Browse Source

Fix for last update to Eigen: Delete old files.

main
PBerger 13 years ago
parent
commit
2f6a73db96
  1. 26
      resources/3rdparty/eigen/Eigen/MetisSupport
  2. 17
      resources/3rdparty/eigen/Eigen/SparseLU
  3. 755
      resources/3rdparty/eigen/Eigen/src/Core/AssignEvaluator.h
  4. 1299
      resources/3rdparty/eigen/Eigen/src/Core/CoreEvaluators.h
  5. 411
      resources/3rdparty/eigen/Eigen/src/Core/ProductEvaluators.h
  6. 254
      resources/3rdparty/eigen/Eigen/src/Core/Ref.h
  7. 339
      resources/3rdparty/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h
  8. 618
      resources/3rdparty/eigen/Eigen/src/Eigenvalues/RealQZ.h
  9. 6
      resources/3rdparty/eigen/Eigen/src/MetisSupport/CMakeLists.txt
  10. 138
      resources/3rdparty/eigen/Eigen/src/MetisSupport/MetisSupport.h
  11. 1849
      resources/3rdparty/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h
  12. 158
      resources/3rdparty/eigen/Eigen/src/OrderingMethods/Ordering.h
  13. 6
      resources/3rdparty/eigen/Eigen/src/SparseLU/CMakeLists.txt
  14. 630
      resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU.h
  15. 74
      resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLUBase.h
  16. 180
      resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_Coletree.h
  17. 313
      resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_Matrix.h
  18. 204
      resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_Memory.h
  19. 103
      resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_Structs.h
  20. 75
      resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_Utils.h
  21. 162
      resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h
  22. 164
      resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h
  23. 100
      resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h
  24. 119
      resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h
  25. 109
      resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h
  26. 204
      resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h
  27. 247
      resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h
  28. 125
      resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h
  29. 129
      resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h
  30. 73
      resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h
  31. 72
      resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_snode_bmod.h
  32. 95
      resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_snode_dfs.h
  33. 125
      resources/3rdparty/eigen/bench/spbench/sp_solver.cpp
  34. 31
      resources/3rdparty/eigen/bench/spbench/spbench.dtd
  35. 94
      resources/3rdparty/eigen/bench/spbench/spbenchstyle.h
  36. 93
      resources/3rdparty/eigen/bench/spbench/test_sparseLU.cpp
  37. 44
      resources/3rdparty/eigen/blas/GeneralRank1Update.h
  38. 54
      resources/3rdparty/eigen/blas/PackedSelfadjointProduct.h
  39. 79
      resources/3rdparty/eigen/blas/PackedTriangularMatrixVector.h
  40. 88
      resources/3rdparty/eigen/blas/PackedTriangularSolverVector.h
  41. 57
      resources/3rdparty/eigen/blas/Rank2Update.h
  42. 110
      resources/3rdparty/eigen/doc/I17_SparseLinearSystems.dox
  43. 7
      resources/3rdparty/eigen/doc/snippets/GeneralizedEigenSolver.cpp
  44. 7
      resources/3rdparty/eigen/doc/snippets/HouseholderQR_householderQ.cpp
  45. 17
      resources/3rdparty/eigen/doc/snippets/RealQZ_compute.cpp
  46. 63
      resources/3rdparty/eigen/test/eigensolver_generalized_real.cpp
  47. 321
      resources/3rdparty/eigen/test/evaluators.cpp
  48. 69
      resources/3rdparty/eigen/test/real_qz.cpp
  49. 43
      resources/3rdparty/eigen/test/sparselu.cpp
  50. 221
      resources/3rdparty/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h
  51. 386
      resources/3rdparty/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
  52. 359
      resources/3rdparty/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPowerBase.h
  53. 16
      resources/3rdparty/eigen/unsupported/doc/examples/MatrixPower.cpp
  54. 17
      resources/3rdparty/eigen/unsupported/doc/examples/MatrixPower_optimal.cpp
  55. 47
      resources/3rdparty/eigen/unsupported/test/matrix_functions.h
  56. 136
      resources/3rdparty/eigen/unsupported/test/matrix_power.cpp

26
resources/3rdparty/eigen/Eigen/MetisSupport

@ -1,26 +0,0 @@
#ifndef EIGEN_METISSUPPORT_MODULE_H
#define EIGEN_METISSUPPORT_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
extern "C" {
#include <metis.h>
}
/** \ingroup Support_modules
* \defgroup MetisSupport_Module MetisSupport module
*
* \code
* #include <Eigen/MetisSupport>
* \endcode
*/
#include "src/MetisSupport/MetisSupport.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_METISSUPPORT_MODULE_H

17
resources/3rdparty/eigen/Eigen/SparseLU

@ -1,17 +0,0 @@
#ifndef EIGEN_SPARSELU_MODULE_H
#define EIGEN_SPARSELU_MODULE_H
#include "SparseCore"
/** \ingroup Sparse_modules
* \defgroup SparseLU_Module SparseLU module
*
*/
// Ordering interface
#include "OrderingMethods"
#include "src/SparseLU/SparseLU.h"
#endif // EIGEN_SPARSELU_MODULE_H

755
resources/3rdparty/eigen/Eigen/src/Core/AssignEvaluator.h

@ -1,755 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2011-2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ASSIGN_EVALUATOR_H
#define EIGEN_ASSIGN_EVALUATOR_H
namespace Eigen {
// This implementation is based on Assign.h
namespace internal {
/***************************************************************************
* Part 1 : the logic deciding a strategy for traversal and unrolling *
***************************************************************************/
// copy_using_evaluator_traits is based on assign_traits
template <typename Derived, typename OtherDerived>
