Browse Source

commit to switch workplace

tempestpy_adaptions
dehnert 8 years ago
parent
commit
338bfb05c9
  1. 208
      src/storm/storage/jani/Model.cpp
  2. 7
      src/storm/storage/jani/Model.h

208
src/storm/storage/jani/Model.cpp

@ -55,18 +55,44 @@ namespace storm {
return name;
}
void Model::flattenSynchronizationVector(Automaton& newAutomaton, std::unordered_map<std::vector<uint64_t>, uint64_t, storm::utility::vector::VectorHash<uint64_t>>& newLocations, std::unordered_map<std::string, uint64_t>& newActionToIndex, std::vector<std::set<uint64_t>>& synchronizingActionIndices, SynchronizationVector const& vector, std::vector<std::reference_wrapper<Automaton const>> const& composedAutomata, storm::solver::SmtSolver& solver) const {
struct ConditionalMetaEdge {
ConditionalMetaEdge() : actionIndex(0) {
// Intentionally left empty.
}
uint64_t actionIndex;
std::vector<std::pair<uint64_t, uint64_t>> condition;
boost::optional<storm::expressions::Expression> rate;
std::vector<storm::expressions::Expression> probabilities;
std::vector<std::vector<std::pair<uint64_t, uint64_t>>> effects;
std::shared_ptr<TemplateEdge> templateEdge;
};
std::vector<ConditionalMetaEdge> createSynchronizingMetaEdges(Model const& model, Automaton& newAutomaton, std::vector<std::set<uint64_t>>& synchronizingActionIndices, SynchronizationVector const& vector, std::vector<std::reference_wrapper<Automaton const>> const& composedAutomata, storm::solver::SmtSolver& solver) {
std::vector<ConditionalMetaEdge> result;
// Gather all participating automata and the corresponding input symbols.
std::vector<std::pair<std::reference_wrapper<Automaton const>, uint64_t>> participatingAutomataAndActions;
for (uint64_t i = 0; i < composedAutomata.size(); ++i) {
std::string const& actionName = vector.getInput(i);
if (!SynchronizationVector::isNoActionInput(actionName)) {
uint64_t actionIndex = getActionIndex(actionName);
uint64_t actionIndex = model.getActionIndex(actionName);
participatingAutomataAndActions.push_back(std::make_pair(composedAutomata[i], actionIndex));
synchronizingActionIndices[i].insert(actionIndex);
}
}
return result;
}
void addEdgesToReachableLocations(Model const& model, std::vector<std::reference_wrapper<Automaton const&>> const& composedAutomata, Automaton& newAutomaton, std::vector<ConditionalMetaEdge> const& conditionalMetaEdges) {
std::vector<uint64_t> locations;
for (auto const& automaton : composedAutomata) {
// TODO: iterate over initial locations of all automata
}
}
Model Model::flattenComposition(std::shared_ptr<storm::utility::solver::SmtSolverFactory> const& smtSolverFactory) const {
@ -132,19 +158,18 @@ namespace storm {
solver->add(variable.getExpressionVariable() <= variable.getUpperBound());
}
// Since we need to reduce a tuple of locations to a single location, we keep a hashmap for this.
std::unordered_map<std::vector<uint64_t>, uint64_t, storm::utility::vector::VectorHash<uint64_t>> newLocations;
std::unordered_map<std::string, uint64_t> newActionToIndex;
// Perform all necessary synchronizations and keep track which action indices participate in synchronization.
std::vector<std::set<uint64_t>> synchronizingActionIndices;
std::vector<ConditionalMetaEdge> conditionalMetaEdges;
for (auto const& vector : parallelComposition.getSynchronizationVectors()) {
// If less then 2 automata participate, there is no need to perform a synchronization.
if (vector.getNumberOfActionInputs() <= 1) {
continue;
}
flattenSynchronizationVector(newAutomaton, newLocations, newActionToIndex, synchronizingActionIndices, vector, composedAutomata, *solver);
// Create all conditional template edges corresponding to this synchronization vector.
std::vector<ConditionalMetaEdge> newConditionalMetaEdges = createSynchronizingMetaEdges(*this, newAutomaton, synchronizingActionIndices, vector, composedAutomata, *solver);
conditionalMetaEdges.insert(conditionalMetaEdges.end(), newConditionalMetaEdges.begin(), newConditionalMetaEdges.end());
}
// Now add all edges with action indices that were not mentioned in synchronization vectors.
@ -152,166 +177,25 @@ namespace storm {
Automaton const& automaton = composedAutomata[i].get();
for (auto const& edge : automaton.getEdges()) {
if (synchronizingActionIndices[i].find(edge.getActionIndex()) == synchronizingActionIndices[i].end()) {
// TODO: create template edge and create all concrete edges.
std::shared_ptr<TemplateEdge> templateEdge = newAutomaton.createTemplateEdge(edge.getGuard());
conditionalMetaEdges.emplace_back();
ConditionalMetaEdge& conditionalMetaEdge = conditionalMetaEdges.back();
