@ -4,6 +4,7 @@
# include "src/models/sparse/StandardRewardModel.h"
# include "src/modelchecker/propositional/SparsePropositionalModelChecker.h"
# include "src/modelchecker/results/ExplicitQualitativeCheckResult.h"
# include "src/storage/MaximalEndComponentDecomposition.h"
# include "src/transformer/StateDuplicator.h"
# include "src/transformer/SubsystemBuilder.h"
# include "src/utility/macros.h"
@ -18,10 +19,16 @@ namespace storm {
namespace helper {
template < typename SparseModelType >
typename SparseMultiObjectivePreprocessor < SparseModelType > : : PreprocessorData SparseMultiObjectivePreprocessor < SparseModelType > : : preprocess ( storm : : logic : : MultiObjectiveFormula const & originalFormula , SparseModelType const & originalModel , storm : : storage : : BitVector const & subsystem ) {
typename SparseMultiObjectivePreprocessor < SparseModelType > : : PreprocessorData SparseMultiObjectivePreprocessor < SparseModelType > : : preprocess ( storm : : logic : : MultiObjectiveFormula const & originalFormula , SparseModelType const & originalModel ) {
auto subsystemBuilderResult = storm : : transformer : : SubsystemBuilder < SparseModelType > : : transform ( originalModel , subsystem ) ;
PreprocessorData data ( originalModel , std : : move ( * subsystemBuilderResult . model ) , std : : move ( subsystemBuilderResult . newToOldStateIndexMapping ) ) ;
PreprocessorData data ( originalFormula , originalModel , SparseModelType ( originalModel ) , storm : : utility : : vector : : buildVectorForRange ( 0 , originalModel . getNumberOfStates ( ) ) ) ;
data . objectivesSolvedInPreprocessing = storm : : storage : : BitVector ( originalFormula . getNumberOfSubformulas ( ) , false ) ;
// get a unique name for the labels of states that have to be reached with probability 1 and add the label
data . prob1StatesLabel = " prob1 " ;
while ( data . preprocessedModel . hasLabel ( data . prob1StatesLabel ) ) {
data . prob1StatesLabel = " _ " + data . prob1StatesLabel ;
}
data . preprocessedModel . getStateLabeling ( ) . addLabel ( data . prob1StatesLabel ) ;
//Invoke preprocessing on the individual objectives
for ( auto const & subFormula : originalFormula . getSubFormulas ( ) ) {
@ -42,6 +49,10 @@ namespace storm {
data . preprocessedModel . removeRewardModel ( rewModel ) ;
}
assertRewardFiniteness ( data ) ;
data . objectives = storm : : utility : : vector : : filterVector ( data . objectives , ~ data . objectivesSolvedInPreprocessing ) ;
//Set the query type. In case of a numerical query, also set the index of the objective to be optimized.
storm : : storage : : BitVector objectivesWithoutThreshold ( data . objectives . size ( ) ) ;
for ( uint_fast64_t objIndex = 0 ; objIndex < data . objectives . size ( ) ; + + objIndex ) {
@ -107,14 +118,22 @@ namespace storm {
template < typename SparseModelType >
void SparseMultiObjectivePreprocessor < SparseModelType > : : preprocessFormula ( storm : : logic : : ProbabilityOperatorFormula const & formula , PreprocessorData & data , ObjectiveInformation & currentObjective ) {
currentObjective . rewardFinitenessChecked = true ;
bool isProb0Formula = false ;
bool isProb1Formula = false ;
if ( currentObjective . threshold & & ! currentObjective . thresholdIsStrict ) {
isProb0Formula = ! currentObjective . rewardsArePositive & & storm : : utility : : isZero ( * currentObjective . threshold ) ;
isProb1Formula = currentObjective . rewardsArePositive & & storm : : utility : : isOne ( * currentObjective . threshold ) ;
}
if ( formula . getSubformula ( ) . isUntilFormula ( ) ) {
preprocessFormula ( formula . getSubformula ( ) . asUntilFormula ( ) , data , currentObjective ) ;