struct copy_using_evaluator_traits
{
public:
enum {
DstIsAligned = Derived::Flags & AlignedBit,
DstHasDirectAccess = Derived::Flags & DirectAccessBit,
SrcIsAligned = OtherDerived::Flags & AlignedBit,
JointAlignment = bool(DstIsAligned) && bool(SrcIsAligned) ? Aligned : Unaligned,
SrcEvalBeforeAssign = (evaluator_traits<OtherDerived>::HasEvalTo == 1)
};
private:
enum {
InnerSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::SizeAtCompileTime)
: int(Derived::Flags)&RowMajorBit ? int(Derived::ColsAtCompileTime)
: int(Derived::RowsAtCompileTime),
InnerMaxSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::MaxSizeAtCompileTime)
: int(Derived::Flags)&RowMajorBit ? int(Derived::MaxColsAtCompileTime)
: int(Derived::MaxRowsAtCompileTime),
MaxSizeAtCompileTime = Derived::SizeAtCompileTime,
PacketSize = packet_traits<typename Derived::Scalar>::size
};
enum {
StorageOrdersAgree = (int(Derived::IsRowMajor) == int(OtherDerived::IsRowMajor)),
MightVectorize = StorageOrdersAgree
&& (int(Derived::Flags) & int(OtherDerived::Flags) & ActualPacketAccessBit),
MayInnerVectorize = MightVectorize && int(InnerSize)!=Dynamic && int(InnerSize)%int(PacketSize)==0
&& int(DstIsAligned) && int(SrcIsAligned),
MayLinearize = StorageOrdersAgree && (int(Derived::Flags) & int(OtherDerived::Flags) & LinearAccessBit),
MayLinearVectorize = MightVectorize && MayLinearize && DstHasDirectAccess
&& (DstIsAligned || MaxSizeAtCompileTime == Dynamic),
/* If the destination isn't aligned, we have to do runtime checks and we don't unroll,
so it's only good for large enough sizes. */
MaySliceVectorize = MightVectorize && DstHasDirectAccess
&& (int(InnerMaxSize)==Dynamic || int(InnerMaxSize)>=3*PacketSize)
/* slice vectorization can be slow, so we only want it if the slices are big, which is
indicated by InnerMaxSize rather than InnerSize, think of the case of a dynamic block
in a fixed-size matrix */
};
public:
enum {
Traversal = int(SrcEvalBeforeAssign) ? int(AllAtOnceTraversal)
: int(MayInnerVectorize) ? int(InnerVectorizedTraversal)
: int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
: int(MaySliceVectorize) ? int(SliceVectorizedTraversal)
: int(MayLinearize) ? int(LinearTraversal)
: int(DefaultTraversal),
Vectorized = int(Traversal) == InnerVectorizedTraversal
|| int(Traversal) == LinearVectorizedTraversal
|| int(Traversal) == SliceVectorizedTraversal
};
private:
enum {
UnrollingLimit = EIGEN_UNROLLING_LIMIT * (Vectorized ? int(PacketSize) : 1),
MayUnrollCompletely = int(Derived::SizeAtCompileTime) != Dynamic
&& int(OtherDerived::CoeffReadCost) != Dynamic
&& int(Derived::SizeAtCompileTime) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit),
MayUnrollInner = int(InnerSize) != Dynamic
&& int(OtherDerived::CoeffReadCost) != Dynamic
&& int(InnerSize) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit)
};
public:
enum {
Unrolling = (int(Traversal) == int(InnerVectorizedTraversal) || int(Traversal) == int(DefaultTraversal))
? (
int(MayUnrollCompletely) ? int(CompleteUnrolling)
: int(MayUnrollInner) ? int(InnerUnrolling)
: int(NoUnrolling)
)
: int(Traversal) == int(LinearVectorizedTraversal)
? ( bool(MayUnrollCompletely) && bool(DstIsAligned) ? int(CompleteUnrolling)
: int(NoUnrolling) )
: int(Traversal) == int(LinearTraversal)
? ( bool(MayUnrollCompletely) ? int(CompleteUnrolling)
: int(NoUnrolling) )
: int(NoUnrolling)
};
#ifdef EIGEN_DEBUG_ASSIGN
static void debug()
{
EIGEN_DEBUG_VAR(DstIsAligned)
EIGEN_DEBUG_VAR(SrcIsAligned)
EIGEN_DEBUG_VAR(JointAlignment)
EIGEN_DEBUG_VAR(InnerSize)
EIGEN_DEBUG_VAR(InnerMaxSize)
EIGEN_DEBUG_VAR(PacketSize)
EIGEN_DEBUG_VAR(StorageOrdersAgree)
EIGEN_DEBUG_VAR(MightVectorize)
EIGEN_DEBUG_VAR(MayLinearize)
EIGEN_DEBUG_VAR(MayInnerVectorize)
EIGEN_DEBUG_VAR(MayLinearVectorize)
EIGEN_DEBUG_VAR(MaySliceVectorize)
EIGEN_DEBUG_VAR(Traversal)
EIGEN_DEBUG_VAR(UnrollingLimit)
EIGEN_DEBUG_VAR(MayUnrollCompletely)
EIGEN_DEBUG_VAR(MayUnrollInner)
EIGEN_DEBUG_VAR(Unrolling)
}
#endif
};
/***************************************************************************
* Part 2 : meta-unrollers
***************************************************************************/
/************************
*** Default traversal ***
************************/
template<typename DstEvaluatorType, typename SrcEvaluatorType, int Index, int Stop>
struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling
{
typedef typename DstEvaluatorType::XprType DstXprType;
enum {
outer = Index / DstXprType::InnerSizeAtCompileTime,
inner = Index % DstXprType::InnerSizeAtCompileTime
};
EIGEN_STRONG_INLINE static void run(DstEvaluatorType &dstEvaluator,
SrcEvaluatorType &srcEvaluator)
{
dstEvaluator.copyCoeffByOuterInner(outer, inner, srcEvaluator);
copy_using_evaluator_DefaultTraversal_CompleteUnrolling
<DstEvaluatorType, SrcEvaluatorType, Index+1, Stop>
::run(dstEvaluator, srcEvaluator);
}
};
template<typename DstEvaluatorType, typename SrcEvaluatorType, int Stop>
struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling<DstEvaluatorType, SrcEvaluatorType, Stop, Stop>
{
EIGEN_STRONG_INLINE static void run(DstEvaluatorType&, SrcEvaluatorType&) { }
};
template<typename DstEvaluatorType, typename SrcEvaluatorType, int Index, int Stop>
struct copy_using_evaluator_DefaultTraversal_InnerUnrolling
{
EIGEN_STRONG_INLINE static void run(DstEvaluatorType &dstEvaluator,
SrcEvaluatorType &srcEvaluator,
int outer)
{
dstEvaluator.copyCoeffByOuterInner(outer, Index, srcEvaluator);
copy_using_evaluator_DefaultTraversal_InnerUnrolling
<DstEvaluatorType, SrcEvaluatorType, Index+1, Stop>
::run(dstEvaluator, srcEvaluator, outer);
}
};
template<typename DstEvaluatorType, typename SrcEvaluatorType, int Stop>
struct copy_using_evaluator_DefaultTraversal_InnerUnrolling<DstEvaluatorType, SrcEvaluatorType, Stop, Stop>
{
EIGEN_STRONG_INLINE static void run(DstEvaluatorType&, SrcEvaluatorType&, int) { }
