Browse Source

added override to LESolver

tempestpy_adaptions
Stefan Pranger 4 years ago
parent
commit
4a018c0ca7
  1. 234
      src/storm/solver/IterativeMinMaxLinearEquationSolver.cpp

234
src/storm/solver/IterativeMinMaxLinearEquationSolver.cpp

@ -5,6 +5,7 @@
#include "storm/environment/solver/MinMaxSolverEnvironment.h"
#include "storm/environment/solver/OviSolverEnvironment.h"
#include "storm/environment/solver/MultiplierEnvironment.h"
#include "storm/utility/ConstantsComparator.h"
#include "storm/utility/KwekMehlhorn.h"
@ -19,27 +20,27 @@
namespace storm {
namespace solver {
template<typename ValueType>
IterativeMinMaxLinearEquationSolver<ValueType>::IterativeMinMaxLinearEquationSolver(std::unique_ptr<LinearEquationSolverFactory<ValueType>>&& linearEquationSolverFactory) : linearEquationSolverFactory(std::move(linearEquationSolverFactory)) {
// Intentionally left empty
}
template<typename ValueType>
IterativeMinMaxLinearEquationSolver<ValueType>::IterativeMinMaxLinearEquationSolver(storm::storage::SparseMatrix<ValueType> const& A, std::unique_ptr<LinearEquationSolverFactory<ValueType>>&& linearEquationSolverFactory) : StandardMinMaxLinearEquationSolver<ValueType>(A), linearEquationSolverFactory(std::move(linearEquationSolverFactory)) {
// Intentionally left empty.
}
template<typename ValueType>
IterativeMinMaxLinearEquationSolver<ValueType>::IterativeMinMaxLinearEquationSolver(storm::storage::SparseMatrix<ValueType>&& A, std::unique_ptr<LinearEquationSolverFactory<ValueType>>&& linearEquationSolverFactory) : StandardMinMaxLinearEquationSolver<ValueType>(std::move(A)), linearEquationSolverFactory(std::move(linearEquationSolverFactory)) {
// Intentionally left empty.
}
template<typename ValueType>
MinMaxMethod IterativeMinMaxLinearEquationSolver<ValueType>::getMethod(Environment const& env, bool isExactMode) const {
// Adjust the method if none was specified and we want exact or sound computations.
auto method = env.solver().minMax().getMethod();
if (isExactMode && method != MinMaxMethod::PolicyIteration && method != MinMaxMethod::RationalSearch && method != MinMaxMethod::ViToPi) {
if (env.solver().minMax().isMethodSetFromDefault()) {
STORM_LOG_INFO("Selecting 'Policy iteration' as the solution technique to guarantee exact results. If you want to override this, please explicitly specify a different method.");
@ -58,7 +59,7 @@ namespace storm {
STORM_LOG_THROW(method == MinMaxMethod::ValueIteration || method == MinMaxMethod::PolicyIteration || method == MinMaxMethod::RationalSearch || method == MinMaxMethod::SoundValueIteration || method == MinMaxMethod::IntervalIteration || method == MinMaxMethod::OptimisticValueIteration || method == MinMaxMethod::ViToPi, storm::exceptions::InvalidEnvironmentException, "This solver does not support the selected method.");
return method;
}
template<typename ValueType>
bool IterativeMinMaxLinearEquationSolver<ValueType>::internalSolveEquations(Environment const& env, OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
bool result = false;
@ -87,14 +88,14 @@ namespace storm {
default:
STORM_LOG_THROW(false, storm::exceptions::InvalidEnvironmentException, "This solver does not implement the selected solution method");
}
return result;
}
template<typename ValueType>
bool IterativeMinMaxLinearEquationSolver<ValueType>::solveInducedEquationSystem(Environment const& env, std::unique_ptr<LinearEquationSolver<ValueType>>& linearEquationSolver, std::vector<uint64_t> const& scheduler, std::vector<ValueType>& x, std::vector<ValueType>& subB, std::vector<ValueType> const& originalB) const {
assert(subB.size() == x.size());
// Resolve the nondeterminism according to the given scheduler.
