Browse Source

Optimizing original OVI & Switch for comparing minswap methods

tempestpy_adaptions
Jan Erik Karuc 5 years ago
parent
commit
48a3b5a927
  1. 289
      src/storm/solver/helper/OptimisticValueIterationHelper.h

289
src/storm/solver/helper/OptimisticValueIterationHelper.h

@ -135,99 +135,222 @@ namespace storm {
SolverStatus status = SolverStatus::InProgress;
while (status == SolverStatus::InProgress && overallIterations < maxOverallIterations) {
// Perform value iteration until convergence
++valueIterationInvocations;
auto result = valueIterationCallback(lowerX, auxVector, iterationPrecision, relative, overallIterations, maxOverallIterations);
lastValueIterationIterations = result.iterations;
overallIterations += result.iterations;
if (result.status != SolverStatus::Converged) {
status = result.status;
} else {
bool intervalIterationNeeded = false;
currentVerificationIterations = 0;
if (relative) {
oviinternal::guessUpperBoundRelative(*lowerX, *upperX, relativeBoundGuessingScaler);
if(env.solver().ovi().useTerminationGuaranteedMinimumMethod()) {
while (status == SolverStatus::InProgress && overallIterations < maxOverallIterations) {
// Perform value iteration until convergence
++valueIterationInvocations;
auto result = valueIterationCallback(lowerX, auxVector, iterationPrecision, relative, overallIterations, maxOverallIterations);
lastValueIterationIterations = result.iterations;
overallIterations += result.iterations;
if (result.status != SolverStatus::Converged) {
status = result.status;
} else {
oviinternal::guessUpperBoundAbsolute(*lowerX, *upperX, precision);
}
bool cancelGuess = false;
while (status == SolverStatus::InProgress && overallIterations < maxOverallIterations) {
++overallIterations;
++currentVerificationIterations;
// Perform value iteration stepwise for lower bound and guessed upper bound
// Upper bound iteration
singleIterationCallback(upperX, auxVector, overallIterations);
// At this point,h auxVector contains the old values for the upper bound whereas upperX contains the new ones.
// Compare the new upper bound candidate with the old one
bool newUpperBoundAlwaysHigherEqual = true;
bool newUpperBoundAlwaysLowerEqual = true;
for (uint64_t i = 0; i < upperX->size(); ++i) {
if ((*upperX)[i] < (*auxVector)[i]) {
newUpperBoundAlwaysHigherEqual = false;
} else if ((*upperX)[i] != (*auxVector)[i]) {
newUpperBoundAlwaysLowerEqual = false;
//std::swap((*upperX)[i], (*auxVector)[i]);
}
bool intervalIterationNeeded = false;
currentVerificationIterations = 0;
if (relative) {
oviinternal::guessUpperBoundRelative(*lowerX, *upperX, relativeBoundGuessingScaler);
} else {
oviinternal::guessUpperBoundAbsolute(*lowerX, *upperX, precision);
}
if (newUpperBoundAlwaysHigherEqual &! newUpperBoundAlwaysLowerEqual) {
// All values moved up or stayed the same
// That means the guess for an upper bound is actually a lower bound
iterationPrecision = oviinternal::updateIterationPrecision(env, *auxVector, *upperX, relative, relevantValues);
// We assume to have a single fixed point. We can thus safely set the new lower bound, to the wrongly guessed upper bound
// Set lowerX to the upper bound candidate
std::swap(lowerX, upperX);
break;
} else if (newUpperBoundAlwaysLowerEqual &! newUpperBoundAlwaysHigherEqual) {
// All values moved down or stayed the same and we have a maximum difference of twice the requested precision
// We can safely use twice the requested precision, as we calculate the center of both vectors
bool reachedPrecision;
if (relevantValues) {
reachedPrecision = storm::utility::vector::equalModuloPrecision(*lowerX, *upperX, relevantValues.get(), doublePrecision, relative);
} else {
reachedPrecision = storm::utility::vector::equalModuloPrecision(*lowerX, *upperX, doublePrecision, relative);
bool cancelGuess = false;
while (status == SolverStatus::InProgress && overallIterations < maxOverallIterations) {
++overallIterations;
++currentVerificationIterations;
// Perform value iteration stepwise for lower bound and guessed upper bound
// Upper bound iteration
singleIterationCallback(upperX, auxVector, overallIterations);
// At this point,h auxVector contains the old values for the upper bound whereas upperX contains the new ones.
// Compare the new upper bound candidate with the old one
bool newUpperBoundAlwaysHigherEqual = true;
bool newUpperBoundAlwaysLowerEqual = true;
for (uint64_t i = 0; i < upperX->size(); ++i) {