preprocessFormula ( formula . getSubformula ( ) . asUntilFormula ( ) , data , currentObjective , isProb0Formula , isProb1Formula ) ;
} else if ( formula . getSubformula ( ) . isBoundedUntilFormula ( ) ) {
preprocessFormula ( formula . getSubformula ( ) . asBoundedUntilFormula ( ) , data , currentObjective ) ;
} else if ( formula . getSubformula ( ) . isGloballyFormula ( ) ) {
preprocessFormula ( formula . getSubformula ( ) . asGloballyFormula ( ) , data , currentObjective ) ;
preprocessFormula ( formula . getSubformula ( ) . asGloballyFormula ( ) , data , currentObjective , isProb0Formula , isProb1Formula ) ;
} else if ( formula . getSubformula ( ) . isEventuallyFormula ( ) ) {
preprocessFormula ( formula . getSubformula ( ) . asEventuallyFormula ( ) , data , currentObjective ) ;
preprocessFormula ( formula . getSubformula ( ) . asEventuallyFormula ( ) , data , currentObjective , isProb0Formula , isProb1Formula ) ;
} else {
STORM_LOG_THROW ( false , storm : : exceptions : : InvalidPropertyException , " The subformula of " < < formula < < " is not supported. " ) ;
}
@ -125,8 +144,12 @@ namespace storm {
// Check if the reward model is uniquely specified
STORM_LOG_THROW ( ( formula . hasRewardModelName ( ) & & data . preprocessedModel . hasRewardModel ( formula . getRewardModelName ( ) ) )
| | data . preprocessedModel . hasUniqueRewardModel ( ) , storm : : exceptions : : InvalidPropertyException , " The reward model is not unique and the formula " < < formula < < " does not specify a reward model. " ) ;
// reward finiteness has to be checked later iff infinite reward is possible for the subformula
currentObjective . rewardFinitenessChecked = formula . getSubformula ( ) . isCumulativeRewardFormula ( ) ;
if ( formula . getSubformula ( ) . isEventuallyFormula ( ) ) {
preprocessFormula ( formula . getSubformula ( ) . asEventuallyFormula ( ) , data , currentObjective , formula . getOptionalRewardModelName ( ) ) ;
preprocessFormula ( formula . getSubformula ( ) . asEventuallyFormula ( ) , data , currentObjective , false , false , formula . getOptionalRewardModelName ( ) ) ;
} else if ( formula . getSubformula ( ) . isCumulativeRewardFormula ( ) ) {
preprocessFormula ( formula . getSubformula ( ) . asCumulativeRewardFormula ( ) , data , currentObjective , formula . getOptionalRewardModelName ( ) ) ;
} else if ( formula . getSubformula ( ) . isTotalRewardFormula ( ) ) {
@ -137,7 +160,7 @@ namespace storm {
}
template < typename SparseModelType >
void SparseMultiObjectivePreprocessor < SparseModelType > : : preprocessFormula ( storm : : logic : : UntilFormula const & formula , PreprocessorData & data , ObjectiveInformation & currentObjective ) {
void SparseMultiObjectivePreprocessor < SparseModelType > : : preprocessFormula ( storm : : logic : : UntilFormula const & formula , PreprocessorData & data , ObjectiveInformation & currentObjective , bool isProb0Formula , bool isProb1Formula ) {
CheckTask < storm : : logic : : Formula > phiTask ( formula . getLeftSubformula ( ) ) ;
CheckTask < storm : : logic : : Formula > psiTask ( formula . getRightSubformula ( ) ) ;
storm : : modelchecker : : SparsePropositionalModelChecker < SparseModelType > mc ( data . preprocessedModel ) ;
@ -146,20 +169,46 @@ namespace storm {
storm : : storage : : BitVector psiStates = mc . check ( psiTask ) - > asExplicitQualitativeCheckResult ( ) . getTruthValuesVector ( ) ;
auto duplicatorResult = storm : : transformer : : StateDuplicator < SparseModelType > : : transform ( data . preprocessedModel , ~ phiStates | psiStates ) ;
data . preprocessedModel = std : : move ( * duplicatorResult . model ) ;
// duplicatorResult.newToOldStateIndexMapping now reffers to the indices of the model we had before preprocessing this formula.
