType>> scheduler;
if (produceScheduler) {
scheduler = std::make_unique<storm::storage::Scheduler<ValueType>>(transitionMatrix.getRowGroupCount());
}
// Check if the values of the maybe states are relevant for the SolveGoal
bool maybeStatesNotRelevant = goal.hasRelevantValues() && goal.relevantValues().isDisjointFrom(qualitativeStateSets.maybeStates);
// Check whether we need to compute exact rewards for some states.
if (qualitative || maybeStatesNotRelevant) {
STORM_LOG_INFO("The rewards for the initial states were determined in a preprocessing step. No exact rewards were computed.");
@ -1168,10 +1168,10 @@ namespace storm {
if (!qualitativeStateSets.infinityStates.empty()) {
selectedChoices = transitionMatrix.getRowFilter(qualitativeStateSets.maybeStates, ~qualitativeStateSets.infinityStates);
}
// Obtain proper hint information either from the provided hint or from requirements of the solver.
SparseMdpHintType<ValueType> hintInformation = computeHints(env, SolutionType::ExpectedRewards, hint, goal.direction(), transitionMatrix, backwardTransitions, qualitativeStateSets.maybeStates, ~qualitativeStateSets.rewardZeroStates, qualitativeStateSets.rewardZeroStates, produceScheduler, selectedChoices);
// Declare the components of the equation system we will solve.
storm::storage::SparseMatrix<ValueType> submatrix;
std::vector<ValueType> b;
@ -1182,7 +1182,7 @@ namespace storm {
if (hintInformation.getComputeUpperBounds()) {
oneStepTargetProbabilities = std::vector<ValueType>();
}
// If the hint information tells us that we have to eliminate MECs, we do so now.
boost::optional<SparseMdpEndComponentInformation<ValueType>> ecInformation;
if (hintInformation.getEliminateEndComponents()) {
@ -1191,13 +1191,13 @@ namespace storm {
// Otherwise, we compute the standard equations.
computeFixedPointSystemReachabilityRewards(goal, transitionMatrix, qualitativeStateSets, selectedChoices, totalStateRewardVectorGetter, submatrix, b, oneStepTargetProbabilities ? &oneStepTargetProbabilities.get() : nullptr);
}
// If we need to compute upper bounds, do so now.
if (hintInformation.getComputeUpperBounds()) {
STORM_LOG_ASSERT(oneStepTargetProbabilities, "Expecting one step target probability vector to be available.");
computeUpperRewardBounds(hintInformation, goal.direction(), submatrix, b, oneStepTargetProbabilities.get());
}
// Now compute the results for the maybe states.
MaybeStateResult<ValueType> resultForMaybeStates = computeValuesForMaybeStates(env, std::move(goal), std::move(submatrix), b, produceScheduler, hintInformation);
@ -1216,12 +1216,12 @@ namespace storm {
}
}
}
// Extend scheduler with choices for the states in the qualitative state sets.
if (produceScheduler) {
extendScheduler(*scheduler, goal, qualitativeStateSets, transitionMatrix, backwardTransitions, targetStates, zeroRewardChoicesGetter);
}
// Sanity check for created scheduler.
STORM_LOG_ASSERT(!produceScheduler || scheduler, "Expected that a scheduler was obtained.");
STORM_LOG_ASSERT((!produceScheduler && !scheduler) || !scheduler->isPartialScheduler(), "Expected a fully defined scheduler");
@ -1232,12 +1232,12 @@ namespace storm {
return MDPSparseModelCheckingHelperReturnType<ValueType>(std::move(result), std::move(qualitativeStateSets.maybeStates), std::move(scheduler), std::move(choiceValues));
}
template<typename ValueType>
std::unique_ptr<CheckResult> SparseMdpPrctlHelper<ValueType>::computeConditionalProbabilities(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& targetStates, storm::storage::BitVector const& conditionStates) {
std::chrono::high_resolution_clock::time_point start = std::chrono::high_resolution_clock::now();
// For the max-case, we can simply take the given target states. For the min-case, however, we need to
// find the MECs of non-target states and make them the new target states.
storm::storage::BitVector fixedTargetStates;
@ -1252,18 +1252,18 @@ namespace storm {
}
}
}
storm::storage::BitVector allStates(fixedTargetStates.size(), true);
// Extend the target states by computing all states that have probability 1 to go to a target state
// under *all* schedulers.
fixedTargetStates = storm::utility::graph::performProb1A(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, allStates, fixedTargetStates);
// We solve the max-case and later adjust the result if the optimization direction was to minimize.
storm::storage::BitVector initialStatesBitVector = goal.relevantValues();
STORM_LOG_THROW(initialStatesBitVector.getNumberOfSetBits() == 1, storm::exceptions::NotSupportedException, "Computing conditional probabilities in MDPs is only supported for models with exactly one initial state.");
storm::storage::sparse::state_type initialState = *initialStatesBitVector.begin();
// Extend the condition states by computing all states that have probability 1 to go to a condition state