if ((*upperX)[i] < (*auxVector)[i]) {
newUpperBoundAlwaysHigherEqual = false;
} else if ((*upperX)[i] != (*auxVector)[i]) {
newUpperBoundAlwaysLowerEqual = false;
std::swap((*upperX)[i], (*auxVector)[i]);
}
}
if (reachedPrecision) {
status = SolverStatus::Converged;
if (newUpperBoundAlwaysHigherEqual &! newUpperBoundAlwaysLowerEqual) {
// All values moved up or stayed the same
// That means the guess for an upper bound is actually a lower bound
iterationPrecision = oviinternal::updateIterationPrecision(env, *auxVector, *upperX, relative, relevantValues);
// We assume to have a single fixed point. We can thus safely set the new lower bound, to the wrongly guessed upper bound
// Set lowerX to the upper bound candidate
std::swap(lowerX, upperX);
break;
} else {
// From now on, we keep updating both bounds
intervalIterationNeeded = true;
} else if (newUpperBoundAlwaysLowerEqual &! newUpperBoundAlwaysHigherEqual) {
// All values moved down or stayed the same and we have a maximum difference of twice the requested precision
// We can safely use twice the requested precision, as we calculate the center of both vectors
bool reachedPrecision;
if (relevantValues) {
reachedPrecision = storm::utility::vector::equalModuloPrecision(*lowerX, *upperX, relevantValues.get(), doublePrecision, relative);
} else {
reachedPrecision = storm::utility::vector::equalModuloPrecision(*lowerX, *upperX, doublePrecision, relative);
}
if (reachedPrecision) {
status = SolverStatus::Converged;
break;
} else {
// From now on, we keep updating both bounds
intervalIterationNeeded = true;
}
}
// At this point, the old upper bounds (auxVector) are not needed anymore.
// Check whether we tried this guess for too long
ValueType scaledIterationCount = storm::utility::convertNumber<ValueType>(currentVerificationIterations) * storm::utility::convertNumber<ValueType>(env.solver().ovi().getMaxVerificationIterationFactor());
if (!intervalIterationNeeded && scaledIterationCount >= storm::utility::convertNumber<ValueType>(lastValueIterationIterations)) {
cancelGuess = true;
// In this case we will make one more iteration on the lower bound (mainly to obtain a new iterationPrecision)
}
// Lower bound iteration (only if needed)
if (cancelGuess || intervalIterationNeeded || currentVerificationIterations > upperBoundOnlyIterations) {
singleIterationCallback(lowerX, auxVector, overallIterations);
// At this point, auxVector contains the old values for the lower bound whereas lowerX contains the new ones.
// Check whether the upper and lower bounds have crossed, i.e., the upper bound is smaller than the lower bound.
bool valuesCrossed = false;
for (uint64_t i = 0; i < lowerX->size(); ++i) {
if ((*upperX)[i] < (*lowerX)[i]) {
valuesCrossed = true;
break;
}
}
if (cancelGuess || valuesCrossed) {
// A new guess is needed.
iterationPrecision = oviinternal::updateIterationPrecision(env, *auxVector, *lowerX, relative, relevantValues);
break;
}
}
}
// At this point, the old upper bounds (auxVector) are not needed anymore.
// Check whether we tried this guess for too long
ValueType scaledIterationCount = storm::utility::convertNumber<ValueType>(currentVerificationIterations) * storm::utility::convertNumber<ValueType>(env.solver().ovi().getMaxVerificationIterationFactor());
if (!intervalIterationNeeded && scaledIterationCount >= storm::utility::convertNumber<ValueType>(lastValueIterationIterations)) {
cancelGuess = true;
// In this case we will make one more iteration on the lower bound (mainly to obtain a new iterationPrecision)
}
}
}
else {
while (status == SolverStatus::InProgress && overallIterations < maxOverallIterations) {
// Perform value iteration until convergence
++valueIterationInvocations;
auto result = valueIterationCallback(lowerX, auxVector, iterationPrecision, relative, overallIterations, maxOverallIterations);
lastValueIterationIterations = result.iterations;
overallIterations += result.iterations;
if (result.status != SolverStatus::Converged) {
status = result.status;
} else {
bool intervalIterationNeeded = false;
currentVerificationIterations = 0;
if (relative) {
oviinternal::guessUpperBoundRelative(*lowerX, *upperX, relativeBoundGuessingScaler);
} else {
oviinternal::guessUpperBoundAbsolute(*lowerX, *upperX, precision);
}
// Lower bound iteration (only if needed)
if (cancelGuess || intervalIterationNeeded || currentVerificationIterations > upperBoundOnlyIterations) {