// This might not be the actual original model.
for ( auto & originalModelStateIndex : duplicatorResult . newToOldStateIndexMapping ) {
originalModelStateIndex = data . newToOldStateIndexMapping [ originalModelStateIndex ] ;
}
data . newToOldStateIndexMapping = std : : move ( duplicatorResult . newToOldStateIndexMapping ) ;
updatePreprocessedModel ( data , * duplicatorResult . model , duplicatorResult . newToOldStateIndexMapping ) ;
// build stateAction reward vector that gives (one*transitionProbability) reward whenever a transition leads from the firstCopy to a psiState
storm : : storage : : BitVector newPsiStates ( data . preprocessedModel . getNumberOfStates ( ) , false ) ;
for ( auto const & oldPsiState : psiStates ) {
//note that psiStates are always located in the second copy
newPsiStates . set ( duplicatorResult . secondCopyOldToNewStateIndexMapping [ oldPsiState ] , true ) ;
}
if ( isProb0Formula | | isProb1Formula ) {
storm : : storage : : BitVector subsystemStates ;
storm : : storage : : BitVector noIncomingTransitionFromFirstCopyStates ;
if ( isProb0Formula ) {
subsystemStates = storm : : utility : : graph : : performProb0E ( data . preprocessedModel , data . preprocessedModel . getBackwardTransitions ( ) , duplicatorResult . firstCopy , newPsiStates ) ;
subsystemStates | = duplicatorResult . secondCopy ;
noIncomingTransitionFromFirstCopyStates = newPsiStates ;
} else {
for ( auto psiState : newPsiStates ) {
data . preprocessedModel . getStateLabeling ( ) . addLabelToState ( data . prob1StatesLabel , psiState ) ;
}
subsystemStates = storm : : utility : : graph : : performProb1E ( data . preprocessedModel , data . preprocessedModel . getBackwardTransitions ( ) , duplicatorResult . firstCopy , newPsiStates ) ;
subsystemStates | = duplicatorResult . secondCopy ;
noIncomingTransitionFromFirstCopyStates = duplicatorResult . secondCopy & ( ~ newPsiStates ) ;
}
storm : : storage : : BitVector consideredActions ( data . preprocessedModel . getTransitionMatrix ( ) . getRowCount ( ) , true ) ;
for ( auto state : duplicatorResult . firstCopy ) {
for ( uint_fast64_t action = data . preprocessedModel . getTransitionMatrix ( ) . getRowGroupIndices ( ) [ state ] ; action < data . preprocessedModel . getTransitionMatrix ( ) . getRowGroupIndices ( ) [ state + 1 ] ; + + action ) {
for ( auto const & entry : data . preprocessedModel . getTransitionMatrix ( ) . getRow ( action ) ) {
if ( noIncomingTransitionFromFirstCopyStates . get ( entry . getColumn ( ) ) ) {
consideredActions . set ( action , false ) ;
break ;
}
}
}
}
subsystemStates = storm : : utility : : graph : : getReachableStates ( data . preprocessedModel . getTransitionMatrix ( ) , data . preprocessedModel . getInitialStates ( ) , subsystemStates , storm : : storage : : BitVector ( subsystemStates . size ( ) , false ) ) ;
auto subsystemBuilderResult = storm : : transformer : : SubsystemBuilder < SparseModelType > : : transform ( data . preprocessedModel , subsystemStates , consideredActions ) ;
updatePreprocessedModel ( data , * subsystemBuilderResult . model , subsystemBuilderResult . newToOldStateIndexMapping ) ;
data . objectivesSolvedInPreprocessing . set ( data . objectives . size ( ) ) ;
} else {
// build stateAction reward vector that gives (one*transitionProbability) reward whenever a transition leads from the firstCopy to a psiState
std : : vector < ValueType > objectiveRewards ( data . preprocessedModel . getTransitionMatrix ( ) . getRowCount ( ) , storm : : utility : : zero < ValueType > ( ) ) ;
for ( auto const & firstCopyState : duplicatorResult . firstCopy ) {
for ( uint_fast64_t row = data . preprocessedModel . getTransitionMatrix ( ) . getRowGroupIndices ( ) [ firstCopyState ] ; row < data . preprocessedModel . getTransitionMatrix ( ) . getRowGroupIndices ( ) [ firstCopyState + 1 ] ; + + row ) {
@ -171,35 +220,32 @@ namespace storm {
}
data . preprocessedModel . addRewardModel ( currentObjective . rewardModelName , RewardModelType ( boost : : none , objectiveRewards ) ) ;
}
}
template < typename SparseModelType >
void SparseMultiObjectivePreprocessor < SparseModelType > : : preprocessFormula ( storm : : logic : : BoundedUntilFormula const & formula , PreprocessorData & data , ObjectiveInformation & currentObjective ) {
STORM_LOG_THROW ( formula . hasDiscreteTimeBound ( ) , storm : : exceptions : : InvalidPropertyException , " Expected a boundedUntilFormula with a discrete time bound but got " < < formula < < " . " ) ;
currentObjective . stepBound = formula . getDiscreteTimeBound ( ) ;