bool convertToEquationSystem = this->linearEquationSolverFactory->getEquationProblemFormat(env) == LinearEquationSolverProblemFormat::EquationSystem;
storm::storage::SparseMatrix<ValueType> submatrix = this->A->selectRowsFromRowGroups(scheduler, convertToEquationSystem);
@ -102,7 +103,7 @@ namespace storm {
submatrix.convertToEquationSystem();
}
storm::utility::vector::selectVectorValues<ValueType>(subB, scheduler, this->A->getRowGroupIndices(), originalB);
// Check whether the linear equation solver is already initialized
if (!linearEquationSolver) {
// Initialize the equation solver
@ -116,14 +117,14 @@ namespace storm {
// Solve the equation system for the 'DTMC' and return true upon success
return linearEquationSolver->solveEquations(env, x, subB);
}
template<typename ValueType>
bool IterativeMinMaxLinearEquationSolver<ValueType>::solveEquationsPolicyIteration(Environment const& env, OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
// Create the initial scheduler.
std::vector<storm::storage::sparse::state_type> scheduler = this->hasInitialScheduler() ? this->getInitialScheduler() : std::vector<storm::storage::sparse::state_type>(this->A->getRowGroupCount());
return performPolicyIteration(env, dir, x, b, std::move(scheduler));
}
template<typename ValueType>
bool IterativeMinMaxLinearEquationSolver<ValueType>::performPolicyIteration(Environment const& env, OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<storm::storage::sparse::state_type>&& initialPolicy) const {
std::vector<storm::storage::sparse::state_type> scheduler = std::move(initialPolicy);
@ -162,7 +163,7 @@ namespace storm {
do {
// Solve the equation system for the 'DTMC'.
solveInducedEquationSystem(environmentOfSolver, solver, scheduler, x, subB, b);
// Go through the multiplication result and see whether we can improve any of the choices.
bool schedulerImproved = false;
for (uint_fast64_t group = 0; group < this->A->getRowGroupCount(); ++group) {
@ -172,14 +173,14 @@ namespace storm {
if (choice - this->A->getRowGroupIndices()[group] == currentChoice) {
continue;
}
// Create the value of the choice.
ValueType choiceValue = storm::utility::zero<ValueType>();
for (auto const& entry : this->A->getRow(choice)) {
choiceValue += entry.getValue() * x[entry.getColumn()];
}
choiceValue += b[choice];
// If the value is strictly better than the solution of the inner system, we need to improve the scheduler.
// TODO: If the underlying solver is not precise, this might run forever (i.e. when a state has two choices where the (exact) values are equal).
// only changing the scheduler if the values are not equal (modulo precision) would make this unsound.
@ -190,12 +191,12 @@ namespace storm {
}
}
}
// If the scheduler did not improve, we are done.
if (!schedulerImproved) {
status = SolverStatus::Converged;
}
// Update environment variables.
++iterations;
status = this->updateStatus(status, x, dir == storm::OptimizationDirection::Minimize ? SolverGuarantee::GreaterOrEqual : SolverGuarantee::LessOrEqual, iterations, env.solver().minMax().getMaximalNumberOfIterations());
@ -203,21 +204,21 @@ namespace storm {
// Potentially show progress.
this->showProgressIterative(iterations);
} while (status == SolverStatus::InProgress);
this->reportStatus(status, iterations);
// If requested, we store the scheduler for retrieval.
