diff --git a/src/modelchecker/multiobjective/helper/SparseMultiObjectiveObjectiveInformation.h b/src/modelchecker/multiobjective/helper/SparseMultiObjectiveObjectiveInformation.h index 50660d133..4c5709939 100644 --- a/src/modelchecker/multiobjective/helper/SparseMultiObjectiveObjectiveInformation.h +++ b/src/modelchecker/multiobjective/helper/SparseMultiObjectiveObjectiveInformation.h @@ -34,6 +34,9 @@ namespace storm { // The (discrete) stepBound for the formula (if given by the originalFormula) boost::optional stepBound; + // Stores whether reward finiteness has been checked for this objective. + bool rewardFinitenessChecked; + void printToStream(std::ostream& out) const { out << std::setw(30) << originalFormula->toString(); out << " \t(toOrigVal:" << std::setw(3) << toOriginalValueTransformationFactor << "*x +" << std::setw(3) << toOriginalValueTransformationOffset << ", \t"; diff --git a/src/modelchecker/multiobjective/helper/SparseMultiObjectivePreprocessor.cpp b/src/modelchecker/multiobjective/helper/SparseMultiObjectivePreprocessor.cpp index ad2bd7152..83b2892cf 100644 --- a/src/modelchecker/multiobjective/helper/SparseMultiObjectivePreprocessor.cpp +++ b/src/modelchecker/multiobjective/helper/SparseMultiObjectivePreprocessor.cpp @@ -4,6 +4,7 @@ #include "src/models/sparse/StandardRewardModel.h" #include "src/modelchecker/propositional/SparsePropositionalModelChecker.h" #include "src/modelchecker/results/ExplicitQualitativeCheckResult.h" +#include "src/storage/MaximalEndComponentDecomposition.h" #include "src/transformer/StateDuplicator.h" #include "src/transformer/SubsystemBuilder.h" #include "src/utility/macros.h" @@ -18,10 +19,16 @@ namespace storm { namespace helper { template - typename SparseMultiObjectivePreprocessor::PreprocessorData SparseMultiObjectivePreprocessor::preprocess(storm::logic::MultiObjectiveFormula const& originalFormula, SparseModelType const& originalModel, storm::storage::BitVector const& subsystem) { + typename SparseMultiObjectivePreprocessor::PreprocessorData SparseMultiObjectivePreprocessor::preprocess(storm::logic::MultiObjectiveFormula const& originalFormula, SparseModelType const& originalModel) { - auto subsystemBuilderResult = storm::transformer::SubsystemBuilder::transform(originalModel, subsystem); - PreprocessorData data(originalModel, std::move(*subsystemBuilderResult.model), std::move(subsystemBuilderResult.newToOldStateIndexMapping)); + PreprocessorData data(originalFormula, originalModel, SparseModelType(originalModel), storm::utility::vector::buildVectorForRange(0, originalModel.getNumberOfStates())); + data.objectivesSolvedInPreprocessing = storm::storage::BitVector(originalFormula.getNumberOfSubformulas(), false); + // get a unique name for the labels of states that have to be reached with probability 1 and add the label + data.prob1StatesLabel = "prob1"; + while(data.preprocessedModel.hasLabel(data.prob1StatesLabel)) { + data.prob1StatesLabel = "_" + data.prob1StatesLabel; + } + data.preprocessedModel.getStateLabeling().addLabel(data.prob1StatesLabel); //Invoke preprocessing on the individual objectives for(auto const& subFormula : originalFormula.getSubFormulas()){ @@ -42,6 +49,10 @@ namespace storm { data.preprocessedModel.removeRewardModel(rewModel); } + assertRewardFiniteness(data); + + data.objectives = storm::utility::vector::filterVector(data.objectives, ~data.objectivesSolvedInPreprocessing); + //Set the query type. In case of a numerical query, also set the index of the objective to be optimized. storm::storage::BitVector objectivesWithoutThreshold(data.objectives.size()); for(uint_fast64_t objIndex = 0; objIndex < data.objectives.size(); ++objIndex) { @@ -107,14 +118,22 @@ namespace storm { template void SparseMultiObjectivePreprocessor::preprocessFormula(storm::logic::ProbabilityOperatorFormula const& formula, PreprocessorData& data, ObjectiveInformation& currentObjective) { + currentObjective.rewardFinitenessChecked = true; + bool isProb0Formula = false; + bool isProb1Formula = false; + if(currentObjective.threshold && !currentObjective.thresholdIsStrict) { + isProb0Formula = !currentObjective.rewardsArePositive && storm::utility::isZero(*currentObjective.threshold); + isProb1Formula = currentObjective.rewardsArePositive && storm::utility::isOne(*currentObjective.threshold); + } + if(formula.getSubformula().isUntilFormula()){ - preprocessFormula(formula.getSubformula().asUntilFormula(), data, currentObjective); + preprocessFormula(formula.getSubformula().asUntilFormula(), data, currentObjective, isProb0Formula, isProb1Formula); } else if(formula.getSubformula().isBoundedUntilFormula()){ preprocessFormula(formula.getSubformula().asBoundedUntilFormula(), data, currentObjective); } else if(formula.getSubformula().isGloballyFormula()){ - preprocessFormula(formula.getSubformula().asGloballyFormula(), data, currentObjective); + preprocessFormula(formula.getSubformula().asGloballyFormula(), data, currentObjective, isProb0Formula, isProb1Formula); } else if(formula.getSubformula().isEventuallyFormula()){ - preprocessFormula(formula.getSubformula().asEventuallyFormula(), data, currentObjective); + preprocessFormula(formula.getSubformula().asEventuallyFormula(), data, currentObjective, isProb0Formula, isProb1Formula); } else { STORM_LOG_THROW(false, storm::exceptions::InvalidPropertyException, "The subformula of " << formula << " is not supported."); } @@ -125,8 +144,12 @@ namespace storm { // Check if the reward model is uniquely specified STORM_LOG_THROW((formula.hasRewardModelName() && data.preprocessedModel.hasRewardModel(formula.getRewardModelName())) || data.preprocessedModel.hasUniqueRewardModel(), storm::exceptions::InvalidPropertyException, "The reward model is not unique and the formula " << formula << " does not