Browse Source

added some tests for LRA in CTMCs

Former-commit-id: 3b847d542e
tempestpy_adaptions
dehnert 10 years ago
parent
commit
39abecbad3
  1. 212
      src/modelchecker/csl/SparseCtmcCslModelChecker.cpp
  2. 21
      test/functional/modelchecker/GmmxxCtmcCslModelCheckerTest.cpp

212
src/modelchecker/csl/SparseCtmcCslModelChecker.cpp

@ -191,7 +191,7 @@ namespace storm {
std::vector<ValueType> newSubresult = std::vector<ValueType>(relevantStates.getNumberOfSetBits());
storm::utility::vector::setVectorValues(newSubresult, statesWithProbabilityGreater0NonPsi % relevantStates, subresult);
storm::utility::vector::setVectorValues(newSubresult, psiStates % relevantStates, storm::utility::one<ValueType>());
// Then compute the transient probabilities of being in such a state after t time units. For this,
// we must re-uniformize the CTMC, so we need to compute the second uniformized matrix.
uniformizationRate = storm::utility::zero<ValueType>();
@ -346,7 +346,7 @@ namespace storm {
weight = std::get<3>(foxGlynnResult)[index - std::get<0>(foxGlynnResult)];
storm::utility::vector::applyPointwise(result, values, result, addAndScale);
}
return result;
}
@ -408,7 +408,7 @@ namespace storm {
}
uniformizationRate *= 1.02;
STORM_LOG_THROW(uniformizationRate > 0, storm::exceptions::InvalidStateException, "The uniformization rate must be positive.");
storm::storage::SparseMatrix<ValueType> uniformizedMatrix = this->computeUniformizedMatrix(this->getModel().getTransitionMatrix(), storm::storage::BitVector(this->getModel().getNumberOfStates(), true), uniformizationRate, this->getModel().getExitRateVector());
// Compute the total state reward vector.
@ -477,7 +477,7 @@ namespace storm {
std::unique_ptr<CheckResult> SparseCtmcCslModelChecker<ValueType>::computeLongRunAverage(storm::logic::StateFormula const& stateFormula, bool qualitative, boost::optional<storm::logic::OptimalityType> const& optimalityType) {
std::unique_ptr<CheckResult> subResultPointer = this->check(stateFormula);
ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
storm::storage::SparseMatrix<ValueType> probabilityMatrix = this->computeProbabilityMatrix(this->getModel().getTransitionMatrix(), this->getModel().getExitRateVector());
return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(computeLongRunAverageHelper(probabilityMatrix, subResult.getTruthValuesVector(), &this->getModel().getExitRateVector(), qualitative, *linearEquationSolverFactory)));
}
@ -502,12 +502,13 @@ namespace storm {
ValueType one = storm::utility::one<ValueType>();
ValueType zero = storm::utility::zero<ValueType>();
// Prepare the vector holding the LRA values for each of the BSCCs.
std::vector<ValueType> bsccLra(bsccDecomposition.size(), zero);
// First we check which states are in BSCCs.
storm::storage::BitVector statesInBsccs(numOfStates);
storm::storage::BitVector firstStatesInBsccs(numOfStates);
std::vector<uint_fast64_t> stateToBsccIndexMap(transitionMatrix.getColumnCount());
for (uint_fast64_t currentBsccIndex = 0; currentBsccIndex < bsccDecomposition.size(); ++currentBsccIndex) {
storm::storage::StronglyConnectedComponent const& bscc = bsccDecomposition[currentBsccIndex];
@ -518,99 +519,125 @@ namespace storm {
if (first) {
firstStatesInBsccs.set(state);
}
stateToBsccIndexMap[state] = currentBsccIndex;
first = false;
}
}
firstStatesInBsccs = firstStatesInBsccs % statesInBsccs;
storm::storage::BitVector statesNotInBsccs = ~statesInBsccs;
// Then we construct an equation system that yields the steady state probabilities for all states in BSCCs.
storm::storage::SparseMatrix<ValueType> bsccEquationSystem = transitionMatrix.getSubmatrix(false, statesInBsccs, statesInBsccs, true);
// Prepare a vector holding the index within all states that are in BSCCs for every state.
std::vector<uint_fast64_t> indexInStatesInBsccs;
// Since in the fix point equation, we need to multiply the vector from the left, we convert this to a
// multiplication from the right by transposing the system.
bsccEquationSystem = bsccEquationSystem.transpose(false, true);
// Prepare a vector that maps the index within the set of all states in BSCCs to the index of the containing BSCC.