// under *all* schedulers.
storm::storage::BitVector extendedConditionStates = storm::utility::graph::performProb1A(transitionMatrix, transitionMatrix.getRowGroupIndices(), backwardTransitions, allStates, conditionStates);
@ -1273,12 +1273,12 @@ namespace storm {
std::vector<ValueType> conditionProbabilities = std::move(computeUntilProbabilities(env, OptimizationDirection::Maximize, transitionMatrix, backwardTransitions, allStates, extendedConditionStates, false, false).values);
std::chrono::high_resolution_clock::time_point conditionEnd = std::chrono::high_resolution_clock::now();
STORM_LOG_DEBUG("Computed probabilities to satisfy for condition in " << std::chrono::duration_cast<std::chrono::milliseconds>(conditionEnd - conditionStart).count() << "ms.");
// If the conditional probability is undefined for the initial state, we return directly.
if (storm::utility::isZero(conditionProbabilities[initialState])) {
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(initialState, storm::utility::infinity<ValueType>()));
}
STORM_LOG_DEBUG("Computing probabilities to reach target.");
std::chrono::high_resolution_clock::time_point targetStart = std::chrono::high_resolution_clock::now();
std::vector<ValueType> targetProbabilities = std::move(computeUntilProbabilities(env, OptimizationDirection::Maximize, transitionMatrix, backwardTransitions, allStates, fixedTargetStates, false, false).values);
@ -1306,7 +1306,7 @@ namespace storm {
storm::storage::sparse::state_type newGoalState = relevantStates.getNumberOfSetBits();
storm::storage::sparse::state_type newStopState = newGoalState + 1;
storm::storage::sparse::state_type newFailState = newStopState + 1;
// Build the transitions of the (relevant) states of the original model.
storm::storage::SparseMatrixBuilder<ValueType> builder(0, newFailState + 1, 0, true, true);
uint_fast64_t currentRow = 0;
@ -1344,7 +1344,7 @@ namespace storm {
}
}
}
// Now build the transitions of the newly introduced states.
builder.newRowGroup(currentRow);
builder.addNextValue(currentRow, newGoalState, storm::utility::one<ValueType>());
@ -1355,10 +1355,10 @@ namespace storm {
builder.newRowGroup(currentRow);
builder.addNextValue(currentRow, numberOfStatesBeforeRelevantStates[initialState], storm::utility::one<ValueType>());
++currentRow;
std::chrono::high_resolution_clock::time_point end = std::chrono::high_resolution_clock::now();
STORM_LOG_DEBUG("Computed transformed model in " << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms.");
// Finally, build the matrix and dispatch the query as a reachability query.
STORM_LOG_DEBUG("Computing conditional probabilties.");
storm::storage::BitVector newGoalStates(newFailState + 1);
@ -1366,20 +1366,20 @@ namespace storm {
storm::storage::SparseMatrix<ValueType> newTransitionMatrix = builder.build();
STORM_LOG_DEBUG("Transformed model has " << newTransitionMatrix.getRowGroupCount() << " states and " << newTransitionMatrix.getNonzeroEntryCount() << " transitions.");
storm::storage::SparseMatrix<ValueType> newBackwardTransitions = newTransitionMatrix.transpose(true);
storm::solver::OptimizationDirection dir = goal.direction();
if (goal.minimize()) {
goal.oneMinus();
}
std::chrono::high_resolution_clock::time_point conditionalStart = std::chrono::high_resolution_clock::now();
std::vector<ValueType> goalProbabilities = std::move(computeUntilProbabilities(env, std::move(goal), newTransitionMatrix, newBackwardTransitions, storm::storage::BitVector(newFailState + 1, true), newGoalStates, false, false).values);
std::chrono::high_resolution_clock::time_point conditionalEnd = std::chrono::high_resolution_clock::now();
STORM_LOG_DEBUG("Computed conditional probabilities in transformed model in " << std::chrono::duration_cast<std::chrono::milliseconds>(conditionalEnd - conditionalStart).count() << "ms.");
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(initialState, dir == OptimizationDirection::Maximize ? goalProbabilities[numberOfStatesBeforeRelevantStates[initialState]] : storm::utility::one<ValueType>() - goalProbabilities[numberOfStatesBeforeRelevantStates[initialState]]));
}
template class SparseMdpPrctlHelper<double>;
template std::vector<double> SparseMdpPrctlHelper<double>::computeInstantaneousRewards(Environment const& env, storm::solver::SolveGoal<double>&& goal, storm::storage::SparseMatrix<double> const& transitionMatrix, storm::models::sparse::StandardRewardModel<double> const& rewardModel, uint_fast64_t stepCount);
template std::vector<double> SparseMdpPrctlHelper<double>::computeCumulativeRewards(Environment const& env, storm::solver::SolveGoal<double>&& goal, storm::storage::SparseMatrix<double> const& transitionMatrix, storm::models::sparse::StandardRewardModel<double> const& rewardModel, uint_fast64_t stepBound);