specify a reward model."); + + // reward finiteness has to be checked later iff infinite reward is possible for the subformula + currentObjective.rewardFinitenessChecked = formula.getSubformula().isCumulativeRewardFormula(); + if(formula.getSubformula().isEventuallyFormula()){ - preprocessFormula(formula.getSubformula().asEventuallyFormula(), data, currentObjective, formula.getOptionalRewardModelName()); + preprocessFormula(formula.getSubformula().asEventuallyFormula(), data, currentObjective, false, false, formula.getOptionalRewardModelName()); } else if(formula.getSubformula().isCumulativeRewardFormula()) { preprocessFormula(formula.getSubformula().asCumulativeRewardFormula(), data, currentObjective, formula.getOptionalRewardModelName()); } else if(formula.getSubformula().isTotalRewardFormula()) { @@ -137,7 +160,7 @@ namespace storm { } template - void SparseMultiObjectivePreprocessor::preprocessFormula(storm::logic::UntilFormula const& formula, PreprocessorData& data, ObjectiveInformation& currentObjective) { + void SparseMultiObjectivePreprocessor::preprocessFormula(storm::logic::UntilFormula const& formula, PreprocessorData& data, ObjectiveInformation& currentObjective, bool isProb0Formula, bool isProb1Formula) { CheckTask phiTask(formula.getLeftSubformula()); CheckTask psiTask(formula.getRightSubformula()); storm::modelchecker::SparsePropositionalModelChecker mc(data.preprocessedModel); @@ -146,60 +169,83 @@ namespace storm { storm::storage::BitVector psiStates = mc.check(psiTask)->asExplicitQualitativeCheckResult().getTruthValuesVector(); auto duplicatorResult = storm::transformer::StateDuplicator::transform(data.preprocessedModel, ~phiStates | psiStates); - data.preprocessedModel = std::move(*duplicatorResult.model); - // duplicatorResult.newToOldStateIndexMapping now reffers to the indices of the model we had before preprocessing this formula. - // This might not be the actual original model. - for(auto & originalModelStateIndex : duplicatorResult.newToOldStateIndexMapping){ - originalModelStateIndex = data.newToOldStateIndexMapping[originalModelStateIndex]; - } - data.newToOldStateIndexMapping = std::move(duplicatorResult.newToOldStateIndexMapping); + updatePreprocessedModel(data, *duplicatorResult.model, duplicatorResult.newToOldStateIndexMapping); - // build stateAction reward vector that gives (one*transitionProbability) reward whenever a transition leads from the firstCopy to a psiState storm::storage::BitVector newPsiStates(data.preprocessedModel.getNumberOfStates(), false); for(auto const& oldPsiState : psiStates){ //note that psiStates are always located in the second copy newPsiStates.set(duplicatorResult.secondCopyOldToNewStateIndexMapping[oldPsiState], true); } - std::vector objectiveRewards(data.preprocessedModel.getTransitionMatrix().getRowCount(), storm::utility::zero()); - for (auto const& firstCopyState : duplicatorResult.firstCopy) { - for (uint_fast64_t row = data.preprocessedModel.getTransitionMatrix().getRowGroupIndices()[firstCopyState]; row < data.preprocessedModel.getTransitionMatrix().getRowGroupIndices()[firstCopyState + 1]; ++row) { - objectiveRewards[row] = data.preprocessedModel.getTransitionMatrix().getConstrainedRowSum(row, newPsiStates); + + if(isProb0Formula || isProb1Formula) { + storm::storage::BitVector subsystemStates; + storm::storage::BitVector noIncomingTransitionFromFirstCopyStates; + if(isProb0Formula) { + subsystemStates = storm::utility::graph::performProb0E(data.preprocessedModel, data.preprocessedModel.getBackwardTransitions(), duplicatorResult.firstCopy, newPsiStates); + subsystemStates |= duplicatorResult.secondCopy; + noIncomingTransitionFromFirstCopyStates = newPsiStates; + } else { + for(auto psiState : newPsiStates) { + data.preprocessedModel.getStateLabeling().addLabelToState(data.prob1StatesLabel, psiState); + } + subsystemStates = storm::utility::graph::performProb1E(data.preprocessedModel, data.preprocessedModel.getBackwardTransitions(), duplicatorResult.firstCopy, newPsiStates); + subsystemStates |= duplicatorResult.secondCopy; + noIncomingTransitionFromFirstCopyStates = duplicatorResult.secondCopy & (~newPsiStates); } + storm::storage::BitVector consideredActions(data.preprocessedModel.getTransitionMatrix().getRowCount(), true); + for(auto state : duplicatorResult.firstCopy) { + for(uint_fast64_t action = data.preprocessedModel.getTransitionMatrix().getRowGroupIndices()[state]; action < data.preprocessedModel.getTransitionMatrix().getRowGroupIndices()[state +1] ; ++action) { + for(auto const& entry : data.preprocessedModel.getTransitionMatrix().getRow(action)) { + if(noIncomingTransitionFromFirstCopyStates.get(entry.getColumn())) { + consideredActions.set(action, false); + break; + } + } + } + } + subsystemStates = storm::utility::graph::getReachableStates(data.preprocessedModel.getTransitionMatrix(), data.preprocessedModel.getInitialStates(), subsystemStates, storm::storage::BitVector(subsystemStates.size(), false)); + auto subsystemBuilderResult = storm::transformer::SubsystemBuilder::transform(data.preprocessedModel, subsystemStates, consideredActions); + updatePreprocessedModel(data, *subsystemBuilderResult.model, subsystemBuilderResult.newToOldStateIndexMapping); + data.objectivesSolvedInPreprocessing.set(data.objectives.size()); + } else { + // build stateAction reward vector that gives (one*transitionProbability) reward whenever a transition leads from the firstCopy to a psiState + std::vector objectiveRewards(data.preprocessedModel.getTransitionMatrix().getRowCount(), storm::utility::zero()); + for (auto const& firstCopyState : duplicatorResult.firstCopy) { + for (uint_fast64_t row = data.preprocessedModel.getTransitionMatrix().getRowGroupIndices()[firstCopyState]; row < data.preprocessedModel.getTransitionMatrix().getRowGroupIndices()[firstCopyState + 1]; ++row) { + objectiveRewards[row] = data.preprocessedModel.getTransitionMatrix().getConstrainedRowSum(row, newPsiStates); + } + } + if(!currentObjective.rewardsArePositive) { + storm::utility::vector::scaleVectorInPlace(objectiveRewards, -storm::utility::one()); + } + data.preprocessedModel.addRewardModel(currentObjective.rewardModelName, RewardModelType(boost::none, objectiveRewards)); } - if(!currentObjective.rewardsArePositive) { - storm::utility::vector::scaleVectorInPlace(objectiveRewards, -storm::utility::one()); - } - data.preprocessedModel.addRewardModel(currentObjective.rewardModelName, RewardModelType(boost::none, objectiveRewards)); } template void SparseMultiObjectivePreprocessor::preprocessFormula(storm::logic::BoundedUntilFormula const& formula, PreprocessorData& data, ObjectiveInformation& currentObjective) { STORM_LOG_THROW(formula.hasDiscreteTimeBound(), storm::exceptions::InvalidPropertyException, "Expected a boundedUntilFormula with a discrete time bound but got " << formula << "."); currentObjective.stepBound = formula.getDiscreteTimeBound(); - preprocessFormula(storm::logic::UntilFormula(formula.getLeftSubformula().asSharedPointer(), formula.getRightSubformula().asSharedPointer()), data, currentObjective); + preprocessFormula(storm::logic::UntilFormula(formula.getLeftSubformula().asSharedPointer(), formula.getRightSubformula().asSharedPointer()), data, currentObjective, false, false); } template - void SparseMultiObjectivePreprocessor::preprocessFormula(storm::logic::GloballyFormula const& formula, PreprocessorData& data, ObjectiveInformation& currentObjective) { + void SparseMultiObjectivePreprocessor::preprocessFormula(storm::logic::GloballyFormula const& formula, PreprocessorData& data, ObjectiveInformation& currentObjective, bool isProb0Formula, bool isProb1Formula) { // The formula will be transformed to an until formula for the complementary event. // If the original formula minimizes, the complementary one will maximize and vice versa. // Hence, the decision whether to consider positive or negative rewards flips. currentObjective.rewardsArePositive = !currentObjective.rewardsArePositive; // To transform from the value of the preprocessed model back to the value of the original model, we have to add 1 to the result. - // The transformation factor has already been set correctly + // The transformation factor has already been set correctly. currentObjective.toOriginalValueTransformationOffset = storm::utility::one(); - if(currentObjective.threshold) { - // Strict thresholds become non-strict and vice versa - currentObjective.thresholdIsStrict = !currentObjective.thresholdIsStrict; - } auto negatedSubformula = std::make_shared(storm::logic::UnaryBooleanStateFormula::OperatorType::Not, formula.getSubformula().asSharedPointer()); - preprocessFormula(storm::logic::UntilFormula(storm::logic::Formula::getTrueFormula(), negatedSubformula), data, currentObjective); + preprocessFormula(storm::logic::UntilFormula(storm::logic::Formula::getTrueFormula(), negatedSubformula), data, currentObjective, isProb1Formula, isProb0Formula); } template - void SparseMultiObjectivePreprocessor::preprocessFormula(storm::logic::EventuallyFormula const& formula, PreprocessorData& data, ObjectiveInformation& currentObjective, boost::optional const& optionalRewardModelName) { + void SparseMultiObjectivePreprocessor::preprocessFormula(storm::logic::EventuallyFormula const& formula, PreprocessorData& data, ObjectiveInformation& currentObjective, bool isProb0Formula, bool isProb1Formula, boost::optional const& optionalRewardModelName) { if(formula.isReachabilityProbabilityFormula()){ - preprocessFormula(storm::logic::UntilFormula(storm::logic::Formula::getTrueFormula(), formula.getSubformula().asSharedPointer()), data, currentObjective); + preprocessFormula(storm::logic::UntilFormula(storm::logic::Formula::getTrueFormula(), formula.getSubformula().asSharedPointer()), data, currentObjective, isProb0Formula, isProb1Formula); return; } STORM_LOG_THROW(formula.isReachabilityRewardFormula(), storm::exceptions::InvalidPropertyException, "The formula " << formula << " neither considers reachability Probabilities nor reachability rewards"); @@ -208,16 +254,21 @@ namespace storm { storm::modelchecker::SparsePropositionalModelChecker mc(data.preprocessedModel); STORM_LOG_THROW(mc.canHandle(targetTask), storm::exceptions::InvalidPropertyException, "The subformula of " << formula << " should be propositional."); storm::storage::BitVector targetStates = mc.check(targetTask)->asExplicitQualitativeCheckResult().getTruthValuesVector(); - - STORM_LOG_WARN("There is no check for reward finiteness yet"); //TODO auto duplicatorResult = storm::transformer::StateDuplicator::transform(data.preprocessedModel, targetStates); - data.preprocessedModel = std::move(*duplicatorResult.model); - // duplicatorResult.newToOldStateIndexMapping now reffers to the indices of the model we had before preprocessing this formula. - // This might not be the actual original model. - for(auto & originalModelStateIndex : duplicatorResult.newToOldStateIndexMapping){ - originalModelStateIndex = data.newToOldStateIndexMapping[originalModelStateIndex]; + updatePreprocessedModel(data, *duplicatorResult.model, duplicatorResult.newToOldStateIndexMapping); + + // States of the first copy from which the second copy is not reachable with prob 1 under any scheduler can + // be removed as the expected reward is not defined for these states. + // We also need to enforce that the second copy will be reached eventually with prob 1. + for(auto targetState : duplicatorResult.gateStates) { + data.preprocessedModel.getStateLabeling().addLabelToState(data.prob1StatesLabel, targetState); + } + storm::storage::BitVector