std::vector<uint_fast64_t> stateToBsccIndexMap;
// Create an auxiliary structure that makes it easy to look up the indices within the set of BSCC states.
uint_fast64_t lastIndex = 0;
uint_fast64_t currentNumberOfSetBits = 0;
std::vector<uint_fast64_t> indexInStatesInBsccs;
indexInStatesInBsccs.reserve(transitionMatrix.getRowCount());
for (auto index : statesInBsccs) {
while (lastIndex <= index) {
indexInStatesInBsccs.push_back(currentNumberOfSetBits);
++lastIndex;
if (!statesInBsccs.empty()) {
firstStatesInBsccs = firstStatesInBsccs % statesInBsccs;
// Then we construct an equation system that yields the steady state probabilities for all states in BSCCs.
storm::storage::SparseMatrix<ValueType> bsccEquationSystem = transitionMatrix.getSubmatrix(false, statesInBsccs, statesInBsccs, true);
// Since in the fix point equation, we need to multiply the vector from the left, we convert this to a
// multiplication from the right by transposing the system.
bsccEquationSystem = bsccEquationSystem.transpose(false, true);
// Create an auxiliary structure that makes it easy to look up the indices within the set of BSCC states.
uint_fast64_t lastIndex = 0;
uint_fast64_t currentNumberOfSetBits = 0;
indexInStatesInBsccs.reserve(transitionMatrix.getRowCount());
for (auto index : statesInBsccs) {
while (lastIndex <= index) {
indexInStatesInBsccs.push_back(currentNumberOfSetBits);
++lastIndex;
}
++currentNumberOfSetBits;
}
++currentNumberOfSetBits;
}
// Now build the final equation system matrix.
storm::storage::SparseMatrixBuilder<ValueType> builder;
uint_fast64_t currentBsccIndex = 0;
for (uint_fast64_t row = 0; row < bsccEquationSystem.getRowCount(); ++row) {
// If the current row is the first one belonging to a BSCC, we substitute it by the constraint that the
// values for states of this BSCC must sum to one.
if (firstStatesInBsccs.get(row)) {
stateToBsccIndexMap.resize(statesInBsccs.getNumberOfSetBits());
for (uint_fast64_t currentBsccIndex = 0; currentBsccIndex < bsccDecomposition.size(); ++currentBsccIndex) {
storm::storage::StronglyConnectedComponent const& bscc = bsccDecomposition[currentBsccIndex];
for (auto const& state : bscc) {
builder.addNextValue(row, indexInStatesInBsccs[state], one);
stateToBsccIndexMap[indexInStatesInBsccs[state]] = currentBsccIndex;
}
++currentBsccIndex;
} else {
// Otherwise, we copy the row, and subtract 1 from the diagonal.
for (auto& entry : bsccEquationSystem.getRow(row)) {
if (entry.getColumn() == row) {
builder.addNextValue(row, entry.getColumn(), entry.getValue() - one);
} else {
builder.addNextValue(row, entry.getColumn(), entry.getValue());
}
// Now build the final equation system matrix, the initial guess and the right-hand side in one go.
std::vector<ValueType> bsccEquationSystemRightSide(bsccEquationSystem.getColumnCount(), zero);
storm::storage::SparseMatrixBuilder<ValueType> builder;
for (uint_fast64_t row = 0; row < bsccEquationSystem.getRowCount(); ++row) {
// If the current row is the first one belonging to a BSCC, we substitute it by the constraint that the
// values for states of this BSCC must sum to one. However, in order to have a non-zero value on the
// diagonal, we add the constraint of the BSCC that produces a 1 on the diagonal.
if (firstStatesInBsccs.get(row)) {
uint_fast64_t requiredBscc = stateToBsccIndexMap[row];
storm::storage::StronglyConnectedComponent const& bscc = bsccDecomposition[requiredBscc];
for (auto const& state : bscc) {
builder.addNextValue(row, indexInStatesInBsccs[state], one);
}
bsccEquationSystemRightSide[row] = one;
} else {
// Otherwise, we copy the row, and subtract 1 from the diagonal.
for (auto& entry : bsccEquationSystem.getRow(row)) {
if (entry.getColumn() == row) {
builder.addNextValue(row, entry.getColumn(), entry.getValue() - one);
} else {
builder.addNextValue(row, entry.getColumn(), entry.getValue());
}
}
}
}
}
bsccEquationSystem = builder.build();
std::vector<ValueType> bsccEquationSystemRightSide(bsccEquationSystem.getColumnCount(), zero);
storm::utility::vector::setVectorValues(bsccEquationSystemRightSide, firstStatesInBsccs, one);
// As an initial guess, we take the uniform distribution over all states of the containing BSCC.