if (this->isTrackSchedulerSet()) {
this->schedulerChoices = std::move(scheduler);
}
if (!this->isCachingEnabled()) {
clearCache();
}
return status == SolverStatus::Converged || status == SolverStatus::TerminatedEarly;
}
template<typename ValueType>
bool IterativeMinMaxLinearEquationSolver<ValueType>::valueImproved(OptimizationDirection dir, ValueType const& value1, ValueType const& value2) const {
if (dir == OptimizationDirection::Minimize) {
@ -230,7 +231,7 @@ namespace storm {
template<typename ValueType>
MinMaxLinearEquationSolverRequirements IterativeMinMaxLinearEquationSolver<ValueType>::getRequirements(Environment const& env, boost::optional<storm::solver::OptimizationDirection> const& direction, bool const& hasInitialScheduler) const {
auto method = getMethod(env, storm::NumberTraits<ValueType>::IsExact || env.solver().isForceExact());
// Check whether a linear equation solver is needed and potentially start with its requirements
bool needsLinEqSolver = false;
needsLinEqSolver |= method == MinMaxMethod::PolicyIteration;
@ -259,7 +260,7 @@ namespace storm {
requirements.requireUniqueSolution();
}
requirements.requireLowerBounds();
} else if (method == MinMaxMethod::IntervalIteration) {
// Interval iteration requires a unique solution and lower+upper bounds
if (!this->hasUniqueSolution()) {
@ -296,18 +297,18 @@ namespace storm {
template<typename ValueType>
typename IterativeMinMaxLinearEquationSolver<ValueType>::ValueIterationResult IterativeMinMaxLinearEquationSolver<ValueType>::performValueIteration(Environment const& env, OptimizationDirection dir, std::vector<ValueType>*& currentX, std::vector<ValueType>*& newX, std::vector<ValueType> const& b, ValueType const& precision, bool relative, SolverGuarantee const& guarantee, uint64_t currentIterations, uint64_t maximalNumberOfIterations, storm::solver::MultiplicationStyle const& multiplicationStyle) const {
STORM_LOG_ASSERT(currentX != newX, "Vectors must not be aliased.");
// Get handle to multiplier.
storm::solver::Multiplier<ValueType> const& multiplier = *this->multiplierA;
// Allow aliased multiplications.
bool useGaussSeidelMultiplication = multiplicationStyle == storm::solver::MultiplicationStyle::GaussSeidel;
// Proceed with the iterations as long as the method did not converge or reach the maximum number of iterations.
uint64_t iterations = currentIterations;
SolverStatus status = SolverStatus::InProgress;
while (status == SolverStatus::InProgress) {
// Compute x' = min/max(A*x + b).
@ -318,12 +319,12 @@ namespace storm {
} else {
multiplier.multiplyAndReduce(env, dir, *currentX, &b, *newX);
}
// Determine whether the method converged.
if (storm::utility::vector::equalModuloPrecision<ValueType>(*currentX, *newX, precision, relative)) {
status = SolverStatus::Converged;
}
// Update environment variables.
std::swap(currentX, newX);
++iterations;
@ -332,7 +333,7 @@ namespace storm {
// Potentially show progress.
this->showProgressIterative(iterations);
}
return ValueIterationResult(iterations - currentIterations, status);
}
@ -367,7 +368,7 @@ namespace storm {
}
return true;
}
if (!auxiliaryRowGroupVector) {
auxiliaryRowGroupVector = std::make_unique<std::vector<ValueType>>(this->A->getRowGroupCount());
}
@ -376,14 +377,14 @@ namespace storm {
}
storm::solver::helper::OptimisticValueIterationHelper<ValueType> helper(*this->A);
// x has to start with a lower bound.
this->createLowerBoundsVector(x);
std::vector<ValueType>* lowerX = &x;
std::vector<ValueType>* upperX = auxiliaryRowGroupVector.get();
auto statusIters = helper.solveEquations(env, lowerX, upperX, b,
env.solver().minMax().getRelativeTerminationCriterion(),
storm::utility::convertNumber<ValueType>(env.solver().minMax().getPrecision()),
@ -413,14 +414,19 @@ namespace storm {
if (!this->multiplierA) {
this->multiplierA = storm::solver::MultiplierFactory<ValueType>().create(env, *this->A);
}
// TODO cleanup
if(env.solver().multiplier().getOptimizationDirectionOverride().is_initialized()) {
multiplierA->setOptimizationDirectionOverride(env.solver().multiplier().getOptimizationDirectionOverride().get());
}
if (!auxiliaryRowGroupVector) {
auxiliaryRowGroupVector = std::make_unique<std::vector<ValueType>>(this->A->getRowGroupCount());
}
// By default, we can not provide any guarantee
SolverGuarantee guarantee = SolverGuarantee::None;
if (this->hasInitialScheduler()) {
// Solve the equation system induced by the initial scheduler.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> linEqSolver;
@ -469,7 +475,7 @@ namespace storm {
std::vector<ValueType>* newX = auxiliaryRowGroupVector.get();
std::vector<ValueType>* currentX = &x;
this->startMeasureProgress();
ValueIterationResult result = performValueIteration(env, dir, currentX, newX, b, storm::utility::convertNumber<ValueType>(env.solver().minMax().getPrecision()), env.solver().minMax().getRelativeTerminationCriterion(), guarantee, 0, env.solver().minMax().getMaximalNumberOfIterations(), env.solver().minMax().getMultiplicationStyle());
@ -477,27 +483,27 @@ namespace storm {
if (currentX == auxiliaryRowGroupVector.get()) {
std::swap(x, *currentX);
}
this->reportStatus(result.status, result.iterations);
// If requested, we store the scheduler for retrieval.