preprocessFormula ( storm : : logic : : UntilFormula ( formula . getLeftSubformula ( ) . asSharedPointer ( ) , formula . getRightSubformula ( ) . asSharedPointer ( ) ) , data , currentObjective ) ;
preprocessFormula ( storm : : logic : : UntilFormula ( formula . getLeftSubformula ( ) . asSharedPointer ( ) , formula . getRightSubformula ( ) . asSharedPointer ( ) ) , data , currentObjective , false , fals e ) ;
}
template < typename SparseModelType >
void SparseMultiObjectivePreprocessor < SparseModelType > : : preprocessFormula ( storm : : logic : : GloballyFormula const & formula , PreprocessorData & data , ObjectiveInformation & currentObjective ) {
void SparseMultiObjectivePreprocessor < SparseModelType > : : preprocessFormula ( storm : : logic : : GloballyFormula const & formula , PreprocessorData & data , ObjectiveInformation & currentObjective , bool isProb0Formula , bool isProb1Formula ) {
// The formula will be transformed to an until formula for the complementary event.
// If the original formula minimizes, the complementary one will maximize and vice versa.
// Hence, the decision whether to consider positive or negative rewards flips.
currentObjective . rewardsArePositive = ! currentObjective . rewardsArePositive ;
// To transform from the value of the preprocessed model back to the value of the original model, we have to add 1 to the result.
// The transformation factor has already been set correctly
// The transformation factor has already been set correctly.
currentObjective . toOriginalValueTransformationOffset = storm : : utility : : one < ValueType > ( ) ;
if ( currentObjective . threshold ) {
// Strict thresholds become non-strict and vice versa
currentObjective . thresholdIsStrict = ! currentObjective . thresholdIsStrict ;
}
auto negatedSubformula = std : : make_shared < storm : : logic : : UnaryBooleanStateFormula > ( storm : : logic : : UnaryBooleanStateFormula : : OperatorType : : Not , formula . getSubformula ( ) . asSharedPointer ( ) ) ;
preprocessFormula ( storm : : logic : : UntilFormula ( storm : : logic : : Formula : : getTrueFormula ( ) , negatedSubformula ) , data , currentObjective ) ;
preprocessFormula ( storm : : logic : : UntilFormula ( storm : : logic : : Formula : : getTrueFormula ( ) , negatedSubformula ) , data , currentObjective , isProb1Formula , isProb0Formula ) ;
}
template < typename SparseModelType >
void SparseMultiObjectivePreprocessor < SparseModelType > : : preprocessFormula ( storm : : logic : : EventuallyFormula const & formula , PreprocessorData & data , ObjectiveInformation & currentObjective , boost : : optional < std : : string > const & optionalRewardModelName ) {
void SparseMultiObjectivePreprocessor < SparseModelType > : : preprocessFormula ( storm : : logic : : EventuallyFormula const & formula , PreprocessorData & data , ObjectiveInformation & currentObjective , bool isProb0Formula , bool isProb1Formula , boost : : optional < std : : string > const & optionalRewardModelName ) {
if ( formula . isReachabilityProbabilityFormula ( ) ) {
preprocessFormula ( storm : : logic : : UntilFormula ( storm : : logic : : Formula : : getTrueFormula ( ) , formula . getSubformula ( ) . asSharedPointer ( ) ) , data , currentObjective ) ;
preprocessFormula ( storm : : logic : : UntilFormula ( storm : : logic : : Formula : : getTrueFormula ( ) , formula . getSubformula ( ) . asSharedPointer ( ) ) , data , currentObjective , isProb0Formula , isProb1Formula ) ;
return ;
}
STORM_LOG_THROW ( formula . isReachabilityRewardFormula ( ) , storm : : exceptions : : InvalidPropertyException , " The formula " < < formula < < " neither considers reachability Probabilities nor reachability rewards " ) ;
@ -208,16 +254,21 @@ namespace storm {
storm : : modelchecker : : SparsePropositionalModelChecker < SparseModelType > mc ( data . preprocessedModel ) ;
STORM_LOG_THROW ( mc . canHandle ( targetTask ) , storm : : exceptions : : InvalidPropertyException , " The subformula of " < < formula < < " should be propositional. " ) ;
storm : : storage : : BitVector targetStates = mc . check ( targetTask ) - > asExplicitQualitativeCheckResult ( ) . getTruthValuesVector ( ) ;
STORM_LOG_WARN ( " There is no check for reward finiteness yet " ) ; //TODO
auto duplicatorResult = storm : : transformer : : StateDuplicator < SparseModelType > : : transform ( data . preprocessedModel , targetStates ) ;
data . preprocessedModel = std : : move ( * duplicatorResult . model ) ;
// duplicatorResult.newToOldStateIndexMapping now reffers to the indices of the model we had before preprocessing this formula.
