Browse Source

init rpatl mc and helper

This
  - adds a temporary GameViHelper, needs refactoring in the future
  - additional methods to rpatlMC and an
  - rpatl helper.
tempestpy_adaptions
Stefan Pranger 4 years ago
parent
commit
4c1b0d77f6
  1. 81
      src/storm/modelchecker/rpatl/SparseSmgRpatlModelChecker.cpp
  2. 4
      src/storm/modelchecker/rpatl/SparseSmgRpatlModelChecker.h
  3. 97
      src/storm/modelchecker/rpatl/helper/SparseSmgRpatlHelper.cpp
  4. 47
      src/storm/modelchecker/rpatl/helper/SparseSmgRpatlHelper.h
  5. 198
      src/storm/modelchecker/rpatl/helper/internal/GameViHelper.cpp
  6. 77
      src/storm/modelchecker/rpatl/helper/internal/GameViHelper.h

81
src/storm/modelchecker/rpatl/SparseSmgRpatlModelChecker.cpp

@ -12,6 +12,7 @@
#include "storm/modelchecker/results/ExplicitQuantitativeCheckResult.h"
#include "storm/modelchecker/results/ExplicitParetoCurveCheckResult.h"
#include "storm/modelchecker/rpatl/helper/SparseSmgRpatlHelper.h"
#include "storm/modelchecker/helper/infinitehorizon/SparseNondeterministicGameInfiniteHorizonHelper.h"
#include "storm/modelchecker/helper/utility/SetInformationFromCheckTask.h"
@ -54,8 +55,6 @@ namespace storm {
}
}
template<typename SparseSmgModelType>
std::unique_ptr<CheckResult> SparseSmgRpatlModelChecker<SparseSmgModelType>::checkGameFormula(Environment const& env, CheckTask<storm::logic::GameFormula, ValueType> const& checkTask) {
Environment solverEnv = env;
@ -69,10 +68,25 @@ namespace storm {
return this->checkRewardOperatorFormula(solverEnv, checkTask.substituteFormula(subFormula.asRewardOperatorFormula()));
} else if (subFormula.isLongRunAverageOperatorFormula()) {
return this->checkLongRunAverageOperatorFormula(solverEnv, checkTask.substituteFormula(subFormula.asLongRunAverageOperatorFormula()));
} else if (subFormula.isProbabilityOperatorFormula()) {
return this->checkProbabilityOperatorFormula(solverEnv, checkTask.substituteFormula(subFormula.asProbabilityOperatorFormula()));
}
STORM_LOG_THROW(false, storm::exceptions::NotImplementedException, "Cannot check this property (yet).");
}
template<typename ModelType>
std::unique_ptr<CheckResult> SparseSmgRpatlModelChecker<ModelType>::checkProbabilityOperatorFormula(Environment const& env, CheckTask<storm::logic::ProbabilityOperatorFormula, ValueType> const& checkTask) {
storm::logic::ProbabilityOperatorFormula const& stateFormula = checkTask.getFormula();
std::unique_ptr<CheckResult> result = this->computeProbabilities(env, checkTask.substituteFormula(stateFormula.getSubformula()));
if (checkTask.isBoundSet()) {
STORM_LOG_THROW(result->isQuantitative(), storm::exceptions::InvalidOperationException, "Unable to perform comparison operation on non-quantitative result.");
return result->asQuantitativeCheckResult<ValueType>().compareAgainstBound(checkTask.getBoundComparisonType(), checkTask.getBoundThreshold());
} else {
return result;
}
}
template<typename ModelType>
std::unique_ptr<CheckResult> SparseSmgRpatlModelChecker<ModelType>::checkRewardOperatorFormula(Environment const& env, CheckTask<storm::logic::RewardOperatorFormula, ValueType> const& checkTask) {
storm::logic::RewardOperatorFormula const& formula = checkTask.getFormula();
@ -89,7 +103,14 @@ namespace storm {
return result;
}
template<typename ModelType>
std::unique_ptr<CheckResult> SparseSmgRpatlModelChecker<ModelType>::computeProbabilities(Environment const& env, CheckTask<storm::logic::Formula, ValueType> const& checkTask) {
storm::logic::Formula const& formula = checkTask.getFormula();
if (formula.isReachabilityProbabilityFormula()) {
return this->computeReachabilityProbabilities(env, checkTask.substituteFormula(formula.asReachabilityProbabilityFormula()));
}
STORM_LOG_THROW(false, storm::exceptions::InvalidArgumentException, "The given formula '" << formula << "' is invalid.");
}
template<typename ModelType>
std::unique_ptr<CheckResult> SparseSmgRpatlModelChecker<ModelType>::computeRewards(Environment const& env, storm::logic::RewardMeasureType rewardMeasureType, CheckTask<storm::logic::Formula, ValueType> const& checkTask) {
@ -100,6 +121,25 @@ namespace storm {
STORM_LOG_THROW(false, storm::exceptions::InvalidArgumentException, "The given formula '" << rewardFormula << "' cannot (yet) be handled.");