subsystemStates = storm::utility::graph::performProb1E(data.preprocessedModel, data.preprocessedModel.getBackwardTransitions(), duplicatorResult.firstCopy, duplicatorResult.gateStates); + subsystemStates |= duplicatorResult.secondCopy; + if(!subsystemStates.full()) { + auto subsystemBuilderResult = storm::transformer::SubsystemBuilder::transform(data.preprocessedModel, subsystemStates, storm::storage::BitVector(data.preprocessedModel.getTransitionMatrix().getRowCount(), true)); + updatePreprocessedModel(data, *subsystemBuilderResult.model, subsystemBuilderResult.newToOldStateIndexMapping); } - data.newToOldStateIndexMapping = std::move(duplicatorResult.newToOldStateIndexMapping); // Add a reward model that gives zero reward to the states of the second copy. std::vector objectiveRewards = data.preprocessedModel.getRewardModel(optionalRewardModelName ? optionalRewardModelName.get() : "").getTotalRewardVector(data.preprocessedModel.getTransitionMatrix()); @@ -246,12 +297,119 @@ namespace storm { template void SparseMultiObjectivePreprocessor::preprocessFormula(storm::logic::TotalRewardFormula const& formula, PreprocessorData& data, ObjectiveInformation& currentObjective, boost::optional const& optionalRewardModelName) { std::vector objectiveRewards = data.preprocessedModel.getRewardModel(optionalRewardModelName ? optionalRewardModelName.get() : "").getTotalRewardVector(data.preprocessedModel.getTransitionMatrix()); + storm::storage::BitVector positiveRewards = storm::utility::vector::filterGreaterZero(objectiveRewards); + storm::storage::BitVector nonNegativeRewards = positiveRewards | storm::utility::vector::filterZero(objectiveRewards); + STORM_LOG_THROW(nonNegativeRewards.full() || positiveRewards.empty(), storm::exceptions::InvalidPropertyException, "The reward model for the formula " << formula << " has positive and negative rewards which is not supported."); if(!currentObjective.rewardsArePositive){ storm::utility::vector::scaleVectorInPlace(objectiveRewards, -storm::utility::one()); } data.preprocessedModel.addRewardModel(currentObjective.rewardModelName, RewardModelType(boost::none, objectiveRewards)); } + + template + void SparseMultiObjectivePreprocessor::assertRewardFiniteness(PreprocessorData& data) { + bool negativeRewardsOccur = false; + bool positiveRewardsOccur = false; + for(auto& obj : data.objectives) { + if (!obj.rewardFinitenessChecked) { + negativeRewardsOccur |= !obj.rewardsArePositive; + positiveRewardsOccur |= obj.rewardsArePositive; + } + } + storm::storage::BitVector actionsWithNegativeReward; + if(negativeRewardsOccur) { + actionsWithNegativeReward = assertNegativeRewardFiniteness(data); + } else { + actionsWithNegativeReward = storm::storage::BitVector(data.preprocessedModel.getTransitionMatrix().getRowCount(), false); + } + if(positiveRewardsOccur) { + assertPositiveRewardFiniteness(data, actionsWithNegativeReward); + } + } + + template + storm::storage::BitVector SparseMultiObjectivePreprocessor::assertNegativeRewardFiniteness(PreprocessorData& data) { + + storm::storage::BitVector actionsWithNonNegativeReward(data.preprocessedModel.getTransitionMatrix().getRowCount(), true); + for(auto& obj : data.objectives) { + if (!obj.rewardFinitenessChecked && !obj.rewardsArePositive) { + obj.rewardFinitenessChecked = true; + actionsWithNonNegativeReward &= storm::utility::vector::filterZero(data.preprocessedModel.getRewardModel(obj.rewardModelName).getStateActionRewardVector()); + } + } + + storm::storage::BitVector statesWithNegativeRewardForAllChoices(data.preprocessedModel.getNumberOfStates(), true); + for(uint_fast64_t state = 0; state < data.preprocessedModel.getNumberOfStates(); ++state) { + // state has negative reward for all choices iff there is no bit set in actionsWithNonNegativeReward for all actions of state + statesWithNegativeRewardForAllChoices.set(state, actionsWithNonNegativeReward.getNextSetIndex(data.preprocessedModel.getTransitionMatrix().getRowGroupIndices()[state]) >= data.preprocessedModel.getTransitionMatrix().getRowGroupIndices()[state+1]); + } + + storm::storage::BitVector submatrixRows = actionsWithNonNegativeReward; + //enable one row for the statesWithRewardForAllChoices so that the rowgroups will not be deleted when taking the submatrix + for(auto state : statesWithNegativeRewardForAllChoices) { + submatrixRows.set(data.preprocessedModel.getTransitionMatrix().getRowGroupIndices()[state], true); + } + storm::storage::BitVector allStates(data.preprocessedModel.getNumberOfStates(), true); + storm::storage::SparseMatrix transitionsWithNonNegativeReward = data.preprocessedModel.getTransitionMatrix().getSubmatrix(false, submatrixRows, allStates, true); + STORM_LOG_ASSERT(data.preprocessedModel.getTransitionMatrix().getRowGroupCount() == transitionsWithNonNegativeReward.getRowGroupCount(), "Row group count mismatch."); + + storm::storage::BitVector statesNeverReachingNegativeRewardForSomeScheduler = storm::utility::graph::performProb0E(transitionsWithNonNegativeReward, transitionsWithNonNegativeReward.getRowGroupIndices(), transitionsWithNonNegativeReward.transpose(true), allStates, statesWithNegativeRewardForAllChoices); + storm::storage::BitVector statesReachingNegativeRewardsFinitelyOftenForSomeScheduler = storm::utility::graph::performProb1E(data.preprocessedModel.getTransitionMatrix(), data.preprocessedModel.getTransitionMatrix().getRowGroupIndices(), data.preprocessedModel.getBackwardTransitions(), allStates, statesNeverReachingNegativeRewardForSomeScheduler); + + auto subsystemBuilderResult = storm::transformer::SubsystemBuilder::transform(data.preprocessedModel, statesReachingNegativeRewardsFinitelyOftenForSomeScheduler, storm::storage::BitVector(data.preprocessedModel.getTransitionMatrix().getRowCount(), true)); + data.preprocessedModel = std::move(*subsystemBuilderResult.model); + // subsystemBuilderResult.newToOldStateIndexMapping now reffers to the indices of the model we had before building the subsystem + for(auto & originalModelStateIndex : subsystemBuilderResult.newToOldStateIndexMapping){ + originalModelStateIndex = data.newToOldStateIndexMapping[originalModelStateIndex]; + } + data.newToOldStateIndexMapping = std::move(subsystemBuilderResult.newToOldStateIndexMapping); + return (~actionsWithNonNegativeReward) % subsystemBuilderResult.subsystemActions; + } + + template + void SparseMultiObjectivePreprocessor::assertPositiveRewardFiniteness(PreprocessorData& data, storm::storage::BitVector const& actionsWithNegativeReward) { + + auto mecDecomposition = storm::storage::MaximalEndComponentDecomposition(data.preprocessedModel.getTransitionMatrix(), data.preprocessedModel.getBackwardTransitions()); + if(mecDecomposition.empty()) { + return; + } + for(uint_fast64_t objIndex = 0; objIndex < data.objectives.size(); ++objIndex) { + auto& obj = data.objectives[objIndex]; + if (!obj.rewardFinitenessChecked && obj.rewardsArePositive) { + obj.rewardFinitenessChecked = true; + // Find maximal end components that contain a state with positive reward + storm::storage::BitVector actionsWithPositiveRewards = storm::utility::vector::filterGreaterZero(data.preprocessedModel.getRewardModel(obj.rewardModelName).getStateActionRewardVector()); + for(auto const& mec : mecDecomposition) { + bool ecHasActionWithPositiveReward = false; + for(auto const& stateActionsPair : mec) { + for(auto const& action : stateActionsPair.second) { + STORM_LOG_THROW(!actionsWithNegativeReward.get(action), storm::exceptions::InvalidPropertyException, "Found an end componet that contains rewards for a maximizing and a minimizing objective. This is not supported"); + // Note: we could also check whether some sub EC exists that does not contain negative rewards. + ecHasActionWithPositiveReward |= (actionsWithPositiveRewards.get(action)); + } + } + if(ecHasActionWithPositiveReward) { + STORM_LOG_DEBUG("Found end component that contains positive rewards for current objective " << *obj.originalFormula << "."); + data.objectivesSolvedInPreprocessing.set(objIndex); + break; + } + } + } + } + } + + template + void SparseMultiObjectivePreprocessor::updatePreprocessedModel(PreprocessorData& data, SparseModelType& newPreprocessedModel, std::vector& newToOldStateIndexMapping) { + data.preprocessedModel = std::move(newPreprocessedModel); + // the given newToOldStateIndexMapping reffers to the indices of the former preprocessedModel as 'old indices' + for(auto & preprocessedModelStateIndex : newToOldStateIndexMapping){ + preprocessedModelStateIndex = data.newToOldStateIndexMapping[preprocessedModelStateIndex]; + } + data.newToOldStateIndexMapping = std::move(newToOldStateIndexMapping); + } + + template class SparseMultiObjectivePreprocessor>; diff --git a/src/modelchecker/multiobjective/helper/SparseMultiObjectivePreprocessor.h b/src/modelchecker/multiobjective/helper/SparseMultiObjectivePreprocessor.h index a3e91824f..141bd7338 100644 --- a/src/modelchecker/multiobjective/helper/SparseMultiObjectivePreprocessor.h +++ b/src/modelchecker/multiobjective/helper/SparseMultiObjectivePreprocessor.h @@ -1,14 +1,14 @@ #ifndef STORM_MODELCHECKER_MULTIOBJECTIVE_HELPER_SPARSEMULTIOBJECTIVEPREPROCESSOR_H_ #define STORM_MODELCHECKER_MULTIOBJECTIVE_HELPER_SPARSEMULTIOBJECTIVEPREPROCESSOR_H_ +#include + #include "src/logic/Formulas.h" #include "src/modelchecker/multiobjective/helper/SparseMultiObjectivePreprocessorData.h" #include "src/storage/BitVector.h" namespace storm { namespace modelchecker { - - namespace helper { /* @@ -26,10 +26,8 @@ namespace storm { * Preprocesses the given model w.r.t. the given formulas. * @param originalModel The considered model * @param originalFormula the considered formula. The subformulas should only contain one OperatorFormula at top level, i.e., the formula is simple. - * @param subsystem the states of the original model which should be considered. Choices that have a transition leading outside of the subsystem will be - * removed. Hence, every state in the subsystem has to have one choice that stays inside the subsystem. */ - static PreprocessorData preprocess(storm::logic::MultiObjectiveFormula const& originalFormula, SparseModelType const& originalModel, storm::storage::BitVector const& subsystem); + static PreprocessorData preprocess(storm::logic::MultiObjectiveFormula const& originalFormula, SparseModelType const& originalModel); private: @@ -37,19 +35,54 @@ namespace storm { * Apply the neccessary preprocessing for the given formula. * @param formula the current (sub)formula * @param data the information collected so far + * @param isProb0Formula true iff the considered objective is of the form P<=0 [..] + * @param isProb1Formula true iff the considered objective is of the form P>=1 [..] * @param currentObjective the currently considered objective. The given formula should be a a (sub)formula of this objective * @param optionalRewardModelName the reward model name that is considered for the formula (if available) */ static void preprocessFormula(storm::logic::OperatorFormula const& formula, PreprocessorData& data, ObjectiveInformation& currentObjective); static void preprocessFormula(storm::logic::ProbabilityOperatorFormula const& formula, PreprocessorData& data, ObjectiveInformation& currentObjective); static void preprocessFormula(storm::logic::RewardOperatorFormula const& formula, PreprocessorData& data, ObjectiveInformation& currentObjective); - static void preprocessFormula(storm::logic::UntilFormula const& formula, PreprocessorData& data, ObjectiveInformation& currentObjective); + static void