std::vector<ValueType> bsccEquationSystemSolution(bsccEquationSystem.getColumnCount(), zero);
for (uint_fast64_t currentBsccIndex = 0; currentBsccIndex < bsccDecomposition.size(); ++currentBsccIndex) {
storm::storage::StronglyConnectedComponent const& bscc = bsccDecomposition[currentBsccIndex];
for (auto const& state : bscc) {
bsccEquationSystemSolution[indexInStatesInBsccs[state]] = one / bscc.size();
// Create the initial guess for the LRAs. We take a uniform distribution over all states in a BSCC.
std::vector<ValueType> bsccEquationSystemSolution(bsccEquationSystem.getColumnCount(), zero);
for (uint_fast64_t bsccIndex = 0; bsccIndex < bsccDecomposition.size(); ++bsccIndex) {
storm::storage::StronglyConnectedComponent const& bscc = bsccDecomposition[bsccIndex];
for (auto const& state : bscc) {
bsccEquationSystemSolution[indexInStatesInBsccs[state]] = one / bscc.size();
}
}
}
{
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(bsccEquationSystem);
solver->solveEquationSystem(bsccEquationSystemSolution, bsccEquationSystemRightSide);
}
// If exit rates were given, we need to 'fix' the results to also account for the timing behaviour.
if (exitRateVector != nullptr) {
std::vector<ValueType> bsccTotalValue(bsccDecomposition.size(), zero);
std::size_t i = 0;
for (auto stateIter = statesInBsccs.begin(); stateIter != statesInBsccs.end(); ++i, ++stateIter) {
bsccTotalValue[stateToBsccIndexMap[*stateIter]] += bsccEquationSystemSolution[i] * (one / (*exitRateVector)[*stateIter]);
bsccEquationSystem = builder.build();
{
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(bsccEquationSystem);
solver->solveEquationSystem(bsccEquationSystemSolution, bsccEquationSystemRightSide);
}
i = 0;
for (auto stateIter = statesInBsccs.begin(); stateIter != statesInBsccs.end(); ++i, ++stateIter) {
bsccEquationSystemSolution[i] = (bsccEquationSystemSolution[i] * (one / (*exitRateVector)[*stateIter])) / bsccTotalValue[stateToBsccIndexMap[*stateIter]];
// If exit rates were given, we need to 'fix' the results to also account for the timing behaviour.
if (exitRateVector != nullptr) {
std::vector<ValueType> bsccTotalValue(bsccDecomposition.size(), zero);
for (auto stateIter = statesInBsccs.begin(); stateIter != statesInBsccs.end(); ++stateIter) {
bsccTotalValue[stateToBsccIndexMap[indexInStatesInBsccs[*stateIter]]] += bsccEquationSystemSolution[indexInStatesInBsccs[*stateIter]] * (one / (*exitRateVector)[*stateIter]);
}
for (auto stateIter = statesInBsccs.begin(); stateIter != statesInBsccs.end(); ++stateIter) {
bsccEquationSystemSolution[indexInStatesInBsccs[*stateIter]] = (bsccEquationSystemSolution[indexInStatesInBsccs[*stateIter]] * (one / (*exitRateVector)[*stateIter])) / bsccTotalValue[stateToBsccIndexMap[indexInStatesInBsccs[*stateIter]]];
}
}
}
// Calculate LRA Value for each BSCC from steady state distribution in BSCCs.
std::vector<ValueType> bsccLra(bsccDecomposition.size(), zero);
size_t i = 0;
for (auto stateIter = statesInBsccs.begin(); stateIter != statesInBsccs.end(); ++i, ++stateIter) {
if (psiStates.get(*stateIter)) {
bsccLra[stateToBsccIndexMap[*stateIter]] += bsccEquationSystemSolution[i];
// Calculate LRA Value for each BSCC from steady state distribution in BSCCs.
for (uint_fast64_t bsccIndex = 0; bsccIndex < bsccDecomposition.size(); ++bsccIndex) {
storm::storage::StronglyConnectedComponent const& bscc = bsccDecomposition[bsccIndex];
for (auto const& state : bscc) {
if (psiStates.get(state)) {
bsccLra[stateToBsccIndexMap[indexInStatesInBsccs[state]]] += bsccEquationSystemSolution[indexInStatesInBsccs[state]];
}
}
}
} else {
for (uint_fast64_t bsccIndex = 0; bsccIndex < bsccDecomposition.size(); ++bsccIndex) {
storm::storage::StronglyConnectedComponent const& bscc = bsccDecomposition[bsccIndex];
// At this point, all BSCCs are known to contain exactly one state, which is why we can set all values
// directly (based on whether or not the contained state is a psi state).