}
template<typename ModelType>
std::unique_ptr<CheckResult> SparseSmgRpatlModelChecker<ModelType>::computeUntilProbabilities(Environment const& env, CheckTask<storm::logic::UntilFormula, ValueType> const& checkTask) {
// Currently we only support computation of reachability probabilities, i.e. the left subformula will always be 'true' (for now).
storm::logic::UntilFormula const& pathFormula = checkTask.getFormula();
STORM_LOG_THROW(checkTask.isOptimizationDirectionSet(), storm::exceptions::InvalidPropertyException, "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
std::unique_ptr<CheckResult> leftResultPointer = this->check(env, pathFormula.getLeftSubformula());
std::unique_ptr<CheckResult> rightResultPointer = this->check(env, pathFormula.getRightSubformula());
ExplicitQualitativeCheckResult const& leftResult = leftResultPointer->asExplicitQualitativeCheckResult();
ExplicitQualitativeCheckResult const& rightResult = rightResultPointer->asExplicitQualitativeCheckResult();
storm::solver::SolveGoal<ValueType> foo(this->getModel(), checkTask);
auto ret = storm::modelchecker::helper::SparseSmgRpatlHelper<ValueType>::computeUntilProbabilities(env, storm::solver::SolveGoal<ValueType>(this->getModel(), checkTask), this->getModel().getTransitionMatrix(), this->getModel().getBackwardTransitions(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(), checkTask.isQualitativeSet(), statesOfCoalition, checkTask.isProduceSchedulersSet(), checkTask.getHint());
std::unique_ptr<CheckResult> result(new ExplicitQuantitativeCheckResult<ValueType>(std::move(ret.values)));
if (checkTask.isProduceSchedulersSet() && ret.scheduler) {
result->asExplicitQuantitativeCheckResult<ValueType>().setScheduler(std::move(ret.scheduler));
}
return result;
}
template<typename SparseSmgModelType>
std::unique_ptr<CheckResult> SparseSmgRpatlModelChecker<SparseSmgModelType>::computeLongRunAverageProbabilities(Environment const& env, CheckTask<storm::logic::StateFormula, ValueType> const& checkTask) {
STORM_LOG_THROW(false, storm::exceptions::NotImplementedException, "NYI");
@ -119,41 +159,6 @@ namespace storm {
return result;
}
//template<typename SparseSmgModelType>
//void SparseSmgRpatlModelChecker<SparseSmgModelType>::coalitionIndicator(Environment& env, CheckTask<storm::logic::GameFormula, ValueType> const& checkTask) {
// storm::storage::BitVector coalitionIndicators(this->getModel().getTransitionMatrix().getRowGroupCount());
// std::vector<boost::variant<std::string, uint_fast64_t>> formulaPlayerIds = checkTask.getFormula().getCoalition().getPlayers();
// std::vector<uint_fast64_t> playerIds;
// std::vector<std::pair<std::string, uint_fast64_t>> playerActionIndices = this->getModel().getStatePlayerIndications();
// for(auto const& player : formulaPlayerIds) {
// // If the player is given via the player name we have to look up its index
// if(player.type() == typeid(std::string)) {
// auto it = std::find_if(playerActionIndices.begin(), playerActionIndices.end(),
// [&player](const std::pair<std::string, uint_fast64_t>& element){ return element.first == boost::get<std::string>(player); });
// playerIds.push_back(it->second);
// // If the player is given by its index we have to shift it to match internal mappings
// } else if(player.type() == typeid(uint_fast64_t)) {
// playerIds.push_back(boost::get<uint_fast64_t>(player) - 1);
// }
// }
// //for(auto const& p : playerActionIndices) std::cout << p.first << " - " << p.second << ", "; std::cout << std::endl;
// //for(auto const& p : playerIds) std::cout << p << ", "; std::cout << std::endl;
// for(uint i = 0; i < playerActionIndices.size(); i++) {
// if(std::find(playerIds.begin(), playerIds.end(), playerActionIndices.at(i).second) != playerIds.end()) {
// coalitionIndicators.set(i);
// }
// }
// coalitionIndicators.complement();
// //std::cout << "MINMAX OVERRIDE: " << coalitionIndicators << std::endl;
// env.solver().multiplier().setOptimizationDirectionOverride(coalitionIndicators);
//}
template class SparseSmgRpatlModelChecker<storm::models::sparse::Smg<double>>;
#ifdef STORM_HAVE_CARL
template class SparseSmgRpatlModelChecker<storm::models::sparse::Smg<storm::RationalNumber>>;