};
/***********************
*** Linear traversal ***
***********************/
template<typename DstEvaluatorType, typename SrcEvaluatorType, int Index, int Stop>
struct copy_using_evaluator_LinearTraversal_CompleteUnrolling
{
EIGEN_STRONG_INLINE static void run(DstEvaluatorType &dstEvaluator,
SrcEvaluatorType &srcEvaluator)
{
dstEvaluator.copyCoeff(Index, srcEvaluator);
copy_using_evaluator_LinearTraversal_CompleteUnrolling
<DstEvaluatorType, SrcEvaluatorType, Index+1, Stop>
::run(dstEvaluator, srcEvaluator);
}
};
template<typename DstEvaluatorType, typename SrcEvaluatorType, int Stop>
struct copy_using_evaluator_LinearTraversal_CompleteUnrolling<DstEvaluatorType, SrcEvaluatorType, Stop, Stop>
{
EIGEN_STRONG_INLINE static void run(DstEvaluatorType&, SrcEvaluatorType&) { }
};
/**************************
*** Inner vectorization ***
**************************/
template<typename DstEvaluatorType, typename SrcEvaluatorType, int Index, int Stop>
struct copy_using_evaluator_innervec_CompleteUnrolling
{
typedef typename DstEvaluatorType::XprType DstXprType;
typedef typename SrcEvaluatorType::XprType SrcXprType;
enum {
outer = Index / DstXprType::InnerSizeAtCompileTime,
inner = Index % DstXprType::InnerSizeAtCompileTime,
JointAlignment = copy_using_evaluator_traits<DstXprType,SrcXprType>::JointAlignment
};
EIGEN_STRONG_INLINE static void run(DstEvaluatorType &dstEvaluator,
SrcEvaluatorType &srcEvaluator)
{
dstEvaluator.template copyPacketByOuterInner<Aligned, JointAlignment>(outer, inner, srcEvaluator);
enum { NextIndex = Index + packet_traits<typename DstXprType::Scalar>::size };
copy_using_evaluator_innervec_CompleteUnrolling
<DstEvaluatorType, SrcEvaluatorType, NextIndex, Stop>
::run(dstEvaluator, srcEvaluator);
}
};
template<typename DstEvaluatorType, typename SrcEvaluatorType, int Stop>
struct copy_using_evaluator_innervec_CompleteUnrolling<DstEvaluatorType, SrcEvaluatorType, Stop, Stop>
{
EIGEN_STRONG_INLINE static void run(DstEvaluatorType&, SrcEvaluatorType&) { }
};
template<typename DstEvaluatorType, typename SrcEvaluatorType, int Index, int Stop>
struct copy_using_evaluator_innervec_InnerUnrolling
{
EIGEN_STRONG_INLINE static void run(DstEvaluatorType &dstEvaluator,
SrcEvaluatorType &srcEvaluator,
int outer)
{
dstEvaluator.template copyPacketByOuterInner<Aligned, Aligned>(outer, Index, srcEvaluator);
typedef typename DstEvaluatorType::XprType DstXprType;
enum { NextIndex = Index + packet_traits<typename DstXprType::Scalar>::size };
copy_using_evaluator_innervec_InnerUnrolling
<DstEvaluatorType, SrcEvaluatorType, NextIndex, Stop>
::run(dstEvaluator, srcEvaluator, outer);
}
};
template<typename DstEvaluatorType, typename SrcEvaluatorType, int Stop>
struct copy_using_evaluator_innervec_InnerUnrolling<DstEvaluatorType, SrcEvaluatorType, Stop, Stop>
{
EIGEN_STRONG_INLINE static void run(DstEvaluatorType&, SrcEvaluatorType&, int) { }
};
/***************************************************************************
* Part 3 : implementation of all cases
***************************************************************************/
// copy_using_evaluator_impl is based on assign_impl
template<typename DstXprType, typename SrcXprType,
int Traversal = copy_using_evaluator_traits<DstXprType, SrcXprType>::Traversal,
int Unrolling = copy_using_evaluator_traits<DstXprType, SrcXprType>::Unrolling>
struct copy_using_evaluator_impl;
/************************
*** Default traversal ***
************************/
template<typename DstXprType, typename SrcXprType>
struct copy_using_evaluator_impl<DstXprType, SrcXprType, DefaultTraversal, NoUnrolling>
{
static void run(DstXprType& dst, const SrcXprType& src)
{
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
typedef typename DstXprType::Index Index;
DstEvaluatorType dstEvaluator(dst);
SrcEvaluatorType srcEvaluator(src);
for(Index outer = 0; outer < dst.outerSize(); ++outer) {
for(Index inner = 0; inner < dst.innerSize(); ++inner) {
dstEvaluator.copyCoeffByOuterInner(outer, inner, srcEvaluator);
}
}
}
};
template<typename DstXprType, typename SrcXprType>
struct copy_using_evaluator_impl<DstXprType, SrcXprType, DefaultTraversal, CompleteUnrolling>
{
EIGEN_STRONG_INLINE static void run(DstXprType &dst, const SrcXprType &src)
{
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
DstEvaluatorType dstEvaluator(dst);
SrcEvaluatorType srcEvaluator(src);
copy_using_evaluator_DefaultTraversal_CompleteUnrolling
<DstEvaluatorType, SrcEvaluatorType, 0, DstXprType::SizeAtCompileTime>
::run(dstEvaluator, srcEvaluator);
}
};
template<typename DstXprType, typename SrcXprType>
struct copy_using_evaluator_impl<DstXprType, SrcXprType, DefaultTraversal, InnerUnrolling>
{
typedef typename DstXprType::Index Index;
EIGEN_STRONG_INLINE static void run(DstXprType &dst, const SrcXprType &src)
{
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
DstEvaluatorType dstEvaluator(dst);
SrcEvaluatorType srcEvaluator(src);
const Index outerSize = dst.outerSize();
for(Index outer = 0; outer < outerSize; ++outer)
copy_using_evaluator_DefaultTraversal_InnerUnrolling
<DstEvaluatorType, SrcEvaluatorType, 0, DstXprType::InnerSizeAtCompileTime>
::run(dstEvaluator, srcEvaluator, outer);
}
};
/***************************
*** Linear vectorization ***
***************************/
template <bool IsAligned = false>
struct unaligned_copy_using_evaluator_impl
{
// if IsAligned = true, then do nothing
template <typename SrcEvaluatorType, typename DstEvaluatorType>
static EIGEN_STRONG_INLINE void run(const SrcEvaluatorType&, DstEvaluatorType&,
typename SrcEvaluatorType::Index, typename SrcEvaluatorType::Index) {}
};
template <>
struct unaligned_copy_using_evaluator_impl<false>
{
// MSVC must not inline this functions. If it does, it fails to optimize the
// packet access path.
