|
|
@ -242,7 +242,7 @@ namespace storm { |
|
|
|
|
|
|
|
|
|
|
|
if (unifVectors[kind][k][node]!=-1){ |
|
|
|
logfile << "already calculated for k = " << k << " node = " << node << "\n"; |
|
|
|
//logfile << "already calculated for k = " << k << " node = " << node << "\n";
|
|
|
|
return; |
|
|
|
} |
|
|
|
std::string print = std::string("calculating vector ") + std::to_string(kind) + " for k = " + std::to_string(k) + " node " + std::to_string(node) +" \t"; |
|
|
@ -267,8 +267,10 @@ namespace storm { |
|
|
|
// Vd
|
|
|
|
res = storm::utility::zero<ValueType>(); |
|
|
|
for (uint64_t i = k ; i<N ; i++){ |
|
|
|
ValueType between = poisson[i]; |
|
|
|
res+=between; |
|
|
|
if (i < poisson.size()){ |
|
|
|
ValueType between = poisson[i]; |
|
|
|
res+=between; |
|
|
|
} |
|
|
|
} |
|
|
|
unifVectors[kind][k][node]=res; |
|
|
|
} else { |
|
|
@ -500,182 +502,204 @@ namespace storm { |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
template <typename ValueType, typename std::enable_if<storm::NumberTraits<ValueType>::SupportsExponential, int>::type> |
|
|
|
std::vector<ValueType> SparseMarkovAutomatonCslHelper::unifPlus(OptimizationDirection dir, std::pair<double, double> const& boundsPair, std::vector<ValueType> const& exitRateVector, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector const& markovStates, storm::storage::BitVector const& psiStates, storm::solver::MinMaxLinearEquationSolverFactory<ValueType> const& minMaxLinearEquationSolverFactory){ |
|
|
|
STORM_LOG_TRACE("Using UnifPlus to compute bounded until probabilities."); |
|
|
|
template<typename ValueType, typename std::enable_if<storm::NumberTraits<ValueType>::SupportsExponential, int>::type> |
|
|
|
std::vector<ValueType> SparseMarkovAutomatonCslHelper::unifPlus(OptimizationDirection dir, |
|
|
|
std::pair<double, double> const &boundsPair, |
|
|
|
std::vector<ValueType> const &exitRateVector, |
|
|
|
storm::storage::SparseMatrix<ValueType> const &transitionMatrix, |
|
|
|
storm::storage::BitVector const &markovStates, |
|
|
|
storm::storage::BitVector const &psiStates, |
|
|
|
storm::solver::MinMaxLinearEquationSolverFactory<ValueType> const &minMaxLinearEquationSolverFactory) { |
|
|
|
STORM_LOG_TRACE("Using UnifPlus to compute bounded until probabilities."); |
|
|
|
|
|
|
|
|
|
|
|
std::ofstream logfile("U+logfile.txt", std::ios::app); |
|
|
|
ValueType maxNorm = storm::utility::zero<ValueType>(); |
|
|
|
ValueType oldDiff = -storm::utility::zero<ValueType>(); |
|
|
|
|
|
|
|
//bitvectors to identify different kind of states
|
|
|
|
storm::storage::BitVector markovianStates = markovStates; |
|
|
|
storm::storage::BitVector allStates(markovianStates.size(), true); |
|
|
|
storm::storage::BitVector probabilisticStates = ~markovianStates; |
|
|
|
|
|
|
|
|
|
|
|
//vectors to save calculation
|
|
|
|
std::vector<std::vector<ValueType>> vd, vu, wu; |
|
|
|
std::vector<std::vector<std::vector<ValueType>>> unifVectors{}; |
|
|
|
|
|
|
|
|
|
|
|
//transitions from goalStates will be ignored. still: they are not allowed to be probabilistic!