4
src/storm/modelchecker/rpatl/SparseSmgRpatlModelChecker.h

@ -29,10 +29,14 @@ namespace storm {
// The implemented methods of the AbstractModelChecker interface.
bool canHandle(CheckTask<storm::logic::Formula, ValueType> const& checkTask) const override;
std::unique_ptr<CheckResult> checkGameFormula(Environment const& env, CheckTask<storm::logic::GameFormula, ValueType> const& checkTask) override;
std::unique_ptr<CheckResult> checkProbabilityOperatorFormula(Environment const& env, CheckTask<storm::logic::ProbabilityOperatorFormula, ValueType> const& checkTask) override;
std::unique_ptr<CheckResult> checkRewardOperatorFormula(Environment const& env, CheckTask<storm::logic::RewardOperatorFormula, ValueType> const& checkTask) override;
std::unique_ptr<CheckResult> checkLongRunAverageOperatorFormula(Environment const& env, CheckTask<storm::logic::LongRunAverageOperatorFormula, ValueType> const& checkTask) override;
std::unique_ptr<CheckResult> computeProbabilities(Environment const& env, CheckTask<storm::logic::Formula, ValueType> const& checkTask) override;
std::unique_ptr<CheckResult> computeRewards(Environment const& env, storm::logic::RewardMeasureType rewardMeasureType, CheckTask<storm::logic::Formula, ValueType> const& checkTask) override;
std::unique_ptr<CheckResult> computeUntilProbabilities(Environment const& env, CheckTask<storm::logic::UntilFormula, ValueType> const& checkTask) override;
std::unique_ptr<CheckResult> computeLongRunAverageProbabilities(Environment const& env, CheckTask<storm::logic::StateFormula, ValueType> const& checkTask) override;
std::unique_ptr<CheckResult> computeLongRunAverageRewards(Environment const& env, storm::logic::RewardMeasureType rewardMeasureType, CheckTask<storm::logic::LongRunAverageRewardFormula, ValueType> const& checkTask) override;