8
src/storm/storage/Scheduler.h

@ -5,6 +5,7 @@
#include "storm/storage/memorystructure/MemoryStructure.h"
#include "storm/storage/SchedulerChoice.h"
#include "storm/storage/BitVector.h"
namespace storm {
namespace storage {
@ -65,7 +66,7 @@ namespace storm {
storm::storage::BitVector computeActionSupport(std::vector<uint64_t> const& nondeterministicChoiceIndicies) const;
/*!
* Retrieves whether there is a pair of model and memory state for which the choice is undefined.
* Retrieves whether there is a *reachable* pair of model and memory state for which the choice is undefined.
*/
bool isPartialScheduler() const;
@ -127,8 +128,11 @@ namespace storm {
std::vector<std::vector<SchedulerChoice<ValueType>>> schedulerChoices;
bool printUndefinedChoices = false;
uint_fast64_t numOfUndefinedChoices;
std::vector<storm::storage::BitVector> reachableStates;
uint_fast64_t numOfUndefinedChoices; // Only consider reachable ones
uint_fast64_t numOfDeterministicChoices;
uint_fast64_t numOfUnreachableStates;
};
}
}

2
src/storm/storage/memorystructure/MemoryStructureBuilder.h

@ -19,7 +19,7 @@ namespace storm {
* @param numberOfMemoryStates The number of states the resulting memory structure should have
*/
MemoryStructureBuilder(uint_fast64_t numberOfMemoryStates, storm::models::sparse::Model<ValueType, RewardModelType> const& model);
// TODO: Add variant with a flag: Consider non-initial model states
/*!
* Initializes a new builder with the data from the provided memory structure
*/

Loading…
Cancel
Save