#ifdef _MSC_VER
template <typename DstEvaluatorType, typename SrcEvaluatorType>
static EIGEN_DONT_INLINE void run(DstEvaluatorType &dstEvaluator,
const SrcEvaluatorType &srcEvaluator,
typename DstEvaluatorType::Index start,
typename DstEvaluatorType::Index end)
#else
template <typename DstEvaluatorType, typename SrcEvaluatorType>
static EIGEN_STRONG_INLINE void run(DstEvaluatorType &dstEvaluator,
const SrcEvaluatorType &srcEvaluator,
typename DstEvaluatorType::Index start,
typename DstEvaluatorType::Index end)
#endif
{
for (typename DstEvaluatorType::Index index = start; index < end; ++index)
dstEvaluator.copyCoeff(index, srcEvaluator);
}
};
template<typename DstXprType, typename SrcXprType>
struct copy_using_evaluator_impl<DstXprType, SrcXprType, LinearVectorizedTraversal, NoUnrolling>
{
EIGEN_STRONG_INLINE static void run(DstXprType &dst, const SrcXprType &src)
{
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
typedef typename DstXprType::Index Index;
DstEvaluatorType dstEvaluator(dst);
SrcEvaluatorType srcEvaluator(src);
const Index size = dst.size();
typedef packet_traits<typename DstXprType::Scalar> PacketTraits;
enum {
packetSize = PacketTraits::size,
dstIsAligned = int(copy_using_evaluator_traits<DstXprType,SrcXprType>::DstIsAligned),
dstAlignment = PacketTraits::AlignedOnScalar ? Aligned : dstIsAligned,
srcAlignment = copy_using_evaluator_traits<DstXprType,SrcXprType>::JointAlignment
};
const Index alignedStart = dstIsAligned ? 0 : first_aligned(&dstEvaluator.coeffRef(0), size);
const Index alignedEnd = alignedStart + ((size-alignedStart)/packetSize)*packetSize;
unaligned_copy_using_evaluator_impl<dstIsAligned!=0>::run(dstEvaluator, srcEvaluator, 0, alignedStart);
for(Index index = alignedStart; index < alignedEnd; index += packetSize)
{
dstEvaluator.template copyPacket<dstAlignment, srcAlignment>(index, srcEvaluator);
}
unaligned_copy_using_evaluator_impl<>::run(dstEvaluator, srcEvaluator, alignedEnd, size);
}
};
template<typename DstXprType, typename SrcXprType>
struct copy_using_evaluator_impl<DstXprType, SrcXprType, LinearVectorizedTraversal, CompleteUnrolling>
{
typedef typename DstXprType::Index Index;
EIGEN_STRONG_INLINE static void run(DstXprType &dst, const SrcXprType &src)
{
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
DstEvaluatorType dstEvaluator(dst);
SrcEvaluatorType srcEvaluator(src);
enum { size = DstXprType::SizeAtCompileTime,
packetSize = packet_traits<typename DstXprType::Scalar>::size,
alignedSize = (size/packetSize)*packetSize };
copy_using_evaluator_innervec_CompleteUnrolling
<DstEvaluatorType, SrcEvaluatorType, 0, alignedSize>
::run(dstEvaluator, srcEvaluator);
copy_using_evaluator_DefaultTraversal_CompleteUnrolling
<DstEvaluatorType, SrcEvaluatorType, alignedSize, size>
::run(dstEvaluator, srcEvaluator);
}
};
/**************************
*** Inner vectorization ***
**************************/
template<typename DstXprType, typename SrcXprType>
struct copy_using_evaluator_impl<DstXprType, SrcXprType, InnerVectorizedTraversal, NoUnrolling>
{
inline static void run(DstXprType &dst, const SrcXprType &src)
{
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
typedef typename DstXprType::Index Index;
DstEvaluatorType dstEvaluator(dst);
SrcEvaluatorType srcEvaluator(src);
const Index innerSize = dst.innerSize();
const Index outerSize = dst.outerSize();
const Index packetSize = packet_traits<typename DstXprType::Scalar>::size;
for(Index outer = 0; outer < outerSize; ++outer)
for(Index inner = 0; inner < innerSize; inner+=packetSize) {
dstEvaluator.template copyPacketByOuterInner<Aligned, Aligned>(outer, inner, srcEvaluator);
}
}
};
template<typename DstXprType, typename SrcXprType>
struct copy_using_evaluator_impl<DstXprType, SrcXprType, InnerVectorizedTraversal, CompleteUnrolling>
{
EIGEN_STRONG_INLINE static void run(DstXprType &dst, const SrcXprType &src)
{
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
DstEvaluatorType dstEvaluator(dst);
SrcEvaluatorType srcEvaluator(src);
copy_using_evaluator_innervec_CompleteUnrolling
<DstEvaluatorType, SrcEvaluatorType, 0, DstXprType::SizeAtCompileTime>
::run(dstEvaluator, srcEvaluator);
}
};
template<typename DstXprType, typename SrcXprType>
struct copy_using_evaluator_impl<DstXprType, SrcXprType, InnerVectorizedTraversal, InnerUnrolling>
{
typedef typename DstXprType::Index Index;
EIGEN_STRONG_INLINE static void run(DstXprType &dst, const SrcXprType &src)
{
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
DstEvaluatorType dstEvaluator(dst);
SrcEvaluatorType srcEvaluator(src);
const Index outerSize = dst.outerSize();
for(Index outer = 0; outer < outerSize; ++outer)
copy_using_evaluator_innervec_InnerUnrolling
<DstEvaluatorType, SrcEvaluatorType, 0, DstXprType::InnerSizeAtCompileTime>
::run(dstEvaluator, srcEvaluator, outer);
}
};
/***********************
*** Linear traversal ***
***********************/
template<typename DstXprType, typename SrcXprType>
struct copy_using_evaluator_impl<DstXprType, SrcXprType, LinearTraversal, NoUnrolling>
{
inline static void run(DstXprType &dst, const SrcXprType &src)
{
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
typedef typename DstXprType::Index Index;
DstEvaluatorType dstEvaluator(dst);
SrcEvaluatorType srcEvaluator(src);
const Index size = dst.size();
for(Index i = 0; i < size; ++i)
dstEvaluator.copyCoeff(i, srcEvaluator);
}
};
template<typename DstXprType, typename SrcXprType>
struct copy_using_evaluator_impl<DstXprType, SrcXprType, LinearTraversal, CompleteUnrolling>
{
EIGEN_STRONG_INLINE static void run(DstXprType &dst, const SrcXprType &src)
{