97
src/storm/modelchecker/rpatl/helper/SparseSmgRpatlHelper.cpp

@ -0,0 +1,97 @@
#include "SparseSmgRpatlHelper.h"
#include "storm/environment/Environment.h"
#include "storm/environment/solver/MultiplierEnvironment.h"
#include "storm/environment/solver/MinMaxSolverEnvironment.h"
#include "storm/solver/MinMaxLinearEquationSolver.h"
#include "storm/utility/vector.h"
#include "storm/modelchecker/rpatl/helper/internal/GameViHelper.h"
namespace storm {
namespace modelchecker {
namespace helper {
template<typename ValueType>
MDPSparseModelCheckingHelperReturnType<ValueType> SparseSmgRpatlHelper<ValueType>::computeUntilProbabilities(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::storage::BitVector statesOfCoalition, bool produceScheduler, ModelCheckerHint const& hint) {
// TODO add Kwiatkowska original reference
// TODO FIX solver min max mess
auto solverEnv = env;
solverEnv.solver().minMax().setMethod(storm::solver::MinMaxMethod::ValueIteration, false);
// Initialize the solution vector.
std::vector<ValueType> x = std::vector<ValueType>(transitionMatrix.getRowGroupCount() - psiStates.getNumberOfSetBits(), storm::utility::zero<ValueType>());
std::vector<ValueType> b = transitionMatrix.getConstrainedRowGroupSumVector(~psiStates, psiStates);
// Reduce matrix to ~Prob1 states-
//STORM_LOG_DEBUG("\n" << transitionMatrix);
storm::storage::SparseMatrix<ValueType> submatrix = transitionMatrix.getSubmatrix(true, ~psiStates, ~psiStates, false);
//STORM_LOG_DEBUG("\n" << submatrix);
//STORM_LOG_DEBUG("x = " << storm::utility::vector::toString(x));
//STORM_LOG_DEBUG("b = " << storm::utility::vector::toString(b));
storm::storage::BitVector clippedStatesOfCoalition(statesOfCoalition.size() - psiStates.getNumberOfSetBits());
//STORM_LOG_DEBUG(psiStates);
//STORM_LOG_DEBUG(statesOfCoalition);
//STORM_LOG_DEBUG(clippedStatesOfCoalition);
// TODO move this to BitVector-class
auto clippedStatesCounter = 0;
for(uint i = 0; i < psiStates.size(); i++) {
std::cout << i << " : " << psiStates.get(i) << " -> " << statesOfCoalition[i] << std::endl;
if(!psiStates.get(i)) {
clippedStatesOfCoalition.set(clippedStatesCounter, statesOfCoalition[i]);
clippedStatesCounter++;
}
}
//STORM_LOG_DEBUG(clippedStatesOfCoalition);
clippedStatesOfCoalition.complement();
//STORM_LOG_DEBUG(clippedStatesOfCoalition);
storm::modelchecker::helper::internal::GameViHelper<ValueType> viHelper(submatrix, clippedStatesOfCoalition);
std::unique_ptr<storm::storage::Scheduler<ValueType>> scheduler;
if (produceScheduler) {
viHelper.setProduceScheduler(true);
}
viHelper.performValueIteration(env, x, b, goal.direction());
STORM_LOG_DEBUG(storm::utility::vector::toString(x));
if (produceScheduler) {
scheduler = std::make_unique<storm::storage::Scheduler<ValueType>>(expandScheduler(viHelper.extractScheduler(), psiStates));
STORM_LOG_DEBUG("IsPartial?" << scheduler->isPartialScheduler());
}
return MDPSparseModelCheckingHelperReturnType<ValueType>(std::move(x), std::move(scheduler));
}
template<typename ValueType>
storm::storage::Scheduler<ValueType> SparseSmgRpatlHelper<ValueType>::expandScheduler(storm::storage::Scheduler<ValueType> scheduler, storm::storage::BitVector psiStates) {
//STORM_LOG_DEBUG(psiStates.size());
for(uint i = 0; i < 2; i++) {
//STORM_LOG_DEBUG(scheduler.getChoice(i));
}
storm::storage::Scheduler<ValueType> completeScheduler(psiStates.size());
uint_fast64_t maybeStatesCounter = 0;
for(uint stateCounter = 0; stateCounter < psiStates.size(); stateCounter++) {
//STORM_LOG_DEBUG(stateCounter << " : " << psiStates.get(stateCounter));
if(psiStates.get(stateCounter)) {
completeScheduler.setChoice(0, stateCounter);
} else {
completeScheduler.setChoice(scheduler.getChoice(maybeStatesCounter), stateCounter);
maybeStatesCounter++;
}
}
return completeScheduler;
}
template class SparseSmgRpatlHelper<double>;
#ifdef STORM_HAVE_CARL
template class SparseSmgRpatlHelper<storm::RationalNumber>;
#endif
}
}
}