if (this->isTrackSchedulerSet()) {
this->schedulerChoices = std::vector<uint_fast64_t>(this->A->getRowGroupCount());
this->multiplierA->multiplyAndReduce(env, dir, x, &b, *auxiliaryRowGroupVector.get(), &this->schedulerChoices.get());
}
if (!this->isCachingEnabled()) {
clearCache();
}
return result.status == SolverStatus::Converged || result.status == SolverStatus::TerminatedEarly;
}
template<typename ValueType>
void preserveOldRelevantValues(std::vector<ValueType> const& allValues, storm::storage::BitVector const& relevantValues, std::vector<ValueType>& oldValues) {
storm::utility::vector::selectVectorValues(oldValues, relevantValues, allValues);
}
/*!
* This version of value iteration is sound, because it approaches the solution from below and above. This
* technique is due to Haddad and Monmege (Interval iteration algorithm for MDPs and IMDPs, TCS 2017) and was
@ -511,28 +517,28 @@ namespace storm {
if (!this->multiplierA) {
this->multiplierA = storm::solver::MultiplierFactory<ValueType>().create(env, *this->A);
}
if (!auxiliaryRowGroupVector) {
auxiliaryRowGroupVector = std::make_unique<std::vector<ValueType>>(this->A->getRowGroupCount());
}
// Allow aliased multiplications.
bool useGaussSeidelMultiplication = env.solver().minMax().getMultiplicationStyle() == storm::solver::MultiplicationStyle::GaussSeidel;
std::vector<ValueType>* lowerX = &x;
this->createLowerBoundsVector(*lowerX);
this->createUpperBoundsVector(this->auxiliaryRowGroupVector, this->A->getRowGroupCount());
std::vector<ValueType>* upperX = this->auxiliaryRowGroupVector.get();
std::vector<ValueType>* tmp = nullptr;
if (!useGaussSeidelMultiplication) {
auxiliaryRowGroupVector2 = std::make_unique<std::vector<ValueType>>(lowerX->size());
tmp = auxiliaryRowGroupVector2.get();
}
// Proceed with the iterations as long as the method did not converge or reach the maximum number of iterations.
uint64_t iterations = 0;
SolverStatus status = SolverStatus::InProgress;
bool doConvergenceCheck = true;
bool useDiffs = this->hasRelevantValues() && !env.solver().minMax().isSymmetricUpdatesSet();
@ -636,7 +642,7 @@ namespace storm {
status = storm::utility::vector::equalModuloPrecision<ValueType>(*lowerX, *upperX, precision, relative) ? SolverStatus::Converged : status;
}
}
// Update environment variables.
++iterations;
doConvergenceCheck = !doConvergenceCheck;
@ -650,33 +656,33 @@ namespace storm {
// Potentially show progress.
this->showProgressIterative(iterations);
}
this->reportStatus(status, iterations);
// We take the means of the lower and upper bound so we guarantee the desired precision.