conditionalMetaEdge.actionIndex = edge.getActionIndex();
conditionalMetaEdge.condition.emplace_back(static_cast<uint64_t>(i), edge.getSourceLocationIndex());
conditionalMetaEdge.rate = edge.getOptionalRate();
for (auto const& destination : edge.getDestinations()) {
conditionalMetaEdge.effects.emplace_back(i, destination.getLocationIndex());
conditionalMetaEdge.probabilities.emplace_back(destination.getProbability());
}
conditionalMetaEdge.templateEdge = templateEdge;
}
}
}
addEdgesToReachableLocations(*this, composedAutomata, newAutomaton, conditionalMetaEdges);
//
//
//
// // Now go through the modules, gather the variables, construct the name of the new module and assert the
// // bounds of the discovered variables.
// for (auto const& module : this->getModules()) {
// newModuleName << module.getName() << "_";
// allBooleanVariables.insert(allBooleanVariables.end(), module.getBooleanVariables().begin(), module.getBooleanVariables().end());
// allIntegerVariables.insert(allIntegerVariables.end(), module.getIntegerVariables().begin(), module.getIntegerVariables().end());
//
// // The commands without a synchronizing action name, can simply be copied (plus adjusting the global
// // indices of the command and its updates).
// for (auto const& command : module.getCommands()) {
// if (!command.isLabeled()) {
// std::vector<storm::prism::Update> updates;
// updates.reserve(command.getUpdates().size());
//
// for (auto const& update : command.getUpdates()) {
// updates.push_back(storm::prism::Update(nextUpdateIndex, update.getLikelihoodExpression(), update.getAssignments(), update.getFilename(), 0));
// ++nextUpdateIndex;
// }
//
// newCommands.push_back(storm::prism::Command(nextCommandIndex, command.isMarkovian(), actionToIndexMap.find("")->second, "", command.getGuardExpression(), updates, command.getFilename(), 0));
// ++nextCommandIndex;
// }
// }
// }
//
// // Save state of solver so that we can always restore the point where we have exactly the constant values
// // and variables bounds on the assertion stack.
// solver->push();
//
// // Now we need to enumerate all possible combinations of synchronizing commands. For this, we iterate over
// // all actions and let the solver enumerate the possible combinations of commands that can be enabled together.
// for (auto const& actionIndex : this->getSynchronizingActionIndices()) {
// bool noCombinationsForAction = false;
//
// // Prepare the list that stores for each module the list of commands with the given action.
// std::vector<std::vector<std::reference_wrapper<storm::prism::Command const>>> possibleCommands;
//
// for (auto const& module : this->getModules()) {
// // If the module has no command with this action, we can skip it.
// if (!module.hasActionIndex(actionIndex)) {
// continue;
// }
//
// std::set<uint_fast64_t> const& commandIndices = module.getCommandIndicesByActionIndex(actionIndex);
//
// // If there is no command even though the module has this action, there is no valid command
// // combination with this action.
// if (commandIndices.empty()) {
// noCombinationsForAction = true;
// break;
// }
//
// // Prepare empty list of commands for this module.
// possibleCommands.push_back(std::vector<std::reference_wrapper<storm::prism::Command const>>());
//
// // Add references to the commands labeled with the current action.
// for (auto const& commandIndex : commandIndices) {
// possibleCommands.back().push_back(module.getCommand(commandIndex));
// }
// }
//
// // If there are no valid combinations for the action, we need to skip the generation of synchronizing
// // commands.
// if (!noCombinationsForAction) {
// // Save the solver state to be able to restore it when this action index is done.
// solver->push();
//
// // Start by creating a fresh auxiliary variable for each command and link it with the guard.
// std::vector<std::vector<storm::expressions::Variable>> commandVariables(possibleCommands.size());
// std::vector<storm::expressions::Variable> allCommandVariables;
// for (uint_fast64_t outerIndex = 0; outerIndex < possibleCommands.size(); ++outerIndex) {
// // Create auxiliary variables and link them with the guards.
// for (uint_fast64_t innerIndex = 0; innerIndex < possibleCommands[outerIndex].size(); ++innerIndex) {
// commandVariables[outerIndex].push_back(manager->declareFreshBooleanVariable());
// allCommandVariables.push_back(commandVariables[outerIndex].back());
// solver->add(implies(commandVariables[outerIndex].back(), possibleCommands[outerIndex][innerIndex].get().getGuardExpression()));
// }
//