preprocessFormula(storm::logic::UntilFormula const& formula, PreprocessorData& data, ObjectiveInformation& currentObjective, bool isProb0Formula, bool isProb1Formula); static void preprocessFormula(storm::logic::BoundedUntilFormula const& formula, PreprocessorData& data, ObjectiveInformation& currentObjective); - static void preprocessFormula(storm::logic::GloballyFormula const& formula, PreprocessorData& data, ObjectiveInformation& currentObjective); - static void preprocessFormula(storm::logic::EventuallyFormula const& formula, PreprocessorData& data, ObjectiveInformation& currentObjective, boost::optional const& optionalRewardModelName = boost::none); + static void preprocessFormula(storm::logic::GloballyFormula const& formula, PreprocessorData& data, ObjectiveInformation& currentObjective, bool isProb0Formula, bool isProb1Formula); + static void preprocessFormula(storm::logic::EventuallyFormula const& formula, PreprocessorData& data, ObjectiveInformation& currentObjective, bool isProb0Formula, bool isProb1Formula, boost::optional const& optionalRewardModelName = boost::none); static void preprocessFormula(storm::logic::CumulativeRewardFormula const& formula, PreprocessorData& data, ObjectiveInformation& currentObjective, boost::optional const& optionalRewardModelName = boost::none); static void preprocessFormula(storm::logic::TotalRewardFormula const& formula, PreprocessorData& data, ObjectiveInformation& currentObjective, boost::optional const& optionalRewardModelName = boost::none); + /*! + * Checks whether the occurring reward properties are guaranteed to be finite for all states. + * if not, further preprocessing is applied. + * + * For reward properties that maximize, it is checked whether the reward is unbounded for some scheduler + * (i.e., an EC with (only positive) rewards is reachable). + * If yes, the objective is removed as we can combine any scheduler with the scheduler above + * to obtain arbitrary high values. Note that in case of achievability or numerical queries, this combination might + * (theoretically) violate thresholds by some small epsilon. This is ignored as we are working with numerical methods anyway... + * + * For reward properties that minimize, all states from which only infinite reward is possible are removed. + * Note that this excludes solutions of numerical queries where the minimum is infinity... + */ + static void assertRewardFiniteness(PreprocessorData& data); + + /*! + * Checks reward finiteness for the negative rewards and returns the set of actions in the + * preprocessedModel that give negative rewards for some objective + */ + static storm::storage::BitVector assertNegativeRewardFiniteness(PreprocessorData& data); + + /*! + * Checks reward finiteness for the positive rewards + */ + static void assertPositiveRewardFiniteness(PreprocessorData& data, storm::storage::BitVector const& actionsWithNegativeReward); + + /*! + * Updates the preprocessed model stored in the given data to the given model. + * The given newToOldStateIndexMapping should give for each state in the newPreprocessedModel + * the index of the state in the current data.preprocessedModel. + */ + static void updatePreprocessedModel(PreprocessorData& data, SparseModelType& newPreprocessedModel, std::vector& newToOldStateIndexMapping); + }; } diff --git a/src/modelchecker/multiobjective/helper/SparseMultiObjectivePreprocessorData.h b/src/modelchecker/multiobjective/helper/SparseMultiObjectivePreprocessorData.h index 31b5f22c6..71827e633 100644 --- a/src/modelchecker/multiobjective/helper/SparseMultiObjectivePreprocessorData.h +++ b/src/modelchecker/multiobjective/helper/SparseMultiObjectivePreprocessorData.h @@ -6,7 +6,9 @@ #include #include +#include "src/logic/Formulas.h" #include "src/modelchecker/multiobjective/helper/SparseMultiObjectiveObjectiveInformation.h" +#include "src/storage/BitVector.h" namespace storm { namespace modelchecker { @@ -17,9 +19,13 @@ namespace storm { enum class QueryType { Achievability, Numerical, Pareto }; + storm::logic::MultiObjectiveFormula const& originalFormula; + storm::storage::BitVector objectivesSolvedInPreprocessing; + SparseModelType const& originalModel; SparseModelType preprocessedModel; std::vector newToOldStateIndexMapping; + std::string prob1StatesLabel; QueryType queryType; std::vector> objectives; @@ -27,7 +33,7 @@ namespace storm { bool produceSchedulers; - SparseMultiObjectivePreprocessorData(SparseModelType const& originalModel, SparseModelType&& preprocessedModel, std::vector&& newToOldStateIndexMapping) : originalModel(originalModel), preprocessedModel(preprocessedModel), newToOldStateIndexMapping(newToOldStateIndexMapping), produceSchedulers(false) { + SparseMultiObjectivePreprocessorData(storm::logic::MultiObjectiveFormula const& originalFormula, SparseModelType const& originalModel, SparseModelType&& preprocessedModel, std::vector&& newToOldStateIndexMapping) : originalFormula(originalFormula), originalModel(originalModel), preprocessedModel(preprocessedModel), newToOldStateIndexMapping(newToOldStateIndexMapping), produceSchedulers(false) { //Intentionally left empty } @@ -36,6 +42,18 @@ namespace storm { out << " Multi-objective Preprocessor Data " << std::endl; out << "---------------------------------------------------------------------------------------------------------------------------------------" << std::endl; out << std::endl; + out << "Original Formula: " << std::endl; + out << "--------------------------------------------------------------" << std::endl; + out << "\t" << originalFormula << std::endl; + out << std::endl; + if(!objectivesSolvedInPreprocessing.empty()) { + out << "Objectives solved while preprocessing: " << std::endl; + out << "--------------------------------------------------------------" << std::endl; + for(auto