|
|
|
|
for (uint64_t i = 0; i < psiStates.size(); i++) { |
|
|
|
if (psiStates[i]) { |
|
|
|
markovianStates.set(i, true); |
|
|
|
probabilisticStates.set(i, false); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
//transition matrix with diagonal entries. The values can be changed during uniformisation
|
|
|
|
std::vector<ValueType> exitRate{exitRateVector}; |
|
|
|
typename storm::storage::SparseMatrix<ValueType> fullTransitionMatrix = transitionMatrix.getSubmatrix( |
|
|
|
true, allStates, allStates, true); |
|
|
|
// delete diagonals
|
|
|
|
deleteProbDiagonals(fullTransitionMatrix, markovianStates); |
|
|
|
typename storm::storage::SparseMatrix<ValueType> probMatrix{}; |
|
|
|
uint64_t probSize = 0; |
|
|
|
if (probabilisticStates.getNumberOfSetBits() != 0) { //work around in case there are no prob states
|
|
|
|
probMatrix = fullTransitionMatrix.getSubmatrix(true, probabilisticStates, probabilisticStates, |
|
|
|
true); |
|
|
|
probSize = probMatrix.getRowCount(); |
|
|
|
} |
|
|
|
|
|
|
|
auto &rowGroupIndices = fullTransitionMatrix.getRowGroupIndices(); |
|
|
|
|
|
|
|
|
|
|
|
//(1) define horizon, epsilon, kappa , N, lambda,
|
|
|
|
uint64_t numberOfStates = fullTransitionMatrix.getRowGroupCount(); |
|
|
|
double T = boundsPair.second; |
|
|
|
ValueType kappa = storm::utility::one<ValueType>() / 10; // would be better as option-parameter
|
|
|
|
ValueType epsilon = storm::settings::getModule<storm::settings::modules::GeneralSettings>().getPrecision(); |
|
|
|
ValueType lambda = exitRateVector[0]; |
|
|
|
for (ValueType act: exitRateVector) { |
|
|
|
lambda = std::max(act, lambda); |
|
|
|
} |
|
|
|
uint64_t N; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
std::ofstream logfile("U+logfile.txt", std::ios::app); |
|
|
|
ValueType maxNorm = storm::utility::zero<ValueType>(); |
|
|
|
ValueType oldDiff = -storm::utility::zero<ValueType>(); |
|
|
|
|
|
|
|
//bitvectors to identify different kind of states
|
|
|
|
storm::storage::BitVector markovianStates = markovStates; |
|
|
|
storm::storage::BitVector allStates(markovianStates.size(), true); |
|
|
|
storm::storage::BitVector probabilisticStates = ~markovianStates; |
|
|
|
//calculate relative ReachabilityVectors
|
|
|
|
std::vector<ValueType> in(numberOfStates, 0); |
|
|
|
std::vector<std::vector<ValueType>> relReachability(fullTransitionMatrix.getRowCount(), in); |
|
|
|
|
|
|
|
|
|
|
|
//vectors to save calculation
|
|
|
|
std::vector<std::vector<ValueType>> vd,vu,wu; |
|
|
|
std::vector<std::vector<std::vector<ValueType>>> unifVectors{}; |
|
|
|
|
|
|
|
//calculate relative reachability
|
|
|
|
|
|
|
|
//transitions from goalStates will be ignored. still: they are not allowed to be probabilistic!