singleIterationCallback(lowerX, auxVector, overallIterations);
// At this point, auxVector contains the old values for the lower bound whereas lowerX contains the new ones.
// Check whether the upper and lower bounds have crossed, i.e., the upper bound is smaller than the lower bound.
bool valuesCrossed = false;
for (uint64_t i = 0; i < lowerX->size(); ++i) {
if ((*upperX)[i] < (*lowerX)[i]) {
valuesCrossed = true;
break;
bool cancelGuess = false;
while (status == SolverStatus::InProgress && overallIterations < maxOverallIterations) {
++overallIterations;
++currentVerificationIterations;
// Perform value iteration stepwise for lower bound and guessed upper bound
// Upper bound iteration
singleIterationCallback(upperX, auxVector, overallIterations);
// At this point,h auxVector contains the old values for the upper bound whereas upperX contains the new ones.
// Compare the new upper bound candidate with the old one
bool newUpperBoundAlwaysHigherEqual = true;
bool newUpperBoundAlwaysLowerEqual = true;
bool cancelOuterScan = false;
for (uint64_t i = 0; i < upperX->size() &! cancelOuterScan; ++i) {
if ((*upperX)[i] < (*auxVector)[i]) {
newUpperBoundAlwaysHigherEqual = false;
++i;
while (i < upperX->size()) {
if ((*upperX)[i] > (*auxVector)[i]) {
newUpperBoundAlwaysLowerEqual = false;
cancelOuterScan = true;
break;
}
++i;
}
} else if ((*upperX)[i] != (*auxVector)[i]) {
newUpperBoundAlwaysLowerEqual = false;
++i;
while (i < upperX->size()) {
if ((*upperX)[i] > (*auxVector)[i]) {
newUpperBoundAlwaysLowerEqual = false;
cancelOuterScan = true;
break;
}
++i;
}
}
}
if (cancelGuess || valuesCrossed) {
// A new guess is needed.
iterationPrecision = oviinternal::updateIterationPrecision(env, *auxVector, *lowerX, relative, relevantValues);
if (newUpperBoundAlwaysHigherEqual &! newUpperBoundAlwaysLowerEqual) {
// All values moved up or stayed the same
// That means the guess for an upper bound is actually a lower bound
iterationPrecision = oviinternal::updateIterationPrecision(env, *auxVector, *upperX, relative, relevantValues);
// We assume to have a single fixed point. We can thus safely set the new lower bound, to the wrongly guessed upper bound
// Set lowerX to the upper bound candidate
std::swap(lowerX, upperX);
break;
} else if (newUpperBoundAlwaysLowerEqual &! newUpperBoundAlwaysHigherEqual) {
// All values moved down or stayed the same and we have a maximum difference of twice the requested precision
// We can safely use twice the requested precision, as we calculate the center of both vectors
bool reachedPrecision;
if (relevantValues) {
reachedPrecision = storm::utility::vector::equalModuloPrecision(*lowerX, *upperX, relevantValues.get(), doublePrecision, relative);
} else {
reachedPrecision = storm::utility::vector::equalModuloPrecision(*lowerX, *upperX, doublePrecision, relative);
}
if (reachedPrecision) {
status = SolverStatus::Converged;
break;
} else {
// From now on, we keep updating both bounds
intervalIterationNeeded = true;
}
}
// At this point, the old upper bounds (auxVector) are not needed anymore.
// Check whether we tried this guess for too long
ValueType scaledIterationCount = storm::utility::convertNumber<ValueType>(currentVerificationIterations) * storm::utility::convertNumber<ValueType>(env.solver().ovi().getMaxVerificationIterationFactor());
if (!intervalIterationNeeded && scaledIterationCount >= storm::utility::convertNumber<ValueType>(lastValueIterationIterations)) {
cancelGuess = true;
// In this case we will make one more iteration on the lower bound (mainly to obtain a new iterationPrecision)
}
// Lower bound iteration (only if needed)
if (cancelGuess || intervalIterationNeeded || currentVerificationIterations > upperBoundOnlyIterations) {
singleIterationCallback(lowerX, auxVector, overallIterations);
// At this point, auxVector contains the old values for the lower bound whereas lowerX contains the new ones.
// Check whether the upper and lower bounds have crossed, i.e., the upper bound is smaller than the lower bound.
bool valuesCrossed = false;
for (uint64_t i = 0; i < lowerX->size(); ++i) {
if ((*upperX)[i] < (*lowerX)[i]) {
valuesCrossed = true;
break;
}
}
if (cancelGuess || valuesCrossed) {
// A new guess is needed.
iterationPrecision = oviinternal::updateIterationPrecision(env, *auxVector, *lowerX, relative, relevantValues);
break;
}
}
}
}

Loading…
Cancel
Save