ValueType two = storm::utility::convertNumber<ValueType>(2.0);
storm::utility::vector::applyPointwise<ValueType, ValueType, ValueType>(*lowerX, *upperX, *lowerX, [&two] (ValueType const& a, ValueType const& b) -> ValueType { return (a + b) / two; });
// Since we shuffled the pointer around, we need to write the actual results to the input/output vector x.
if (&x == tmp) {
std::swap(x, *tmp);
} else if (&x == this->auxiliaryRowGroupVector.get()) {
std::swap(x, *this->auxiliaryRowGroupVector);
}
// If requested, we store the scheduler for retrieval.
if (this->isTrackSchedulerSet()) {
this->schedulerChoices = std::vector<uint_fast64_t>(this->A->getRowGroupCount());
this->multiplierA->multiplyAndReduce(env, dir, x, &b, *this->auxiliaryRowGroupVector, &this->schedulerChoices.get());
}
if (!this->isCachingEnabled()) {
clearCache();
}
return status == SolverStatus::Converged;
}
template<typename ValueType>
bool IterativeMinMaxLinearEquationSolver<ValueType>::solveEquationsSoundValueIteration(Environment const& env, OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
@ -690,7 +696,7 @@ namespace storm {
} else {
this->soundValueIterationHelper = std::make_unique<storm::solver::helper::SoundValueIterationHelper<ValueType>>(std::move(*this->soundValueIterationHelper), x, *this->auxiliaryRowGroupVector, env.solver().minMax().getRelativeTerminationCriterion(), storm::utility::convertNumber<ValueType>(env.solver().minMax().getPrecision()));
}
// Prepare initial bounds for the solution (if given)
if (this->hasLowerBound()) {
this->soundValueIterationHelper->setLowerBound(this->getLowerBound(true));
@ -698,16 +704,16 @@ namespace storm {
if (this->hasUpperBound()) {
this->soundValueIterationHelper->setUpperBound(this->getUpperBound(true));
}
storm::storage::BitVector const* relevantValuesPtr = nullptr;
if (this->hasRelevantValues()) {
relevantValuesPtr = &this->getRelevantValues();
}
SolverStatus status = SolverStatus::InProgress;
this->startMeasureProgress();
uint64_t iterations = 0;
while (status == SolverStatus::InProgress && iterations < env.solver().minMax().getMaximalNumberOfIterations()) {
++iterations;
this->soundValueIterationHelper->performIterationStep(dir, b);
@ -716,12 +722,12 @@ namespace storm {
} else {
status = this->updateStatus(status, this->hasCustomTerminationCondition() && this->soundValueIterationHelper->checkCustomTerminationCondition(this->getTerminationCondition()), iterations, env.solver().minMax().getMaximalNumberOfIterations());
}
// Potentially show progress.
this->showProgressIterative(iterations);
}
this->soundValueIterationHelper->setSolutionVector();
// If requested, we store the scheduler for retrieval.
if (this->isTrackSchedulerSet()) {
this->schedulerChoices = std::vector<uint_fast64_t>(this->A->getRowGroupCount());
@ -729,14 +735,14 @@ namespace storm {
}
this->reportStatus(status, iterations);
if (!this->isCachingEnabled()) {
clearCache();
}
return status == SolverStatus::Converged;
}
template<typename ValueType>
bool IterativeMinMaxLinearEquationSolver<ValueType>::solveEquationsViToPi(Environment const& env, OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
// First create an (inprecise) vi solver to get a good initial strategy for the (potentially precise) policy iteration solver.
@ -760,11 +766,11 @@ namespace storm {
STORM_LOG_INFO("Found initial policy using Value Iteration. Starting Policy iteration now.");
return performPolicyIteration(env, dir, x, b, std::move(initialSched));
}
template<typename ValueType>
bool IterativeMinMaxLinearEquationSolver<ValueType>::isSolution(storm::OptimizationDirection dir, storm::storage::SparseMatrix<ValueType> const& matrix, std::vector<ValueType> const& values, std::vector<ValueType> const& b) {
storm::utility::ConstantsComparator<ValueType> comparator;
auto valueIt = values.begin();
auto bIt = b.begin();
for (uint64_t group = 0; group < matrix.getRowGroupCount(); ++group, ++valueIt) {
@ -778,18 +784,18 @@ namespace storm {
for (auto endRow = matrix.getRowGroupIndices()[group + 1]; row < endRow; ++row, ++bIt) {
ValueType newValue = *bIt;
newValue += matrix.multiplyRowWithVector(row, values);
if ((dir == storm::OptimizationDirection::Minimize && newValue < groupValue) || (dir == storm::OptimizationDirection::Maximize && newValue > groupValue)) {
groupValue = newValue;
}
}
// If the value does not match the one in the values vector, the given vector is not a solution.