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
DstEvaluatorType dstEvaluator(dst);
SrcEvaluatorType srcEvaluator(src);
copy_using_evaluator_LinearTraversal_CompleteUnrolling
<DstEvaluatorType, SrcEvaluatorType, 0, DstXprType::SizeAtCompileTime>
::run(dstEvaluator, srcEvaluator);
}
};
/**************************
*** Slice vectorization ***
***************************/
template<typename DstXprType, typename SrcXprType>
struct copy_using_evaluator_impl<DstXprType, SrcXprType, SliceVectorizedTraversal, NoUnrolling>
{
inline static void run(DstXprType &dst, const SrcXprType &src)
{
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
typedef typename DstXprType::Index Index;
DstEvaluatorType dstEvaluator(dst);
SrcEvaluatorType srcEvaluator(src);
typedef packet_traits<typename DstXprType::Scalar> PacketTraits;
enum {
packetSize = PacketTraits::size,
alignable = PacketTraits::AlignedOnScalar,
dstAlignment = alignable ? Aligned : int(copy_using_evaluator_traits<DstXprType,SrcXprType>::DstIsAligned)
};
const Index packetAlignedMask = packetSize - 1;
const Index innerSize = dst.innerSize();
const Index outerSize = dst.outerSize();
const Index alignedStep = alignable ? (packetSize - dst.outerStride() % packetSize) & packetAlignedMask : 0;
Index alignedStart = ((!alignable) || copy_using_evaluator_traits<DstXprType,SrcXprType>::DstIsAligned) ? 0
: first_aligned(&dstEvaluator.coeffRef(0,0), innerSize);
for(Index outer = 0; outer < outerSize; ++outer)
{
const Index alignedEnd = alignedStart + ((innerSize-alignedStart) & ~packetAlignedMask);
// do the non-vectorizable part of the assignment
for(Index inner = 0; inner<alignedStart ; ++inner) {
dstEvaluator.copyCoeffByOuterInner(outer, inner, srcEvaluator);
}
// do the vectorizable part of the assignment
for(Index inner = alignedStart; inner<alignedEnd; inner+=packetSize) {
dstEvaluator.template copyPacketByOuterInner<dstAlignment, Unaligned>(outer, inner, srcEvaluator);
}
// do the non-vectorizable part of the assignment
for(Index inner = alignedEnd; inner<innerSize ; ++inner) {
dstEvaluator.copyCoeffByOuterInner(outer, inner, srcEvaluator);
}
alignedStart = std::min<Index>((alignedStart+alignedStep)%packetSize, innerSize);
}
}
};
/****************************
*** All-at-once traversal ***
****************************/
template<typename DstXprType, typename SrcXprType>
struct copy_using_evaluator_impl<DstXprType, SrcXprType, AllAtOnceTraversal, NoUnrolling>
{
inline static void run(DstXprType &dst, const SrcXprType &src)
{
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
typedef typename DstXprType::Index Index;
DstEvaluatorType dstEvaluator(dst);
SrcEvaluatorType srcEvaluator(src);
// Evaluate rhs in temporary to prevent aliasing problems in a = a * a;
// TODO: Do not pass the xpr object to evalTo()
srcEvaluator.evalTo(dstEvaluator, dst);
}
};
/***************************************************************************
* Part 4 : Entry points
***************************************************************************/
// Based on DenseBase::LazyAssign()
template<typename DstXprType, template <typename> class StorageBase, typename SrcXprType>
EIGEN_STRONG_INLINE
const DstXprType& copy_using_evaluator(const NoAlias<DstXprType, StorageBase>& dst,
const EigenBase<SrcXprType>& src)
{
return noalias_copy_using_evaluator(dst.expression(), src.derived());
}
template<typename XprType, int AssumeAliasing = evaluator_traits<XprType>::AssumeAliasing>
struct AddEvalIfAssumingAliasing;
template<typename XprType>
struct AddEvalIfAssumingAliasing<XprType, 0>
{
static const XprType& run(const XprType& xpr)
{
return xpr;
}
};
template<typename XprType>
struct AddEvalIfAssumingAliasing<XprType, 1>
{
static const EvalToTemp<XprType> run(const XprType& xpr)
{
return EvalToTemp<XprType>(xpr);
}
};
template<typename DstXprType, typename SrcXprType>
EIGEN_STRONG_INLINE
const DstXprType& copy_using_evaluator(const EigenBase<DstXprType>& dst, const EigenBase<SrcXprType>& src)
{
return noalias_copy_using_evaluator(dst.const_cast_derived(),
AddEvalIfAssumingAliasing<SrcXprType>::run(src.derived()));
}
template<typename DstXprType, typename SrcXprType>
EIGEN_STRONG_INLINE
const DstXprType& noalias_copy_using_evaluator(const PlainObjectBase<DstXprType>& dst, const EigenBase<SrcXprType>& src)
{
#ifdef EIGEN_DEBUG_ASSIGN
internal::copy_using_evaluator_traits<DstXprType, SrcXprType>::debug();
#endif
#ifdef EIGEN_NO_AUTOMATIC_RESIZING
eigen_assert((dst.size()==0 || (IsVectorAtCompileTime ? (dst.size() == src.size())
: (dst.rows() == src.rows() && dst.cols() == src.cols())))
&& "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
#else
dst.const_cast_derived().resizeLike(src.derived());
#endif
return copy_using_evaluator_without_resizing(dst.const_cast_derived(), src.derived());
}
template<typename DstXprType, typename SrcXprType>
EIGEN_STRONG_INLINE
const DstXprType& noalias_copy_using_evaluator(const EigenBase<DstXprType>& dst, const EigenBase<SrcXprType>& src)
{
return copy_using_evaluator_without_resizing(dst.const_cast_derived(), src.derived());
}
template<typename DstXprType, typename SrcXprType>
const DstXprType& copy_using_evaluator_without_resizing(const DstXprType& dst, const SrcXprType& src)
{
#ifdef EIGEN_DEBUG_ASSIGN
internal::copy_using_evaluator_traits<DstXprType, SrcXprType>::debug();
#endif
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
copy_using_evaluator_impl<DstXprType, SrcXprType>::run(const_cast<DstXprType&>(dst), src);
return dst;
}
// Based on DenseBase::swap()
// TODO: Chech whether we need to do something special for swapping two
// Arrays or Matrices.