const& subFIndex : objectivesSolvedInPreprocessing) { + out<< "\t" << subFIndex << ": \t" << originalFormula.getSubformula(subFIndex) << std::endl; + } + out << std::endl; + } out << "Objectives:" << std::endl; out << "--------------------------------------------------------------" << std::endl; for (auto const& obj : objectives) { diff --git a/src/modelchecker/multiobjective/helper/SparseMultiObjectiveWeightVectorChecker.cpp b/src/modelchecker/multiobjective/helper/SparseMultiObjectiveWeightVectorChecker.cpp index 8e4dd4f08..df45b5740 100644 --- a/src/modelchecker/multiobjective/helper/SparseMultiObjectiveWeightVectorChecker.cpp +++ b/src/modelchecker/multiobjective/helper/SparseMultiObjectiveWeightVectorChecker.cpp @@ -20,7 +20,9 @@ namespace storm { template SparseMultiObjectiveWeightVectorChecker::SparseMultiObjectiveWeightVectorChecker(PreprocessorData const& data) : data(data), checkHasBeenCalled(false) , objectiveResults(data.objectives.size()){ - //Intentionally left empty + + // Enlarge the set of prob1 states to the states that are only reachable via prob1 states + statesThatAreAllowedToBeVisitedInfinitelyOften = ~storm::utility::graph::getReachableStates(data.preprocessedModel.getTransitionMatrix(), data.preprocessedModel.getInitialStates(), ~data.preprocessedModel.getStates(data.prob1StatesLabel), storm::storage::BitVector(data.preprocessedModel.getNumberOfStates(), false)); } template diff --git a/src/modelchecker/multiobjective/helper/SparseMultiObjectiveWeightVectorChecker.h b/src/modelchecker/multiobjective/helper/SparseMultiObjectiveWeightVectorChecker.h index ba660684b..cbf626049 100644 --- a/src/modelchecker/multiobjective/helper/SparseMultiObjectiveWeightVectorChecker.h +++ b/src/modelchecker/multiobjective/helper/SparseMultiObjectiveWeightVectorChecker.h @@ -72,6 +72,11 @@ namespace storm { // stores the considered information of the multi-objective model checking problem PreprocessorData const& data; + // stores the set of states for which it is allowed to visit them infinitely often + // This means that, if one of the states is part of a neutral EC, it is allowed to + // stay in this EC forever. + storm::storage::BitVector statesThatAreAllowedToBeVisitedInfinitelyOften; + // becomes true after the first call of check(..) bool checkHasBeenCalled; diff --git a/src/transformer/SubsystemBuilder.h b/src/transformer/SubsystemBuilder.h index 8d692edd7..254ecabba 100644 --- a/src/transformer/SubsystemBuilder.h +++ b/src/transformer/SubsystemBuilder.h @@ -31,23 +31,24 @@ namespace storm { struct SubsystemBuilderReturnType { // The resulting model std::shared_ptr model; - // Gives for each state in the resulting model the corresponding state in the original model and vice versa. - // If a state does not exist in the other model, an invalid index is given. + // Gives for each state in the resulting model the corresponding state in the original model. std::vector newToOldStateIndexMapping; - std::vector oldToNewStateIndexMapping; // marks the actions of the original model that are still available in the subsystem storm::storage::BitVector subsystemActions; }; /* * Removes all states that are not part of the subsystem - * all actions (i.e. rows) that lead outside of the subsystem are erased. Note that this might introduce deadlock states. + * all actions (i.e. rows) that lead outside of the subsystem are erased. + * An exception is thrown if this introduces a deadlock state. * * @param originalModel The model to be duplicated * @param subsystem The states that will be kept + * @param consideredActions The actions that are considered to be part of the subsystem. The remaining ones will be ignored. */ - static SubsystemBuilderReturnType transform(SparseModelType const& originalModel, storm::storage::BitVector const& subsystem) { + static SubsystemBuilderReturnType transform(SparseModelType const& originalModel, storm::storage::BitVector const& subsystem, storm::storage::BitVector const& consideredActions) { STORM_LOG_DEBUG("Invoked subsystem builder on model with " << originalModel.getNumberOfStates() << " states."); + STORM_LOG_THROW(!(originalModel.getInitialStates() & subsystem).empty(), storm::exceptions::InvalidArgumentException, "The subsystem would not contain any initial states"); SubsystemBuilderReturnType result; uint_fast64_t subsystemStateCount = subsystem.getNumberOfSetBits(); @@ -55,30 +56,32 @@ namespace storm { if(subsystemStateCount == subsystem.size()) { result.model = std::make_shared(originalModel); result.newToOldStateIndexMapping = storm::utility::vector::buildVectorForRange(0, result.model->getNumberOfStates()); - result.oldToNewStateIndexMapping = result.newToOldStateIndexMapping; result.subsystemActions = storm::storage::BitVector(result.model->getTransitionMatrix().getRowCount(), true); return result; } result.newToOldStateIndexMapping.reserve(subsystemStateCount); - result.oldToNewStateIndexMapping = std::vector(subsystem.size(), std::numeric_limits::max()); result.subsystemActions = storm::storage::BitVector(result.model->getTransitionMatrix().getRowCount(), false); for(auto subsysState : subsystem) { - result.oldToNewStateIndexMapping[subsysState] = result.newToOldStateIndexMapping.size(); result.newToOldStateIndexMapping.push_back(subsysState); - for(uint_fast64_t row = originalModel.getTransitionMatrix().getRowGroupIndices()[subsysState]; row < originalModel.getTransitionMatrix().getRowGroupIndices()[subsysState+1]; ++row) { + bool stateHasOneChoiceLeft = false; + for(uint_fast64_t row = consideredActions.getNextSetIndex(originalModel.getTransitionMatrix().getRowGroupIndices()[subsysState]); row < originalModel.getTransitionMatrix().getRowGroupIndices()[subsysState+1]; row = consideredActions.getNextSetIndex(row+1)) { + bool