// This might not be the actual original model.
for ( auto & originalModelStateIndex : duplicatorResult . newToOldStateIndexMapping ) {
originalModelStateIndex = data . newToOldStateIndexMapping [ originalModelStateIndex ] ;
updatePreprocessedModel ( data , * duplicatorResult . model , duplicatorResult . newToOldStateIndexMapping ) ;
// States of the first copy from which the second copy is not reachable with prob 1 under any scheduler can
// be removed as the expected reward is not defined for these states.
// We also need to enforce that the second copy will be reached eventually with prob 1.
for ( auto targetState : duplicatorResult . gateStates ) {
data . preprocessedModel . getStateLabeling ( ) . addLabelToState ( data . prob1StatesLabel , targetState ) ;
}
storm : : storage : : BitVector subsystemStates = storm : : utility : : graph : : performProb1E ( data . preprocessedModel , data . preprocessedModel . getBackwardTransitions ( ) , duplicatorResult . firstCopy , duplicatorResult . gateStates ) ;
subsystemStates | = duplicatorResult . secondCopy ;
if ( ! subsystemStates . full ( ) ) {
auto subsystemBuilderResult = storm : : transformer : : SubsystemBuilder < SparseModelType > : : transform ( data . preprocessedModel , subsystemStates , storm : : storage : : BitVector ( data . preprocessedModel . getTransitionMatrix ( ) . getRowCount ( ) , true ) ) ;
updatePreprocessedModel ( data , * subsystemBuilderResult . model , subsystemBuilderResult . newToOldStateIndexMapping ) ;
}
data . newToOldStateIndexMapping = std : : move ( duplicatorResult . newToOldStateIndexMapping ) ;
// Add a reward model that gives zero reward to the states of the second copy.
std : : vector < ValueType > objectiveRewards = data . preprocessedModel . getRewardModel ( optionalRewardModelName ? optionalRewardModelName . get ( ) : " " ) . getTotalRewardVector ( data . preprocessedModel . getTransitionMatrix ( ) ) ;
@ -246,12 +297,119 @@ namespace storm {
template < typename SparseModelType >
void SparseMultiObjectivePreprocessor < SparseModelType > : : preprocessFormula ( storm : : logic : : TotalRewardFormula const & formula , PreprocessorData & data , ObjectiveInformation & currentObjective , boost : : optional < std : : string > const & optionalRewardModelName ) {
std : : vector < ValueType > objectiveRewards = data . preprocessedModel . getRewardModel ( optionalRewardModelName ? optionalRewardModelName . get ( ) : " " ) . getTotalRewardVector ( data . preprocessedModel . getTransitionMatrix ( ) ) ;
storm : : storage : : BitVector positiveRewards = storm : : utility : : vector : : filterGreaterZero ( objectiveRewards ) ;
storm : : storage : : BitVector nonNegativeRewards = positiveRewards | storm : : utility : : vector : : filterZero ( objectiveRewards ) ;
STORM_LOG_THROW ( nonNegativeRewards . full ( ) | | positiveRewards . empty ( ) , storm : : exceptions : : InvalidPropertyException , " The reward model for the formula " < < formula < < " has positive and negative rewards which is not supported. " ) ;
if ( ! currentObjective . rewardsArePositive ) {
storm : : utility : : vector : : scaleVectorInPlace ( objectiveRewards , - storm : : utility : : one < ValueType > ( ) ) ;
}
data . preprocessedModel . addRewardModel ( currentObjective . rewardModelName , RewardModelType ( boost : : none , objectiveRewards ) ) ;
}
template < typename SparseModelType >
void SparseMultiObjectivePreprocessor < SparseModelType > : : assertRewardFiniteness ( PreprocessorData & data ) {
bool negativeRewardsOccur = false ;
bool positiveRewardsOccur = false ;