template<typename DstXprType, typename SrcXprType>
void swap_using_evaluator(const DstXprType& dst, const SrcXprType& src)
{
copy_using_evaluator(SwapWrapper<DstXprType>(const_cast<DstXprType&>(dst)), src);
}
// Based on MatrixBase::operator+= (in CwiseBinaryOp.h)
template<typename DstXprType, typename SrcXprType>
void add_assign_using_evaluator(const MatrixBase<DstXprType>& dst, const MatrixBase<SrcXprType>& src)
{
typedef typename DstXprType::Scalar Scalar;
SelfCwiseBinaryOp<internal::scalar_sum_op<Scalar>, DstXprType, SrcXprType> tmp(dst.const_cast_derived());
copy_using_evaluator(tmp, src.derived());
}
// Based on ArrayBase::operator+=
template<typename DstXprType, typename SrcXprType>
void add_assign_using_evaluator(const ArrayBase<DstXprType>& dst, const ArrayBase<SrcXprType>& src)
{
typedef typename DstXprType::Scalar Scalar;
SelfCwiseBinaryOp<internal::scalar_sum_op<Scalar>, DstXprType, SrcXprType> tmp(dst.const_cast_derived());
copy_using_evaluator(tmp, src.derived());
}
// TODO: Add add_assign_using_evaluator for EigenBase ?
template<typename DstXprType, typename SrcXprType>
void subtract_assign_using_evaluator(const MatrixBase<DstXprType>& dst, const MatrixBase<SrcXprType>& src)
{
typedef typename DstXprType::Scalar Scalar;
SelfCwiseBinaryOp<internal::scalar_difference_op<Scalar>, DstXprType, SrcXprType> tmp(dst.const_cast_derived());
copy_using_evaluator(tmp, src.derived());
}
template<typename DstXprType, typename SrcXprType>
void subtract_assign_using_evaluator(const ArrayBase<DstXprType>& dst, const ArrayBase<SrcXprType>& src)
{
typedef typename DstXprType::Scalar Scalar;
SelfCwiseBinaryOp<internal::scalar_difference_op<Scalar>, DstXprType, SrcXprType> tmp(dst.const_cast_derived());
copy_using_evaluator(tmp, src.derived());
}
template<typename DstXprType, typename SrcXprType>
void multiply_assign_using_evaluator(const ArrayBase<DstXprType>& dst, const ArrayBase<SrcXprType>& src)
{
typedef typename DstXprType::Scalar Scalar;
SelfCwiseBinaryOp<internal::scalar_product_op<Scalar>, DstXprType, SrcXprType> tmp(dst.const_cast_derived());
copy_using_evaluator(tmp, src.derived());
}
template<typename DstXprType, typename SrcXprType>
void divide_assign_using_evaluator(const ArrayBase<DstXprType>& dst, const ArrayBase<SrcXprType>& src)
{
typedef typename DstXprType::Scalar Scalar;
SelfCwiseBinaryOp<internal::scalar_quotient_op<Scalar>, DstXprType, SrcXprType> tmp(dst.const_cast_derived());
copy_using_evaluator(tmp, src.derived());
}
} // namespace internal
} // end namespace Eigen
#endif // EIGEN_ASSIGN_EVALUATOR_H

1299
resources/3rdparty/eigen/Eigen/src/Core/CoreEvaluators.h
File diff suppressed because it is too large
View File

411
resources/3rdparty/eigen/Eigen/src/Core/ProductEvaluators.h

@ -1,411 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PRODUCTEVALUATORS_H
#define EIGEN_PRODUCTEVALUATORS_H
namespace Eigen {
namespace internal {
// We can evaluate the product either all at once, like GeneralProduct and its evalTo() function, or
// traverse the matrix coefficient by coefficient, like CoeffBasedProduct. Use the existing logic
// in ProductReturnType to decide.
template<typename XprType, typename ProductType>
struct product_evaluator_dispatcher;
template<typename Lhs, typename Rhs>
struct evaluator_impl<Product<Lhs, Rhs> >
: product_evaluator_dispatcher<Product<Lhs, Rhs>, typename ProductReturnType<Lhs, Rhs>::Type>
{
typedef Product<Lhs, Rhs> XprType;
typedef product_evaluator_dispatcher<XprType, typename ProductReturnType<Lhs, Rhs>::Type> Base;
evaluator_impl(const XprType& xpr) : Base(xpr)
{ }
};
template<typename XprType, typename ProductType>
struct product_evaluator_traits_dispatcher;
template<typename Lhs, typename Rhs>
struct evaluator_traits<Product<Lhs, Rhs> >
: product_evaluator_traits_dispatcher<Product<Lhs, Rhs>, typename ProductReturnType<Lhs, Rhs>::Type>
{
static const int AssumeAliasing = 1;
};
// Case 1: Evaluate all at once
//
// We can view the GeneralProduct class as a part of the product evaluator.