if (!comparator.isEqual(groupValue, *valueIt)) {
return false;
}
}
// Checked all values at this point.
return true;
}
@ -797,7 +803,7 @@ namespace storm {
template<typename ValueType>
template<typename RationalType, typename ImpreciseType>
bool IterativeMinMaxLinearEquationSolver<ValueType>::sharpen(storm::OptimizationDirection dir, uint64_t precision, storm::storage::SparseMatrix<RationalType> const& A, std::vector<ImpreciseType> const& x, std::vector<RationalType> const& b, std::vector<RationalType>& tmp) {
for (uint64_t p = 0; p <= precision; ++p) {
storm::utility::kwek_mehlhorn::sharpen(p, x, tmp);
@ -817,18 +823,18 @@ namespace storm {
storm::storage::SparseMatrix<storm::RationalNumber> rationalA = this->A->template toValueType<storm::RationalNumber>();
std::vector<storm::RationalNumber> rationalX(x.size());
std::vector<storm::RationalNumber> rationalB = storm::utility::vector::convertNumericVector<storm::RationalNumber>(b);
if (!this->multiplierA) {
this->multiplierA = storm::solver::MultiplierFactory<ValueType>().create(env, *this->A);
}
if (!auxiliaryRowGroupVector) {
auxiliaryRowGroupVector = std::make_unique<std::vector<ValueType>>(this->A->getRowGroupCount());
}
// Forward the call to the core rational search routine.
bool converged = solveEquationsRationalSearchHelper<storm::RationalNumber, ImpreciseType>(env, dir, *this, rationalA, rationalX, rationalB, *this->A, x, b, *auxiliaryRowGroupVector);
// Translate back rational result to imprecise result.
auto targetIt = x.begin();
for (auto it = rationalX.begin(), ite = rationalX.end(); it != ite; ++it, ++targetIt) {
@ -838,30 +844,30 @@ namespace storm {
if (!this->isCachingEnabled()) {
this->clearCache();
}
return converged;
}
template<typename ValueType>
template<typename ImpreciseType>
typename std::enable_if<std::is_same<ValueType, ImpreciseType>::value && NumberTraits<ValueType>::IsExact, bool>::type IterativeMinMaxLinearEquationSolver<ValueType>::solveEquationsRationalSearchHelper(Environment const& env, OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
// Version for when the overall value type is exact and the same type is to be used for the imprecise part.
if (!this->multiplierA) {
this->multiplierA = storm::solver::MultiplierFactory<ValueType>().create(env, *this->A);
}
if (!auxiliaryRowGroupVector) {
auxiliaryRowGroupVector = std::make_unique<std::vector<ValueType>>(this->A->getRowGroupCount());
}
// Forward the call to the core rational search routine.
bool converged = solveEquationsRationalSearchHelper<ValueType, ImpreciseType>(env, dir, *this, *this->A, x, b, *this->A, *auxiliaryRowGroupVector, b, x);
if (!this->isCachingEnabled()) {
this->clearCache();
}
return converged;
}
@ -870,10 +876,10 @@ namespace storm {
typename std::enable_if<!std::is_same<ValueType, ImpreciseType>::value, bool>::type IterativeMinMaxLinearEquationSolver<ValueType>::solveEquationsRationalSearchHelper(Environment const& env, OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
// Version for when the overall value type is exact and the imprecise one is not. We first try to solve the
// problem using the imprecise data type and fall back to the exact type as needed.
// Translate A to its imprecise version.
storm::storage::SparseMatrix<ImpreciseType> impreciseA = this->A->template toValueType<ImpreciseType>();
// Translate x to its imprecise version.
std::vector<ImpreciseType> impreciseX(x.size());
{
@ -884,23 +890,23 @@ namespace storm {
*targetIt = storm::utility::convertNumber<ImpreciseType, ValueType>(*sourceIt);
}
}
// Create temporary storage for an imprecise x.
std::vector<ImpreciseType> impreciseTmpX(x.size());
// Translate b to its imprecise version.
std::vector<ImpreciseType> impreciseB(b.size());
auto targetIt = impreciseB.begin();
for (auto sourceIt = b.begin(); targetIt != impreciseB.end(); ++targetIt, ++sourceIt) {
*targetIt = storm::utility::convertNumber<ImpreciseType, ValueType>(*sourceIt);
}
// Create imprecise solver from the imprecise data.