for ( auto & obj : data . objectives ) {
if ( ! obj . rewardFinitenessChecked ) {
negativeRewardsOccur | = ! obj . rewardsArePositive ;
positiveRewardsOccur | = obj . rewardsArePositive ;
}
}
storm : : storage : : BitVector actionsWithNegativeReward ;
if ( negativeRewardsOccur ) {
actionsWithNegativeReward = assertNegativeRewardFiniteness ( data ) ;
} else {
actionsWithNegativeReward = storm : : storage : : BitVector ( data . preprocessedModel . getTransitionMatrix ( ) . getRowCount ( ) , false ) ;
}
if ( positiveRewardsOccur ) {
assertPositiveRewardFiniteness ( data , actionsWithNegativeReward ) ;
}
}
template < typename SparseModelType >
storm : : storage : : BitVector SparseMultiObjectivePreprocessor < SparseModelType > : : assertNegativeRewardFiniteness ( PreprocessorData & data ) {
storm : : storage : : BitVector actionsWithNonNegativeReward ( data . preprocessedModel . getTransitionMatrix ( ) . getRowCount ( ) , true ) ;
for ( auto & obj : data . objectives ) {
if ( ! obj . rewardFinitenessChecked & & ! obj . rewardsArePositive ) {
obj . rewardFinitenessChecked = true ;
actionsWithNonNegativeReward & = storm : : utility : : vector : : filterZero ( data . preprocessedModel . getRewardModel ( obj . rewardModelName ) . getStateActionRewardVector ( ) ) ;
}
}
storm : : storage : : BitVector statesWithNegativeRewardForAllChoices ( data . preprocessedModel . getNumberOfStates ( ) , true ) ;
for ( uint_fast64_t state = 0 ; state < data . preprocessedModel . getNumberOfStates ( ) ; + + state ) {
// state has negative reward for all choices iff there is no bit set in actionsWithNonNegativeReward for all actions of state
statesWithNegativeRewardForAllChoices . set ( state , actionsWithNonNegativeReward . getNextSetIndex ( data . preprocessedModel . getTransitionMatrix ( ) . getRowGroupIndices ( ) [ state ] ) > = data . preprocessedModel . getTransitionMatrix ( ) . getRowGroupIndices ( ) [ state + 1 ] ) ;
}
storm : : storage : : BitVector submatrixRows = actionsWithNonNegativeReward ;
//enable one row for the statesWithRewardForAllChoices so that the rowgroups will not be deleted when taking the submatrix
for ( auto state : statesWithNegativeRewardForAllChoices ) {
submatrixRows . set ( data . preprocessedModel . getTransitionMatrix ( ) . getRowGroupIndices ( ) [ state ] , true ) ;
}
storm : : storage : : BitVector allStates ( data . preprocessedModel . getNumberOfStates ( ) , true ) ;
storm : : storage : : SparseMatrix < ValueType > transitionsWithNonNegativeReward = data . preprocessedModel . getTransitionMatrix ( ) . getSubmatrix ( false , submatrixRows , allStates , true ) ;
STORM_LOG_ASSERT ( data . preprocessedModel . getTransitionMatrix ( ) . getRowGroupCount ( ) = = transitionsWithNonNegativeReward . getRowGroupCount ( ) , " Row group count mismatch. " ) ;
storm : : storage : : BitVector statesNeverReachingNegativeRewardForSomeScheduler = storm : : utility : : graph : : performProb0E ( transitionsWithNonNegativeReward , transitionsWithNonNegativeReward . getRowGroupIndices ( ) , transitionsWithNonNegativeReward . transpose ( true ) , allStates , statesWithNegativeRewardForAllChoices ) ;
storm : : storage : : BitVector statesReachingNegativeRewardsFinitelyOftenForSomeScheduler = storm : : utility : : graph : : performProb1E ( data . preprocessedModel . getTransitionMatrix ( ) , data . preprocessedModel . getTransitionMatrix ( ) . getRowGroupIndices ( ) , data . preprocessedModel . getBackwardTransitions ( ) , allStates , statesNeverReachingNegativeRewardForSomeScheduler ) ;