47
src/storm/modelchecker/rpatl/helper/SparseSmgRpatlHelper.h

@ -0,0 +1,47 @@
#pragma once
#include <vector>
#include "storm/modelchecker/hints/ModelCheckerHint.h"
#include "storm/modelchecker/prctl/helper/SolutionType.h"
#include "storm/storage/SparseMatrix.h"
#include "storm/utility/solver.h"
#include "storm/solver/SolveGoal.h"
#include "storm/modelchecker/prctl/helper/MDPModelCheckingHelperReturnType.h"
namespace storm {
class Environment;
namespace storage {
class BitVector;
}
namespace models {
namespace sparse {
template <typename ValueType>
class StandardRewardModel;
}
}
namespace modelchecker {
class CheckResult;
namespace helper {
template <typename ValueType>
class SparseSmgRpatlHelper {
public:
// TODO should probably be renamed in the future:
static MDPSparseModelCheckingHelperReturnType<ValueType> computeUntilProbabilities(Environment const& env, storm::solver::SolveGoal<ValueType>&& goal, storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::SparseMatrix<ValueType> const& backwardTransitions, storm::storage::BitVector const& phiStates, storm::storage::BitVector const& psiStates, bool qualitative, storm::storage::BitVector statesOfCoalition, bool produceScheduler, ModelCheckerHint const& hint = ModelCheckerHint());
private:
static storm::storage::Scheduler<ValueType> expandScheduler(storm::storage::Scheduler<ValueType> scheduler, storm::storage::BitVector psiStates);
};
}
}
}