|
|
|
|
for (uint64_t i =0 ; i<psiStates.size(); i++){ |
|
|
|
if (psiStates[i]){ |
|
|
|
markovianStates.set(i,true); |
|
|
|
probabilisticStates.set(i,false); |
|
|
|
for (uint64_t i = 0; i < numberOfStates; i++) { |
|
|
|
if (markovianStates[i]) { |
|
|
|
continue; |
|
|
|
} |
|
|
|
auto from = rowGroupIndices[i]; |
|
|
|
auto to = rowGroupIndices[i + 1]; |
|
|
|
for (auto j = from; j < to; j++) { |
|
|
|
std::vector<ValueType> &act = relReachability[j]; |
|
|
|
for (auto element: fullTransitionMatrix.getRow(j)) { |
|
|
|
if (markovianStates[element.getColumn()]) { |
|
|
|
act[element.getColumn()] = element.getValue(); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
//transition matrix with diagonal entries. The values can be changed during uniformisation
|
|
|
|
std::vector<ValueType> exitRate{exitRateVector}; |
|
|
|
typename storm::storage::SparseMatrix<ValueType> fullTransitionMatrix = transitionMatrix.getSubmatrix(true, allStates , allStates , true); |
|
|
|
// delete diagonals
|
|
|
|
deleteProbDiagonals(fullTransitionMatrix, markovianStates); |
|
|
|
typename storm::storage::SparseMatrix<ValueType> probMatrix{}; |
|
|
|
uint64_t probSize =0; |
|
|
|
if (probabilisticStates.getNumberOfSetBits()!=0){ //work around in case there are no prob states
|
|
|
|
probMatrix = fullTransitionMatrix.getSubmatrix(true, probabilisticStates , probabilisticStates, true); |
|
|
|
probSize = probMatrix.getRowCount(); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
auto& rowGroupIndices = fullTransitionMatrix.getRowGroupIndices(); |
|
|
|
//create equitation solver
|
|
|
|
storm::solver::MinMaxLinearEquationSolverRequirements requirements = minMaxLinearEquationSolverFactory.getRequirements( |
|
|
|
true, dir); |
|
|
|
requirements.clearBounds(); |
|
|
|
STORM_LOG_THROW(requirements.empty(), storm::exceptions::UncheckedRequirementException, |
|
|
|
"Cannot establish requirements for solver."); |
|
|
|
|
|
|
|
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver; |
|
|
|
if (probSize != 0) { |
|
|
|
solver = minMaxLinearEquationSolverFactory.create(probMatrix); |
|
|
|
solver->setHasUniqueSolution(); |
|
|
|
solver->setBounds(storm::utility::zero<ValueType>(), storm::utility::one<ValueType>()); |
|
|
|
solver->setRequirementsChecked(); |
|
|
|
solver->setCachingEnabled(true); |
|
|
|
} |
|
|
|
// while not close enough to precision:
|
|
|
|
do { |
|
|
|
maxNorm = storm::utility::zero<ValueType>(); |
|
|
|
// (2) update parameter
|
|
|
|
N = ceil(lambda * T * exp(2) - log(kappa * epsilon)); |
|
|
|
|
|
|
|
// (3) uniform - just applied to markovian states
|
|
|
|
for (uint_fast64_t i = 0; i < fullTransitionMatrix.getRowGroupCount(); i++) { |
|
|
|
if (!markovianStates[i]) { |
|
|
|
continue; |
|
|
|
} |
|
|
|
uint64_t from = rowGroupIndices[i]; //markovian state -> no Nondeterminism -> only one row
|
|
|
|
|
|
|
|
if (exitRate[i] == lambda) { |
|
|
|
continue; //already unified
|
|
|
|
} |
|
|
|
|
|
|
|
//(1) define horizon, epsilon, kappa , N, lambda,
|
|
|
|
uint64_t numberOfStates = fullTransitionMatrix.getRowGroupCount(); |
|
|
|