// Four sub-cases: InnerProduct, OuterProduct, GemmProduct and GemvProduct.
// InnerProduct is special because GeneralProduct does not have an evalTo() method in this case.
template<typename Lhs, typename Rhs>
struct product_evaluator_traits_dispatcher<Product<Lhs, Rhs>, GeneralProduct<Lhs, Rhs, InnerProduct> >
{
static const int HasEvalTo = 0;
};
template<typename Lhs, typename Rhs>
struct product_evaluator_dispatcher<Product<Lhs, Rhs>, GeneralProduct<Lhs, Rhs, InnerProduct> >
: public evaluator<typename Product<Lhs, Rhs>::PlainObject>::type
{
typedef Product<Lhs, Rhs> XprType;
typedef typename XprType::PlainObject PlainObject;
typedef typename evaluator<PlainObject>::type evaluator_base;
// TODO: Computation is too early (?)
product_evaluator_dispatcher(const XprType& xpr) : evaluator_base(m_result)
{
m_result.coeffRef(0,0) = (xpr.lhs().transpose().cwiseProduct(xpr.rhs())).sum();
}
protected:
PlainObject m_result;
};
// For the other three subcases, simply call the evalTo() method of GeneralProduct
// TODO: GeneralProduct should take evaluators, not expression objects.
template<typename Lhs, typename Rhs, int ProductType>
struct product_evaluator_traits_dispatcher<Product<Lhs, Rhs>, GeneralProduct<Lhs, Rhs, ProductType> >
{
static const int HasEvalTo = 1;
};
template<typename Lhs, typename Rhs, int ProductType>
struct product_evaluator_dispatcher<Product<Lhs, Rhs>, GeneralProduct<Lhs, Rhs, ProductType> >
{
typedef Product<Lhs, Rhs> XprType;
typedef typename XprType::PlainObject PlainObject;
typedef typename evaluator<PlainObject>::type evaluator_base;
product_evaluator_dispatcher(const XprType& xpr) : m_xpr(xpr)
{ }
template<typename DstEvaluatorType, typename DstXprType>
void evalTo(DstEvaluatorType /* not used */, DstXprType& dst)
{
dst.resize(m_xpr.rows(), m_xpr.cols());
GeneralProduct<Lhs, Rhs, ProductType>(m_xpr.lhs(), m_xpr.rhs()).evalTo(dst);
}
protected:
const XprType& m_xpr;
};
// Case 2: Evaluate coeff by coeff
//
// This is mostly taken from CoeffBasedProduct.h
// The main difference is that we add an extra argument to the etor_product_*_impl::run() function
// for the inner dimension of the product, because evaluator object do not know their size.
template<int Traversal, int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
struct etor_product_coeff_impl;
template<int StorageOrder, int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl;
template<typename Lhs, typename Rhs, typename LhsNested, typename RhsNested, int Flags>
struct product_evaluator_traits_dispatcher<Product<Lhs, Rhs>, CoeffBasedProduct<LhsNested, RhsNested, Flags> >
{
static const int HasEvalTo = 0;
};
template<typename Lhs, typename Rhs, typename LhsNested, typename RhsNested, int Flags>
struct product_evaluator_dispatcher<Product<Lhs, Rhs>, CoeffBasedProduct<LhsNested, RhsNested, Flags> >
: evaluator_impl_base<Product<Lhs, Rhs> >
{
typedef Product<Lhs, Rhs> XprType;
typedef CoeffBasedProduct<LhsNested, RhsNested, Flags> CoeffBasedProductType;
product_evaluator_dispatcher(const XprType& xpr)
: m_lhsImpl(xpr.lhs()),
m_rhsImpl(xpr.rhs()),
m_innerDim(xpr.lhs().cols())
{ }
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketScalar PacketScalar;
typedef typename XprType::PacketReturnType PacketReturnType;
// Everything below here is taken from CoeffBasedProduct.h
enum {
RowsAtCompileTime = traits<CoeffBasedProductType>::RowsAtCompileTime,
PacketSize = packet_traits<Scalar>::size,
InnerSize = traits<CoeffBasedProductType>::InnerSize,
CoeffReadCost = traits<CoeffBasedProductType>::CoeffReadCost,
Unroll = CoeffReadCost != Dynamic && CoeffReadCost <= EIGEN_UNROLLING_LIMIT,
CanVectorizeInner = traits<CoeffBasedProductType>::CanVectorizeInner
};
typedef typename evaluator<Lhs>::type LhsEtorType;
typedef typename evaluator<Rhs>::type RhsEtorType;
typedef etor_product_coeff_impl<CanVectorizeInner ? InnerVectorizedTraversal : DefaultTraversal,
Unroll ? InnerSize-1 : Dynamic,
LhsEtorType, RhsEtorType, Scalar> CoeffImpl;
const CoeffReturnType coeff(Index row, Index col) const
{
Scalar res;
CoeffImpl::run(row, col, m_lhsImpl, m_rhsImpl, m_innerDim, res);
return res;
}
/* Allow index-based non-packet access. It is impossible though to allow index-based packed access,
* which is why we don't set the LinearAccessBit.