// storm::expressions::Expression atLeastOneCommandFromModule = manager->boolean(false);
// for (auto const& commandVariable : commandVariables[outerIndex]) {
// atLeastOneCommandFromModule = atLeastOneCommandFromModule || commandVariable;
// }
// solver->add(atLeastOneCommandFromModule);
// }
//
// // Now we are in a position to start the enumeration over all command variables. While doing so, we
// // keep track of previously seen command combinations, because the AllSat procedures are not
// // always guaranteed to only provide distinct models.
// std::unordered_set<std::vector<uint_fast64_t>, storm::utility::vector::VectorHash<uint_fast64_t>> seenCommandCombinations;
// solver->allSat(allCommandVariables, [&] (storm::solver::SmtSolver::ModelReference& modelReference) -> bool {
// // Now we need to reconstruct the chosen commands from the valuation of the command variables.
// std::vector<std::vector<std::reference_wrapper<Command const>>> chosenCommands(possibleCommands.size());
//
// for (uint_fast64_t outerIndex = 0; outerIndex < commandVariables.size(); ++outerIndex) {
// for (uint_fast64_t innerIndex = 0; innerIndex < commandVariables[outerIndex].size(); ++innerIndex) {
// if (modelReference.getBooleanValue(commandVariables[outerIndex][innerIndex])) {
// chosenCommands[outerIndex].push_back(possibleCommands[outerIndex][innerIndex]);
// }
// }
// }
//
// // Now that we have retrieved the commands, we need to build their synchronizations and add them
// // to the flattened module.
// std::vector<std::vector<std::reference_wrapper<Command const>>::const_iterator> iterators;
// for (auto const& element : chosenCommands) {
// iterators.push_back(element.begin());
// }
//
// bool movedAtLeastOneIterator = false;
// std::vector<std::reference_wrapper<Command const>> commandCombination(chosenCommands.size(), chosenCommands.front().front());
// std::vector<uint_fast64_t> commandCombinationIndices(iterators.size());
// do {
// for (uint_fast64_t index = 0; index < iterators.size(); ++index) {
// commandCombination[index] = *iterators[index];
// commandCombinationIndices[index] = commandCombination[index].get().getGlobalIndex();
// }
//
// // Only add the command combination if it was not previously seen.
// auto seenIt = seenCommandCombinations.find(commandCombinationIndices);
// if (seenIt == seenCommandCombinations.end()) {
// newCommands.push_back(synchronizeCommands(nextCommandIndex, actionIndex, nextUpdateIndex, indexToActionMap.find(actionIndex)->second, commandCombination));
// seenCommandCombinations.insert(commandCombinationIndices);
//
// // Move the counters appropriately.
// ++nextCommandIndex;
// nextUpdateIndex += newCommands.back().getNumberOfUpdates();
// }
//
// movedAtLeastOneIterator = false;
// for (uint_fast64_t index = 0; index < iterators.size(); ++index) {
// ++iterators[index];
// if (iterators[index] != chosenCommands[index].cend()) {
// movedAtLeastOneIterator = true;
// break;
// } else {
// iterators[index] = chosenCommands[index].cbegin();
// }
// }
// } while (movedAtLeastOneIterator);
//
// return true;
// });
//
// solver->pop();
// }
// }
//
// // Finally, we can create the module and the program and return it.
// storm::prism::Module singleModule(newModuleName.str(), allBooleanVariables, allIntegerVariables, newCommands, this->getFilename(), 0);
// return Program(manager, this->getModelType(), this->getConstants(), std::vector<storm::prism::BooleanVariable>(), std::vector<storm::prism::IntegerVariable>(), this->getFormulas(), {singleModule}, actionToIndexMap, this->getRewardModels(), this->getLabels(), this->getOptionalInitialConstruct(), this->getOptionalSystemCompositionConstruct(), this->getFilename(), 0, true);
}
uint64_t Model::addAction(Action const& action) {

7
src/storm/storage/jani/Model.h

@ -393,12 +393,7 @@ namespace storm {
* Creates a new model from the given automaton (which must be contained in the current model).
*/
Model createModelFromAutomaton(Automaton const& automaton) const;
/*!
* Flattens the actions of the automata into new edges in the provided automaton.
*/
void flattenSynchronizationVector(Automaton& newAutomaton, std::unordered_map<std::vector<uint64_t>, uint64_t, storm::utility::vector::VectorHash<uint64_t>>& newLocations, std::unordered_map<std::string, uint64_t>& newActionToIndex, std::vector<std::set<uint64_t>>& synchronizingActionIndices, SynchronizationVector const& vector, std::vector<std::reference_wrapper<Automaton const>> const& composedAutomata, storm::solver::SmtSolver& solver) const;
/// The model name.
std::string name;

Loading…
Cancel
Save