IterativeMinMaxLinearEquationSolver<ImpreciseType> impreciseSolver(std::make_unique<storm::solver::GeneralLinearEquationSolverFactory<ImpreciseType>>());
impreciseSolver.setMatrix(impreciseA);
impreciseSolver.setCachingEnabled(true);
impreciseSolver.multiplierA = storm::solver::MultiplierFactory<ImpreciseType>().create(env, impreciseA);
bool converged = false;
try {
// Forward the call to the core rational search routine.
@ -908,7 +914,7 @@ namespace storm {
impreciseSolver.clearCache();
} catch (storm::exceptions::PrecisionExceededException const& e) {
STORM_LOG_WARN("Precision of value type was exceeded, trying to recover by switching to rational arithmetic.");
if (!auxiliaryRowGroupVector) {
auxiliaryRowGroupVector = std::make_unique<std::vector<ValueType>>(this->A->getRowGroupCount());
}
@ -918,7 +924,7 @@ namespace storm {
for (auto it = impreciseX.begin(), ite = impreciseX.end(); it != ite; ++it, ++targetIt) {
*targetIt = storm::utility::convertNumber<ValueType>(*it);
}
// Get rid of the superfluous data structures.
impreciseX = std::vector<ImpreciseType>();
impreciseTmpX = std::vector<ImpreciseType>();
@ -928,15 +934,15 @@ namespace storm {
if (!this->multiplierA) {
this->multiplierA = storm::solver::MultiplierFactory<ValueType>().create(env, *this->A);
}
// Forward the call to the core rational search routine, but now with our value type as the imprecise value type.
converged = solveEquationsRationalSearchHelper<ValueType, ValueType>(env, dir, *this, *this->A, x, b, *this->A, *auxiliaryRowGroupVector, b, x);
}
if (!this->isCachingEnabled()) {
this->clearCache();
}
return converged;
}
@ -945,12 +951,12 @@ namespace storm {
static std::vector<RationalType>* getTemporary(std::vector<RationalType>& rationalX, std::vector<ImpreciseType>*& currentX, std::vector<ImpreciseType>*& newX) {
return &rationalX;
}
static void swapSolutions(std::vector<RationalType>& rationalX, std::vector<RationalType>*& rationalSolution, std::vector<ImpreciseType>& x, std::vector<ImpreciseType>*& currentX, std::vector<ImpreciseType>*& newX) {
// Nothing to do.
}
};
template<typename RationalType>
struct TemporaryHelper<RationalType, RationalType> {
static std::vector<RationalType>* getTemporary(std::vector<RationalType>& rationalX, std::vector<RationalType>*& currentX, std::vector<RationalType>*& newX) {
@ -960,7 +966,7 @@ namespace storm {
static void swapSolutions(std::vector<RationalType>& rationalX, std::vector<RationalType>*& rationalSolution, std::vector<RationalType>& x, std::vector<RationalType>*& currentX, std::vector<RationalType>*& newX) {
if (&rationalX == rationalSolution) {
// In this case, the rational solution is in place.
// However, since the rational solution is no alias to current x, the imprecise solution is stored
// in current x and and rational x is not an alias to x, we can swap the contents of currentX to x.
std::swap(x, *currentX);
@ -971,7 +977,7 @@ namespace storm {
}
}
};
template<typename ValueType>
template<typename RationalType, typename ImpreciseType>
bool IterativeMinMaxLinearEquationSolver<ValueType>::solveEquationsRationalSearchHelper(Environment const& env, OptimizationDirection dir, IterativeMinMaxLinearEquationSolver<ImpreciseType> const& impreciseSolver, storm::storage::SparseMatrix<RationalType> const& rationalA, std::vector<RationalType>& rationalX, std::vector<RationalType> const& rationalB, storm::storage::SparseMatrix<ImpreciseType> const& A, std::vector<ImpreciseType>& x, std::vector<ImpreciseType> const& b, std::vector<ImpreciseType>& tmpX) const {
@ -989,29 +995,29 @@ namespace storm {
while (status == SolverStatus::InProgress && overallIterations < env.solver().minMax().getMaximalNumberOfIterations()) {
// Perform value iteration with the current precision.
