Browse Source

proper implemented encoding types.

tempestpy_adaptions
Tim Quatmann 5 years ago
parent
commit
533206974b
  1. 66
      src/storm/modelchecker/multiobjective/deterministicScheds/DeterministicSchedsLpChecker.cpp

66
src/storm/modelchecker/multiobjective/deterministicScheds/DeterministicSchedsLpChecker.cpp

@ -23,25 +23,20 @@ namespace storm {
namespace modelchecker {
namespace multiobjective {
bool inOutEncoding() { // + 8
bool result = encodingSettings().get(60);
STORM_LOG_ERROR_COND(!result || !isMinNegativeEncoding(), "inout-encoding only works without minnegative encoding.");
return result;
}
bool assertBottomStateSum() { // + 16
bool result = encodingSettings().get(59);
STORM_LOG_ERROR_COND(!result || inOutEncoding(), "Asserting bottom state sum is only relevant for in-out encoding.");
return result;
}
bool useNonOptimalSolutions() { // + 32
bool result = encodingSettings().get(58);
return result;
}
template <typename ModelType, typename GeometryValueType>
DeterministicSchedsLpChecker<ModelType, GeometryValueType>::DeterministicSchedsLpChecker(Environment const& env, ModelType const& model, std::vector<DeterministicSchedsObjectiveHelper<ModelType>> const& objectiveHelper) : model(model) , objectiveHelper(objectiveHelper), numLpQueries(0) {
if (env.modelchecker().multi().getEncodingType() == storm::MultiObjectiveModelCheckerEnvironment::EncodingType::Auto) {
flowEncoding = true;
for (auto const& helper : objectiveHelper) {
if (!helper.isTotalRewardObjective()) {
flowEncoding = false;
}
}
} else {
flowEncoding = env.modelchecker().multi().getEncodingType() == storm::MultiObjectiveModelCheckerEnvironment::EncodingType::Flow;
}
STORM_LOG_INFO_COND(flowEncoding, "Using classical encoding.");
STORM_LOG_INFO_COND(!flowEncoding, "Using flow encoding.");
swAll.start();
swInit.start();
initializeLpModel(env);
@ -381,13 +376,13 @@ namespace storm {
std::vector<std::vector<storm::expressions::Expression>> ecVars(objectiveHelper.size(), std::vector<storm::expressions::Expression>(model.getNumberOfStates()));
bool hasEndComponents = processEndComponents(ecVars);
if (inOutEncoding()) {
if (flowEncoding) {
storm::storage::BitVector bottomStates(model.getNumberOfStates(), true);
for (auto const& helper : objectiveHelper) {
STORM_LOG_THROW(helper.isTotalRewardObjective(), storm::exceptions::InvalidOperationException, "The given type of encoding is only supported if the objectives can be reduced to total reward objectives.");
storm::storage::BitVector objBottomStates(model.getNumberOfStates(), false);
for (auto const& stateVal : helper.getSchedulerIndependentStateValues()) {
STORM_LOG_THROW(storm::utility::isZero(stateVal.second), storm::exceptions::InvalidOperationException, "Non-zero constant state-values not allowed for this type of encoding.");
STORM_LOG_THROW(storm::utility::isZero(stateVal.second), storm::exceptions::InvalidOperationException, "Non-zero constant state-values not allowed for flow encoding.");
objBottomStates.set(stateVal.first, true);
}
bottomStates &= objBottomStates;
@ -449,9 +444,8 @@ namespace storm {
lpModel->addConstraint("", storm::expressions::sum(ins[state]) == storm::expressions::sum(outs[state]));
}
if (assertBottomStateSum()) {
lpModel->addConstraint("", storm::expressions::sum(bottomStatesIn) == one);
}
// Assert the sum for the bottom states
lpModel->addConstraint("", storm::expressions::sum(bottomStatesIn) == one);
// create initial state results for each objective
for (uint64_t objIndex = 0; objIndex < objectiveHelper.size(); ++objIndex) {
@ -612,43 +606,21 @@ namespace storm {
swValidate.start();
Point newPoint = validateCurrentModel(env);
swValidate.stop();
std::vector<Point> newPoints = {newPoint};
if (gurobiLpModel && useNonOptimalSolutions()) {
// gurobi might have other good solutions.
for (uint64_t solutionIndex = 0; solutionIndex < gurobiLpModel->getSolutionCount(); ++ solutionIndex) {
Point p;
bool considerP = false;
for (uint64_t objIndex = 0; objIndex < currentObjectiveVariables.size(); ++objIndex) {
p.push_back(storm::utility::convertNumber<GeometryValueType>(gurobiLpModel->getContinuousValue(currentObjectiveVariables[objIndex], solutionIndex)));
if (p.back() > newPoint[objIndex] + eps[objIndex] / storm::utility::convertNumber<GeometryValueType>(2)) {
// The other solution dominates the newPoint in this dimension and is also not too close to the newPoint.
considerP = true;
}
}
if (considerP) {
newPoints.push_back(std::move(p));
}
}
}
GeometryValueType offset = storm::utility::convertNumber<GeometryValueType>(lpModel->getObjectiveValue());
if (gurobiLpModel) {
// Gurobi gives us the gap between the found solution and the known bound.
offset += storm::utility::convertNumber<GeometryValueType>(gurobiLpModel->getMILPGap(false));
}
// we might want to shift the halfspace to guarantee that our point is included.
for (auto const& p : newPoints) {
offset = std::max(offset, storm::utility::vector::dotProduct(currentWeightVector, p));
}
offset = std::max(offset, storm::utility::vector::dotProduct(currentWeightVector, newPoint));
auto halfspace = storm::storage::geometry::Halfspace<GeometryValueType>(currentWeightVector, offset).invert();
infeasableAreas.push_back(polytopeTree.getPolytope()->intersection(halfspace));
if (infeasableAreas.back()->isEmpty()) {
infeasableAreas.pop_back();
}
polytopeTree.setMinus(storm::storage::geometry::Polytope<GeometryValueType>::create({halfspace}));
for (auto const& p : newPoints) {
foundPoints.push_back(p);
polytopeTree.substractDownwardClosure(p, eps);
}
foundPoints.push_back(newPoint);
polytopeTree.substractDownwardClosure(newPoint, eps);
if (!polytopeTree.isEmpty()) {
checkRecursive(env, polytopeTree, eps, foundPoints, infeasableAreas, depth);
}

Loading…
Cancel
Save