double T = boundsPair.second; |
|
|
|
ValueType kappa = storm::utility::one<ValueType>() /10; // would be better as option-parameter
|
|
|
|
ValueType epsilon = storm::settings::getModule<storm::settings::modules::GeneralSettings>().getPrecision(); |
|
|
|
ValueType lambda = exitRateVector[0]; |
|
|
|
for (ValueType act: exitRateVector) { |
|
|
|
lambda = std::max(act, lambda); |
|
|
|
auto line = fullTransitionMatrix.getRow(from); |
|
|
|
ValueType exitOld = exitRate[i]; |
|
|
|
ValueType exitNew = lambda; |
|
|
|
for (auto &v : line) { |
|
|
|
if (v.getColumn() == i) { //diagonal element
|
|
|
|
ValueType newSelfLoop = exitNew - exitOld + v.getValue(); |
|
|
|
ValueType newRate = newSelfLoop / exitNew; |
|
|
|
v.setValue(newRate); |
|
|
|
} else { //modify probability
|
|
|
|
ValueType propOld = v.getValue(); |
|
|
|
ValueType propNew = propOld * exitOld / exitNew; |
|
|
|
v.setValue(propNew); |
|
|
|
} |
|
|
|
} |
|
|
|
exitRate[i] = exitNew; |
|
|
|
} |
|
|
|
uint64_t N; |
|
|
|
|
|
|
|
// calculate poisson distribution
|
|
|
|
|
|
|
|
std::tuple<uint_fast64_t, uint_fast64_t, ValueType, std::vector<ValueType>> foxGlynnResult = storm::utility::numerical::getFoxGlynnCutoff( |
|
|
|
T * lambda, 1e+300, epsilon * epsilon * kappa); |
|
|
|
|
|
|
|
|
|
|
|
//calculate relative ReachabilityVectors
|
|
|
|
std::vector<ValueType> in(numberOfStates, 0); |
|
|
|
std::vector<std::vector<ValueType>> relReachability(fullTransitionMatrix.getRowCount(),in); |
|
|
|
// Scale the weights so they add up to one.
|
|
|
|
for (auto &element : std::get<3>(foxGlynnResult)) { |
|
|
|
element /= std::get<2>(foxGlynnResult); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// (4) define vectors/matrices
|
|
|
|
std::vector<ValueType> init(numberOfStates, -1); |
|
|
|
vd = std::vector<std::vector<ValueType>>(N + 1, init); |
|
|
|
vu = std::vector<std::vector<ValueType>>(N + 1, init); |
|
|
|
wu = std::vector<std::vector<ValueType>>(N + 1, init); |
|
|
|
|
|
|
|
unifVectors.clear(); |
|
|
|
unifVectors.push_back(vd); |
|
|
|
unifVectors.push_back(vd); |
|
|
|
unifVectors.push_back(vd); |
|
|
|
|
|
|
|
//define 0=vd 1=vu 2=wu
|
|
|
|
// (5) calculate vectors and maxNorm
|
|
|
|
for (uint64_t i = 0; i < numberOfStates; i++) { |
|
|
|
for (uint64_t k = N; k <= N; k--) { |
|
|
|
calculateUnifPlusVector(k, i, 0, lambda, probSize, relReachability, dir, unifVectors, |
|
|
|
fullTransitionMatrix, markovianStates, psiStates, solver, logfile, |
|
|
|
std::get<3>(foxGlynnResult)); |
|
|
|
calculateUnifPlusVector(k, i, 2, lambda, probSize, relReachability, dir, unifVectors, |
|
|
|
fullTransitionMatrix, markovianStates, psiStates, solver, logfile, |
|
|
|
std::get<3>(foxGlynnResult)); |
|
|
|
calculateVu(relReachability, dir, k, i, 1, lambda, probSize, unifVectors, |
|
|
|
fullTransitionMatrix, markovianStates, psiStates, solver, logfile, |
|
|
|
std::get<3>(foxGlynnResult)); |
|
|
|
//also use iteration to keep maxNorm of vd and vup to date, so the loop-condition is easy to prove
|
|
|
|
ValueType diff = std::abs(unifVectors[0][k][i] - unifVectors[1][k][i]); |
|
|
|
maxNorm = std::max(maxNorm, diff); |