auto subsystemBuilderResult = storm : : transformer : : SubsystemBuilder < SparseModelType > : : transform ( data . preprocessedModel , statesReachingNegativeRewardsFinitelyOftenForSomeScheduler , storm : : storage : : BitVector ( data . preprocessedModel . getTransitionMatrix ( ) . getRowCount ( ) , true ) ) ;
data . preprocessedModel = std : : move ( * subsystemBuilderResult . model ) ;
// subsystemBuilderResult.newToOldStateIndexMapping now reffers to the indices of the model we had before building the subsystem
for ( auto & originalModelStateIndex : subsystemBuilderResult . newToOldStateIndexMapping ) {
originalModelStateIndex = data . newToOldStateIndexMapping [ originalModelStateIndex ] ;
}
data . newToOldStateIndexMapping = std : : move ( subsystemBuilderResult . newToOldStateIndexMapping ) ;
return ( ~ actionsWithNonNegativeReward ) % subsystemBuilderResult . subsystemActions ;
}
template < typename SparseModelType >
void SparseMultiObjectivePreprocessor < SparseModelType > : : assertPositiveRewardFiniteness ( PreprocessorData & data , storm : : storage : : BitVector const & actionsWithNegativeReward ) {
auto mecDecomposition = storm : : storage : : MaximalEndComponentDecomposition < ValueType > ( data . preprocessedModel . getTransitionMatrix ( ) , data . preprocessedModel . getBackwardTransitions ( ) ) ;
if ( mecDecomposition . empty ( ) ) {
return ;
}
for ( uint_fast64_t objIndex = 0 ; objIndex < data . objectives . size ( ) ; + + objIndex ) {
auto & obj = data . objectives [ objIndex ] ;
if ( ! obj . rewardFinitenessChecked & & obj . rewardsArePositive ) {
obj . rewardFinitenessChecked = true ;
// Find maximal end components that contain a state with positive reward
storm : : storage : : BitVector actionsWithPositiveRewards = storm : : utility : : vector : : filterGreaterZero ( data . preprocessedModel . getRewardModel ( obj . rewardModelName ) . getStateActionRewardVector ( ) ) ;
for ( auto const & mec : mecDecomposition ) {
bool ecHasActionWithPositiveReward = false ;
for ( auto const & stateActionsPair : mec ) {
for ( auto const & action : stateActionsPair . second ) {
STORM_LOG_THROW ( ! actionsWithNegativeReward . get ( action ) , storm : : exceptions : : InvalidPropertyException , " Found an end componet that contains rewards for a maximizing and a minimizing objective. This is not supported " ) ;
// Note: we could also check whether some sub EC exists that does not contain negative rewards.
ecHasActionWithPositiveReward | = ( actionsWithPositiveRewards . get ( action ) ) ;
}
}
if ( ecHasActionWithPositiveReward ) {
STORM_LOG_DEBUG ( " Found end component that contains positive rewards for current objective " < < * obj . originalFormula < < " . " ) ;
data . objectivesSolvedInPreprocessing . set ( objIndex ) ;
break ;
}
}
}
}
}
template < typename SparseModelType >
void SparseMultiObjectivePreprocessor < SparseModelType > : : updatePreprocessedModel ( PreprocessorData & data , SparseModelType & newPreprocessedModel , std : : vector < uint_fast64_t > & newToOldStateIndexMapping ) {
data . preprocessedModel = std : : move ( newPreprocessedModel ) ;
// the given newToOldStateIndexMapping reffers to the indices of the former preprocessedModel as 'old indices'
for ( auto & preprocessedModelStateIndex : newToOldStateIndexMapping ) {
preprocessedModelStateIndex = data . newToOldStateIndexMapping [ preprocessedModelStateIndex ] ;
}
data . newToOldStateIndexMapping = std : : move ( newToOldStateIndexMapping ) ;
}
template class SparseMultiObjectivePreprocessor < storm : : models : : sparse : : Mdp < double > > ;