typename IterativeMinMaxLinearEquationSolver<ImpreciseType>::ValueIterationResult result = impreciseSolver.performValueIteration(env, dir, currentX, newX, b, storm::utility::convertNumber<ImpreciseType, ValueType>(precision), env.solver().minMax().getRelativeTerminationCriterion(), SolverGuarantee::LessOrEqual, overallIterations, env.solver().minMax().getMaximalNumberOfIterations(), env.solver().minMax().getMultiplicationStyle());
// At this point, the result of the imprecise value iteration is stored in the (imprecise) current x.
++valueIterationInvocations;
STORM_LOG_TRACE("Completed " << valueIterationInvocations << " value iteration invocations, the last one with precision " << precision << " completed in " << result.iterations << " iterations.");
// Count the iterations.
overallIterations += result.iterations;
// Compute maximal precision until which to sharpen.
uint64_t p = storm::utility::convertNumber<uint64_t>(storm::utility::ceil(storm::utility::log10<ValueType>(storm::utility::one<ValueType>() / precision)));
// Make sure that currentX and rationalX are not aliased.
std::vector<RationalType>* temporaryRational = TemporaryHelper<RationalType, ImpreciseType>::getTemporary(rationalX, currentX, newX);
// Sharpen solution and place it in the temporary rational.
bool foundSolution = sharpen(dir, p, rationalA, *currentX, rationalB, *temporaryRational);
// After sharpen, if a solution was found, it is contained in the free rational.
if (foundSolution) {
status = SolverStatus::Converged;
TemporaryHelper<RationalType, ImpreciseType>::swapSolutions(rationalX, temporaryRational, x, currentX, newX);
} else {
// Increase the precision.
@ -1020,14 +1026,14 @@ namespace storm {
status = this->updateStatus(status, false, overallIterations, env.solver().minMax().getMaximalNumberOfIterations());
}
// Swap the two vectors if the current result is not in the original x.
if (currentX != originalX) {
std::swap(x, tmpX);
}
this->reportStatus(status, overallIterations);
return status == SolverStatus::Converged || status == SolverStatus::TerminatedEarly;
}
@ -1035,18 +1041,18 @@ namespace storm {
bool IterativeMinMaxLinearEquationSolver<ValueType>::solveEquationsRationalSearch(Environment const& env, OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b) const {
return solveEquationsRationalSearchHelper<double>(env, dir, x, b);
}
template<typename ValueType>
void IterativeMinMaxLinearEquationSolver<ValueType>::computeOptimalValueForRowGroup(uint_fast64_t group, OptimizationDirection dir, std::vector<ValueType>& x, std::vector<ValueType> const& b, uint_fast64_t* choice) const {
uint64_t row = this->A->getRowGroupIndices()[group];
uint64_t groupEnd = this->A->getRowGroupIndices()[group + 1];
assert(row != groupEnd);
auto bIt = b.begin() + row;
ValueType& xi = x[group];
xi = this->A->multiplyRowWithVector(row, x) + *bIt;
uint64_t optimalRow = row;
for (++row, ++bIt; row < groupEnd; ++row, ++bIt) {
ValueType choiceVal = this->A->multiplyRowWithVector(row, x) + *bIt;
if (minimize(dir)) {
@ -1065,7 +1071,7 @@ namespace storm {
*choice = optimalRow - this->A->getRowGroupIndices()[group];
}
}
template<typename ValueType>
void IterativeMinMaxLinearEquationSolver<ValueType>::clearCache() const {
multiplierA.reset();
@ -1075,9 +1081,9 @@ namespace storm {
optimisticValueIterationHelper.reset();
StandardMinMaxLinearEquationSolver<ValueType>::clearCache();
}
template class IterativeMinMaxLinearEquationSolver<double>;
#ifdef STORM_HAVE_CARL
template class IterativeMinMaxLinearEquationSolver<storm::RationalNumber>;
#endif

Loading…
Cancel
Save