|
|
|
} |
|
|
|
} |
|
|
|
printTransitions(N, maxNorm, fullTransitionMatrix, exitRate, markovianStates, psiStates, |
|
|
|
relReachability, psiStates, psiStates, unifVectors, logfile); //TODO remove
|
|
|
|
|
|
|
|
//calculate relative reachability
|
|
|
|
// (6) double lambda
|
|
|
|
|
|
|
|
for(uint64_t i=0 ; i<numberOfStates; i++){ |
|
|
|
if (markovianStates[i]){ |
|
|
|
continue; |
|
|
|
} |
|
|
|
auto from = rowGroupIndices[i]; |
|
|
|
auto to = rowGroupIndices[i+1]; |
|
|
|
for (auto j=from ; j<to; j++){ |
|
|
|
std::vector<ValueType>& act = relReachability[j]; |
|
|
|
for(auto element: fullTransitionMatrix.getRow(j)){ |
|
|
|
if (markovianStates[element.getColumn()]){ |
|
|
|
act[element.getColumn()]=element.getValue(); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
lambda = 2 * lambda; |
|
|
|
|
|
|
|
//create equitation solver
|
|
|
|
storm::solver::MinMaxLinearEquationSolverRequirements requirements = minMaxLinearEquationSolverFactory.getRequirements(true, dir); |
|
|
|
requirements.clearBounds(); |
|
|
|
STORM_LOG_THROW(requirements.empty(), storm::exceptions::UncheckedRequirementException, "Cannot establish requirements for solver."); |
|
|
|
|
|
|
|
std::unique_ptr<storm::solver::MinMaxLinearEquationSolver<ValueType>> solver; |
|
|
|
if (probSize!=0){ |
|
|
|
solver = minMaxLinearEquationSolverFactory.create(probMatrix); |
|
|
|
solver->setHasUniqueSolution(); |
|
|
|
solver->setBounds(storm::utility::zero<ValueType>(), storm::utility::one<ValueType>()); |
|
|
|
solver->setRequirementsChecked(); |
|
|
|
solver->setCachingEnabled(true); |
|
|
|
} |
|
|
|
// while not close enough to precision:
|
|
|
|
do { |
|
|
|
maxNorm = storm::utility::zero<ValueType>(); |
|
|
|
// (2) update parameter
|
|
|
|
N = ceil(lambda*T*exp(2)-log(kappa*epsilon)); |
|
|
|
|
|
|
|
// (3) uniform - just applied to markovian states
|
|
|
|
for (uint_fast64_t i = 0; i < fullTransitionMatrix.getRowGroupCount(); i++) { |
|
|
|
if (!markovianStates[i]) { |
|
|
|
continue; |
|
|
|
} |
|
|
|
uint64_t from = rowGroupIndices[i]; //markovian state -> no Nondeterminism -> only one row
|
|
|
|
|
|
|
|
if (exitRate[i] == lambda) { |
|
|
|
continue; //already unified
|
|
|
|
} |
|
|
|
|
|
|
|
auto line = fullTransitionMatrix.getRow(from); |
|
|
|
ValueType exitOld = exitRate[i]; |
|
|
|
ValueType exitNew = lambda; |
|
|
|
for (auto &v : line) { |
|
|
|
if (v.getColumn() == i) { //diagonal element
|
|
|
|
ValueType newSelfLoop = exitNew - exitOld + v.getValue(); |
|
|
|
ValueType newRate = newSelfLoop / exitNew; |
|
|
|
v.setValue(newRate); |
|
|
|
} else { //modify probability
|
|
|
|
ValueType propOld = v.getValue(); |
|
|
|
ValueType propNew = propOld * exitOld / exitNew; |
|
|
|
v.setValue(propNew); |
|
|
|
} |
|
|
|
} |
|
|
|
exitRate[i] = exitNew; |
|
|
|
} |
|
|
|
|
|
|
|
// calculate poisson distribution
|
|
|
|
std::tuple<uint_fast64_t, uint_fast64_t, ValueType, std::vector<ValueType>> foxGlynnResult = storm::utility::numerical::getFoxGlynnCutoff(T*lambda, 1e+300, epsilon*kappa/ 8.0); |
|
|
|
|
|
|
|
// Scale the weights so they add up to one.