if (psiStates.get(*bscc.begin())) {
bsccLra[bsccIndex] = 1;
}
}
}
@ -628,7 +655,7 @@ namespace storm {
ValueType reward = zero;
for (auto entry : transitionMatrix.getRow(state)) {
if (statesInBsccs.get(entry.getColumn())) {
reward += entry.getValue() * bsccLra[stateToBsccIndexMap[entry.getColumn()]];
reward += entry.getValue() * bsccLra[stateToBsccIndexMap[indexInStatesInBsccs[entry.getColumn()]]];
}
}
rewardRightSide.push_back(reward);
@ -648,18 +675,21 @@ namespace storm {
// Fill the result vector.
std::vector<ValueType> result(numOfStates);
auto rewardSolutionIter = rewardSolution.begin();
for (size_t state = 0; state < numOfStates; ++state) {
if (statesInBsccs.get(state)) {
// Assign the value of the bscc the state is in.
result[state] = bsccLra[stateToBsccIndexMap[state]];
} else {
STORM_LOG_ASSERT(rewardSolutionIter != rewardSolution.end(), "Too few elements in solution.");
// Take the value from the reward computation. Since the n-th state not in any bscc is the n-th
// entry in rewardSolution we can just take the next value from the iterator.
result[state] = *rewardSolutionIter;
++rewardSolutionIter;
for (uint_fast64_t bsccIndex = 0; bsccIndex < bsccDecomposition.size(); ++bsccIndex) {
storm::storage::StronglyConnectedComponent const& bscc = bsccDecomposition[bsccIndex];
for (auto const& state : bscc) {
result[state] = bsccLra[bsccIndex];
}
}
for (auto state : statesNotInBsccs) {
STORM_LOG_ASSERT(rewardSolutionIter != rewardSolution.end(), "Too few elements in solution.");
// Take the value from the reward computation. Since the n-th state not in any bscc is the n-th
// entry in rewardSolution we can just take the next value from the iterator.
result[state] = *rewardSolutionIter;
++rewardSolutionIter;
}
return result;
}

21
test/functional/modelchecker/GmmxxCtmcCslModelCheckerTest.cpp

@ -86,6 +86,13 @@ TEST(GmmxxCtmcCslModelCheckerTest, Cluster) {
ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult());
storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult7 = checkResult->asExplicitQuantitativeCheckResult<double>();
EXPECT_NEAR(0.8602815057967503, quantitativeCheckResult7[initialState], storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseFromString("LRA=? [\"minimum\"]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult());
storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult8 = checkResult->asExplicitQuantitativeCheckResult<double>();
EXPECT_NEAR(0.99999766034263426, quantitativeCheckResult8[initialState], storm::settings::generalSettings().getPrecision());
}
TEST(GmmxxCtmcCslModelCheckerTest, Embedded) {
@ -149,6 +156,13 @@ TEST(GmmxxCtmcCslModelCheckerTest, Embedded) {
ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult());
storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult5 = checkResult->asExplicitQuantitativeCheckResult<double>();
EXPECT_NEAR(2.7745274082080154, quantitativeCheckResult5[initialState], storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseFromString("LRA=? [\"fail_sensors\"]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult());
storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult6 = checkResult->asExplicitQuantitativeCheckResult<double>();
EXPECT_NEAR(0.93458866427696596, quantitativeCheckResult6[initialState], storm::settings::generalSettings().getPrecision());
}
TEST(GmmxxCtmcCslModelCheckerTest, Polling) {
@ -252,4 +266,11 @@ TEST(GmmxxCtmcCslModelCheckerTest, Tandem) {
ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult());
storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult6 = checkResult->asExplicitQuantitativeCheckResult<double>();
EXPECT_NEAR(262.85103661561755, quantitativeCheckResult6[initialState], storm::settings::generalSettings().getPrecision());
formula = formulaParser.parseFromString("LRA=? [\"first_queue_full\"]");
checkResult = modelchecker.check(*formula);
ASSERT_TRUE(checkResult->isExplicitQuantitativeCheckResult());
storm::modelchecker::ExplicitQuantitativeCheckResult<double> quantitativeCheckResult7 = checkResult->asExplicitQuantitativeCheckResult<double>();
EXPECT_NEAR(0.9100373532, quantitativeCheckResult7[initialState], storm::settings::generalSettings().getPrecision());
}
Loading…
Cancel
Save