allRowEntriesStayInSubsys = true; result.subsystemActions.set(row, true); for(auto const& entry : originalModel.getTransitionMatrix().getRow(row)) { if(!subsystem.get(entry.getColumn())) { - result.subsystemActions.set(row, false); + allRowEntriesStayInSubsys = false; break; } } + stateHasOneChoiceLeft |= allRowEntriesStayInSubsys; + result.subsystemActions.set(row, allRowEntriesStayInSubsys); } + STORM_LOG_THROW(stateHasOneChoiceLeft, storm::exceptions::InvalidArgumentException, "The subsystem would contain a deadlock state."); } // Transform the ingedients of the model - storm::storage::SparseMatrix matrix = transformMatrix(originalModel.getTransitionMatrix(), result); + storm::storage::SparseMatrix matrix = transformMatrix(originalModel.getTransitionMatrix(), subsystem, result.subsystemActions); storm::models::sparse::StateLabeling labeling(matrix.getRowGroupCount()); for(auto const& label : originalModel.getStateLabeling().getLabels()){ storm::storage::BitVector newBitVectorForLabel = transformStateBitVector(originalModel.getStateLabeling().getStates(label), subsystem); @@ -86,13 +89,13 @@ namespace storm { } std::unordered_map rewardModels; for(auto const& rewardModel : originalModel.getRewardModels()){ - rewardModels.insert(std::make_pair(rewardModel.first, transformRewardModel(rewardModel.second, originalModel.getTransitionMatrix().getRowGroupIndices(), subsystem, result))); + rewardModels.insert(std::make_pair(rewardModel.first, transformRewardModel(rewardModel.second, subsystem, result.subsystemActions))); } boost::optional> choiceLabeling; if(originalModel.hasChoiceLabeling()){ choiceLabeling = transformActionValueVector(originalModel.getChoiceLabeling(), result.subsystemActions); } - result.model = std::make_shared(createTransformedModel(originalModel, subsystem, result, matrix, labeling, rewardModels, choiceLabeling)); + result.model = std::make_shared(createTransformedModel(originalModel, subsystem, matrix, labeling, rewardModels, choiceLabeling)); STORM_LOG_DEBUG("Subsystem Builder is done. Resulting model has " << result.model->getNumberOfStates() << " states."); return result; } @@ -100,7 +103,7 @@ namespace storm { private: template static typename std::enable_if>::value, RewardModelType>::type - transformRewardModel(RewardModelType const& originalRewardModel, std::vector const& originalRowGroupIndices, storm::storage::BitVector const& subsystem, SubsystemBuilderReturnType const& result) { + transformRewardModel(RewardModelType const& originalRewardModel, storm::storage::BitVector const& subsystem, storm::storage::BitVector const& subsystemActions) { boost::optional> stateRewardVector; boost::optional> stateActionRewardVector; boost::optional> transitionRewardMatrix; @@ -108,40 +111,17 @@ namespace storm { stateRewardVector = transformStateValueVector(originalRewardModel.getStateRewardVector(), subsystem); } if(originalRewardModel.hasStateActionRewards()){ - stateActionRewardVector = transformActionValueVector(originalRewardModel.getStateActionRewardVector(), result.subsystemActions); + stateActionRewardVector = transformActionValueVector(originalRewardModel.getStateActionRewardVector(), subsystemActions); } if(originalRewardModel.hasTransitionRewards()){ - transitionRewardMatrix = transformMatrix(originalRewardModel.getTransitionRewardMatrix(), result); + transitionRewardMatrix = transformMatrix(originalRewardModel.getTransitionRewardMatrix(), subsystem, subsystemActions); } return RewardModelType(std::move(stateRewardVector), std::move(stateActionRewardVector), std::move(transitionRewardMatrix)); } template - static storm::storage::SparseMatrix transformMatrix(storm::storage::SparseMatrix const& originalMatrix, SubsystemBuilderReturnType const& result) { - // Build the builder - uint_fast64_t const numStates = result.newToOldStateIndexMapping.size(); - uint_fast64_t const numRows = result.subsystemActions.getNumberOfSetBits(); - uint_fast64_t numEntries = 0; - for(auto row : result.subsystemActions) { - numEntries += originalMatrix.getRow(row).getNumberOfEntries(); - } - storm::storage::SparseMatrixBuilder builder(numRows, numStates, numEntries, true, !originalMatrix.hasTrivialRowGrouping(), originalMatrix.hasTrivialRowGrouping() ? 0 : numStates); - - // Fill in the data - uint_fast64_t newRow = 0; - for(uint_fast64_t newState = 0; newState < numStates; ++newState){ - if(!originalMatrix.hasTrivialRowGrouping()){ - builder.newRowGroup(newRow); - } - uint_fast64_t oldState = result.newToOldStateIndexMapping[newState]; - for (uint_fast64_t oldRow = result.subsystemActions.getNextSetIndex(originalMatrix.getRowGroupIndices()[oldState]); oldRow < originalMatrix.getRowGroupIndices()[oldState+1]; oldRow = result.subsystemActions.getNextSetIndex(oldRow+1)){ - for(auto const& entry : originalMatrix.getRow(oldRow)){ - builder.addNextValue(newRow, result.oldToNewStateIndexMapping[entry.getColumn()], entry.getValue()); - } - ++newRow; - } - } - return builder.build(); + static storm::storage::SparseMatrix transformMatrix(storm::storage::SparseMatrix const& originalMatrix, storm::storage::BitVector const& subsystem, storm::storage::BitVector const& subsystemActions) { + return originalMatrix.getSubmatrix(false, subsystemActions, subsystem); } @@ -178,7 +158,6 @@ namespace storm { MT>::type createTransformedModel(MT const& originalModel, storm::storage::BitVector const& subsystem, - SubsystemBuilderReturnType const& result, storm::storage::SparseMatrix& matrix, storm::models::sparse::StateLabeling& stateLabeling, std::unordered_map::type createTransformedModel(MT const& originalModel, storm::storage::BitVector const& subsystem, - SubsystemBuilderReturnType const& result, storm::storage::SparseMatrix& matrix, storm::models::sparse::StateLabeling& stateLabeling, std::unordered_map