198
src/storm/modelchecker/rpatl/helper/internal/GameViHelper.cpp

@ -0,0 +1,198 @@
#include "GameViHelper.h"
#include "storm/environment/Environment.h"
#include "storm/environment/solver/SolverEnvironment.h"
#include "storm/environment/solver/GameSolverEnvironment.h"
#include "storm/utility/SignalHandler.h"
#include "storm/utility/vector.h"
// TODO this will undergo major refactoring as soon as we implement model checking of further properties
namespace storm {
namespace modelchecker {
namespace helper {
namespace internal {
template <typename ValueType>
GameViHelper<ValueType>::GameViHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector statesOfCoalition) : _transitionMatrix(transitionMatrix), _statesOfCoalition(statesOfCoalition) {
}
template <typename ValueType>
void GameViHelper<ValueType>::prepareSolversAndMultipliersReachability(const Environment& env) {
// TODO we get whole transitionmatrix and psistates DONE IN smgrpatlhelper
// -> clip statesofcoalition
// -> compute b vector from psiStates
// -> clip transitionmatrix and create multiplier
_multiplier = storm::solver::MultiplierFactory<ValueType>().create(env, _transitionMatrix);
_multiplier->setOptimizationDirectionOverride(_statesOfCoalition);
_x1IsCurrent = false;
}
template <typename ValueType>
void GameViHelper<ValueType>::performValueIteration(Environment const& env, std::vector<ValueType>& x, std::vector<ValueType> b, storm::solver::OptimizationDirection const dir) {
prepareSolversAndMultipliersReachability(env);
ValueType precision = storm::utility::convertNumber<ValueType>(env.solver().game().getPrecision());
uint64_t maxIter = env.solver().game().getMaximalNumberOfIterations();
_b = b;
_x1.assign(_transitionMatrix.getRowGroupCount(), storm::utility::zero<ValueType>());
_x2 = _x1;
if (this->isProduceSchedulerSet()) {
if (!this->_producedOptimalChoices.is_initialized()) {
this->_producedOptimalChoices.emplace();
}
this->_producedOptimalChoices->resize(this->_transitionMatrix.getRowGroupCount());
}
uint64_t iter = 0;
std::vector<ValueType> result = x;
while (iter < maxIter) {
++iter;
performIterationStep(env, dir);
if (checkConvergence(precision)) {
break;
}
if (storm::utility::resources::isTerminate()) {
break;
}
}
x = xNew();
if (isProduceSchedulerSet()) {
// We will be doing one more iteration step and track scheduler choices this time.
performIterationStep(env, dir, &_producedOptimalChoices.get());
}
}
template <typename ValueType>
void GameViHelper<ValueType>::performIterationStep(Environment const& env, storm::solver::OptimizationDirection const dir, std::vector<uint64_t>* choices) {
if (!_multiplier) {
prepareSolversAndMultipliersReachability(env);
}
_x1IsCurrent = !_x1IsCurrent;
// multiplyandreducegaussseidel
// Ax + b
if (choices == nullptr) {
//STORM_LOG_DEBUG("\n" << _transitionMatrix);
//STORM_LOG_DEBUG("xOld = " << storm::utility::vector::toString(xOld()));
//STORM_LOG_DEBUG("b = " << storm::utility::vector::toString(_b));
//STORM_LOG_DEBUG("xNew = " << storm::utility::vector::toString(xNew()));
_multiplier->multiplyAndReduce(env, dir, xOld(), &_b, xNew());
//std::cin.get();
} else {
// Also keep track of the choices made.
_multiplier->multiplyAndReduce(env, dir, xOld(), &_b, xNew(), choices);
}
// compare applyPointwise
storm::utility::vector::applyPointwise<ValueType, ValueType, ValueType>(xOld(), xNew(), xNew(), [&dir] (ValueType const& a, ValueType const& b) -> ValueType {
if(storm::solver::maximize(dir)) {
if(a > b) return a;
else return b;
} else {
if(a > b) return a;
else return b;
}
});
}
template <typename ValueType>
bool GameViHelper<ValueType>::checkConvergence(ValueType threshold) const {
STORM_LOG_ASSERT(_multiplier, "tried to check for convergence without doing an iteration first.");
// Now check whether the currently produced results are precise enough
STORM_LOG_ASSERT(threshold > storm::utility::zero<ValueType>(), "Did not expect a non-positive threshold.");
auto x1It = xOld().begin();
auto x1Ite = xOld().end();
auto x2It = xNew().begin();
ValueType maxDiff = (*x2It - *x1It);
ValueType minDiff = maxDiff;
// The difference between maxDiff and minDiff is zero at this point. Thus, it doesn't make sense to check the threshold now.
for (++x1It, ++x2It; x1It != x1Ite; ++x1It, ++x2It) {
ValueType diff = (*x2It - *x1It);
// Potentially update maxDiff or minDiff
bool skipCheck = false;
if (maxDiff < diff) {
maxDiff = diff;
} else if (minDiff > diff) {
minDiff = diff;
} else {
skipCheck = true;
}
// Check convergence
if (!skipCheck && (maxDiff - minDiff) > threshold) {
return false;
}
}
// TODO needs checking
return true;
}
template <typename ValueType>
void GameViHelper<ValueType>::setProduceScheduler(bool value) {
_produceScheduler = value;
}
template <typename ValueType>
bool GameViHelper<ValueType>::isProduceSchedulerSet() const {
return _produceScheduler;
}
template <typename ValueType>
std::vector<uint64_t> const& GameViHelper<ValueType>::getProducedOptimalChoices() const {
STORM_LOG_ASSERT(this->isProduceSchedulerSet(), "Trying to get the produced optimal choices although no scheduler was requested.");
STORM_LOG_ASSERT(this->_producedOptimalChoices.is_initialized(), "Trying to get the produced optimal choices but none were available. Was there a computation call before?");
return this->_producedOptimalChoices.get();
}
template <typename ValueType>
std::vector<uint64_t>& GameViHelper<ValueType>::getProducedOptimalChoices() {
STORM_LOG_ASSERT(this->isProduceSchedulerSet(), "Trying to get the produced optimal choices although no scheduler was requested.");
STORM_LOG_ASSERT(this->_producedOptimalChoices.is_initialized(), "Trying to get the produced optimal choices but none were available. Was there a computation call before?");
return this->_producedOptimalChoices.get();
}
template <typename ValueType>
storm::storage::Scheduler<ValueType> GameViHelper<ValueType>::extractScheduler() const{
auto const& optimalChoices = getProducedOptimalChoices();
storm::storage::Scheduler<ValueType> scheduler(optimalChoices.size());
for (uint64_t state = 0; state < optimalChoices.size(); ++state) {
scheduler.setChoice(optimalChoices[state], state);
}
return scheduler;
}
template <typename ValueType>
std::vector<ValueType>& GameViHelper<ValueType>::xNew() {
return _x1IsCurrent ? _x1 : _x2;
}
template <typename ValueType>
std::vector<ValueType> const& GameViHelper<ValueType>::xNew() const {
return _x1IsCurrent ? _x1 : _x2;
}
template <typename ValueType>
std::vector<ValueType>& GameViHelper<ValueType>::xOld() {
return _x1IsCurrent ? _x2 : _x1;
}
template <typename ValueType>
std::vector<ValueType> const& GameViHelper<ValueType>::xOld() const {
return _x1IsCurrent ? _x2 : _x1;
}
template class GameViHelper<double>;
#ifdef STORM_HAVE_CARL
template class GameViHelper<storm::RationalNumber>;
#endif
}
}
}
}