|
|
|
|
for (auto& element : std::get<3>(foxGlynnResult)) { |
|
|
|
element /= std::get<2>(foxGlynnResult); |
|
|
|
} |
|
|
|
// (4) define vectors/matrices
|
|
|
|
std::vector<ValueType> init(numberOfStates, -1); |
|
|
|
vd = std::vector<std::vector<ValueType>> (N + 1, init); |
|
|
|
vu = std::vector<std::vector<ValueType>> (N + 1, init); |
|
|
|
wu = std::vector<std::vector<ValueType>> (N + 1, init); |
|
|
|
|
|
|
|
unifVectors.clear(); |
|
|
|
unifVectors.push_back(vd); |
|
|
|
unifVectors.push_back(vd); |
|
|
|
unifVectors.push_back(vd); |
|
|
|
|
|
|
|
//define 0=vd 1=vu 2=wu
|
|
|
|
// (5) calculate vectors and maxNorm
|
|
|
|
for (uint64_t i = 0; i < numberOfStates; i++) { |
|
|
|
for (uint64_t k = N; k <= N; k--) { |
|
|
|
calculateUnifPlusVector(k,i,0,lambda,probSize,relReachability,dir,unifVectors,fullTransitionMatrix,markovianStates,psiStates,solver, logfile, std::get<3>(foxGlynnResult)); |
|
|
|
calculateUnifPlusVector(k,i,2,lambda,probSize,relReachability,dir,unifVectors,fullTransitionMatrix,markovianStates,psiStates,solver, logfile, std::get<3>(foxGlynnResult)); |
|
|
|
calculateVu(relReachability,dir,k,i,1,lambda,probSize,unifVectors,fullTransitionMatrix,markovianStates,psiStates,solver, logfile, std::get<3>(foxGlynnResult)); |
|
|
|
//also use iteration to keep maxNorm of vd and vup to date, so the loop-condition is easy to prove
|
|
|
|
ValueType diff = std::abs(unifVectors[0][k][i]-unifVectors[1][k][i]); |
|
|
|
maxNorm = std::max(maxNorm, diff); |
|
|
|
} |
|
|
|
} |
|
|
|
printTransitions(N, maxNorm, fullTransitionMatrix,exitRate,markovianStates,psiStates,relReachability,psiStates, psiStates,unifVectors, logfile); //TODO remove
|
|
|
|
|
|
|
|
// (6) double lambda
|
|
|
|
|
|
|
|
lambda=2*lambda; |
|
|
|
|
|
|
|
// (7) escape if not coming closer to solution
|
|
|
|
if (oldDiff!=-1){ |
|
|
|
if (oldDiff==maxNorm){ |
|
|
|
std::cout << "Not coming closer to solution as " << maxNorm << "/n"; |
|
|
|
break; |
|
|
|
} |
|
|
|
} |
|
|
|
oldDiff = maxNorm; |
|
|
|
} while (maxNorm>epsilon*(1-kappa)); |
|
|
|
|
|
|
|
logfile.close(); |
|
|
|
return unifVectors[0][0]; |
|
|
|
// (7) escape if not coming closer to solution
|
|
|
|
if (oldDiff != -1) { |
|
|
|
if (oldDiff == maxNorm) { |
|
|
|
std::cout << "Not coming closer to solution as " << maxNorm << "/n"; |
|
|
|
break; |
|
|
|
} |
|
|
|
} |
|
|
|
oldDiff = maxNorm; |
|
|
|
} while (maxNorm > epsilon * (1 - kappa)); |
|
|
|
|
|
|
|
logfile.close(); |
|
|
|
return unifVectors[0][0]; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|