77
src/storm/modelchecker/rpatl/helper/internal/GameViHelper.h

@ -0,0 +1,77 @@
#pragma once
#include "storm/storage/SparseMatrix.h"
#include "storm/solver/LinearEquationSolver.h"
#include "storm/solver/MinMaxLinearEquationSolver.h"
#include "storm/solver/Multiplier.h"
namespace storm {
class Environment;
namespace storage {
template <typename VT> class Scheduler;
}
namespace modelchecker {
namespace helper {
namespace internal {
template <typename ValueType>
class GameViHelper {
public:
GameViHelper(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, storm::storage::BitVector statesOfCoalition);
void prepareSolversAndMultipliersReachability(const Environment& env);
void performValueIteration(Environment const& env, std::vector<ValueType>& x, std::vector<ValueType> b, storm::solver::OptimizationDirection const dir);
/*h
* Sets whether an optimal scheduler shall be constructed during the computation
*/
void setProduceScheduler(bool value);
/*!
* @return whether an optimal scheduler shall be constructed during the computation
*/
bool isProduceSchedulerSet() const;
storm::storage::Scheduler<ValueType> extractScheduler() const;
private:
void performIterationStep(Environment const& env, storm::solver::OptimizationDirection const dir, std::vector<uint64_t>* choices = nullptr);
/*!
* Checks whether the curently computed value achieves the desired precision
*/
bool checkConvergence(ValueType precision) const;
std::vector<ValueType>& xNew();
std::vector<ValueType> const& xNew() const;
std::vector<ValueType>& xOld();
std::vector<ValueType> const& xOld() const;
bool _x1IsCurrent;
/*!
* @pre before calling this, a computation call should have been performed during which scheduler production was enabled.
* @return the produced scheduler of the most recent call.
*/
std::vector<uint64_t> const& getProducedOptimalChoices() const;
/*!
* @pre before calling this, a computation call should have been performed during which scheduler production was enabled.
* @return the produced scheduler of the most recent call.
*/
std::vector<uint64_t>& getProducedOptimalChoices();
storm::storage::SparseMatrix<ValueType> _transitionMatrix;
storm::storage::BitVector _statesOfCoalition;
std::vector<ValueType> _x1, _x2, _b;
std::unique_ptr<storm::solver::Multiplier<ValueType>> _multiplier;
bool _produceScheduler = false;
boost::optional<std::vector<uint64_t>> _producedOptimalChoices;
};
}
}
}
}
Loading…
Cancel
Save