*/
const CoeffReturnType coeff(Index index) const
{
Scalar res;
const Index row = RowsAtCompileTime == 1 ? 0 : index;
const Index col = RowsAtCompileTime == 1 ? index : 0;
CoeffImpl::run(row, col, m_lhsImpl, m_rhsImpl, m_innerDim, res);
return res;
}
template<int LoadMode>
const PacketReturnType packet(Index row, Index col) const
{
PacketScalar res;
typedef etor_product_packet_impl<Flags&RowMajorBit ? RowMajor : ColMajor,
Unroll ? InnerSize-1 : Dynamic,
LhsEtorType, RhsEtorType, PacketScalar, LoadMode> PacketImpl;
PacketImpl::run(row, col, m_lhsImpl, m_rhsImpl, m_innerDim, res);
return res;
}
protected:
typename evaluator<Lhs>::type m_lhsImpl;
typename evaluator<Rhs>::type m_rhsImpl;
// TODO: Get rid of m_innerDim if known at compile time
Index m_innerDim;
};
/***************************************************************************
* Normal product .coeff() implementation (with meta-unrolling)
***************************************************************************/
/**************************************
*** Scalar path - no vectorization ***
**************************************/
template<int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
struct etor_product_coeff_impl<DefaultTraversal, UnrollingIndex, Lhs, Rhs, RetScalar>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, RetScalar &res)
{
etor_product_coeff_impl<DefaultTraversal, UnrollingIndex-1, Lhs, Rhs, RetScalar>::run(row, col, lhs, rhs, innerDim, res);
res += lhs.coeff(row, UnrollingIndex) * rhs.coeff(UnrollingIndex, col);
}
};
template<typename Lhs, typename Rhs, typename RetScalar>
struct etor_product_coeff_impl<DefaultTraversal, 0, Lhs, Rhs, RetScalar>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, RetScalar &res)
{
res = lhs.coeff(row, 0) * rhs.coeff(0, col);
}
};
template<typename Lhs, typename Rhs, typename RetScalar>
struct etor_product_coeff_impl<DefaultTraversal, Dynamic, Lhs, Rhs, RetScalar>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, RetScalar& res)
{
eigen_assert(innerDim>0 && "you are using a non initialized matrix");
res = lhs.coeff(row, 0) * rhs.coeff(0, col);
for(Index i = 1; i < innerDim; ++i)
res += lhs.coeff(row, i) * rhs.coeff(i, col);
}
};
/*******************************************
*** Scalar path with inner vectorization ***
*******************************************/
template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet>
struct etor_product_coeff_vectorized_unroller
{
typedef typename Lhs::Index Index;
enum { PacketSize = packet_traits<typename Lhs::Scalar>::size };
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, typename Lhs::PacketScalar &pres)
{
etor_product_coeff_vectorized_unroller<UnrollingIndex-PacketSize, Lhs, Rhs, Packet>::run(row, col, lhs, rhs, innerDim, pres);
pres = padd(pres, pmul( lhs.template packet<Aligned>(row, UnrollingIndex) , rhs.template packet<Aligned>(UnrollingIndex, col) ));
}
};
template<typename Lhs, typename Rhs, typename Packet>
struct etor_product_coeff_vectorized_unroller<0, Lhs, Rhs, Packet>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, typename Lhs::PacketScalar &pres)
{
pres = pmul(lhs.template packet<Aligned>(row, 0) , rhs.template packet<Aligned>(0, col));
}
};
template<int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
struct etor_product_coeff_impl<InnerVectorizedTraversal, UnrollingIndex, Lhs, Rhs, RetScalar>
{
typedef typename Lhs::PacketScalar Packet;
typedef typename Lhs::Index Index;
enum { PacketSize = packet_traits<typename Lhs::Scalar>::size };
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, RetScalar &res)
{
Packet pres;
etor_product_coeff_vectorized_unroller<UnrollingIndex+1-PacketSize, Lhs, Rhs, Packet>::run(row, col, lhs, rhs, innerDim, pres);
etor_product_coeff_impl<DefaultTraversal,UnrollingIndex,Lhs,Rhs,RetScalar>::run(row, col, lhs, rhs, innerDim, res);
res = predux(pres);
}
};
template<typename Lhs, typename Rhs, int LhsRows = Lhs::RowsAtCompileTime, int RhsCols = Rhs::ColsAtCompileTime>
struct etor_product_coeff_vectorized_dyn_selector
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, typename Lhs::Scalar &res)
{
res = lhs.row(row).transpose().cwiseProduct(rhs.col(col)).sum();
}
};
// NOTE the 3 following specializations are because taking .col(0) on a vector is a bit slower
// NOTE maybe they are now useless since we have a specialization for Block<Matrix>
template<typename Lhs, typename Rhs, int RhsCols>
struct etor_product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,RhsCols>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index /*row*/, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, typename Lhs::Scalar &res)
{
res = lhs.transpose().cwiseProduct(rhs.col(col)).sum();
}
};
template<typename Lhs, typename Rhs, int LhsRows>
struct etor_product_coeff_vectorized_dyn_selector<Lhs,Rhs,LhsRows,1>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index /*col*/, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, typename Lhs::Scalar &res)
{
res = lhs.row(row).transpose().cwiseProduct(rhs).sum();
}
};
template<typename Lhs, typename Rhs>
struct etor_product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,1>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index /*row*/, Index /*col*/, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, typename Lhs::Scalar &res)
{
res = lhs.transpose().cwiseProduct(rhs).sum();
}
};
template<typename Lhs, typename Rhs, typename RetScalar>
struct etor_product_coeff_impl<InnerVectorizedTraversal, Dynamic, Lhs, Rhs, RetScalar>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, typename Lhs::Scalar &res)
{
etor_product_coeff_vectorized_dyn_selector<Lhs,Rhs>::run(row, col, lhs, rhs, innerDim, res);
}
};
/*******************
*** Packet path ***
*******************/
template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<RowMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
{
etor_product_packet_impl<RowMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
res = pmadd(pset1<Packet>(lhs.coeff(row, UnrollingIndex)), rhs.template packet<LoadMode>(UnrollingIndex, col), res);
}
};
template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<ColMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
{
etor_product_packet_impl<ColMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
res = pmadd(lhs.template packet<LoadMode>(row, UnrollingIndex), pset1<Packet>(rhs.coeff(UnrollingIndex, col)), res);
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
{
res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
{
res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
{
eigen_assert(innerDim>0 && "you are using a non initialized matrix");
res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
for(Index i = 1; i < innerDim; ++i)
res = pmadd(pset1<Packet>(lhs.coeff(row, i)), rhs.template packet<LoadMode>(i, col), res);
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
EIGEN_STRONG_INLINE static void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
{
eigen_assert(innerDim>0 && "you are using a non initialized matrix");
res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
for(Index i = 1; i < innerDim; ++i)
res = pmadd(lhs.template packet<LoadMode>(row, i), pset1<Packet>(rhs.coeff(i, col)), res);
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_PRODUCT_EVALUATORS_H

254
resources/3rdparty/eigen/Eigen/src/Core/Ref.h

@ -1,254 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_REF_H
#define EIGEN_REF_H
namespace Eigen {
template<typename Derived> class RefBase;
template<typename PlainObjectType, int Options = 0,
typename StrideType = typename internal::conditional<PlainObjectType::IsVectorAtCompileTime,InnerStride<1>,OuterStride<> >::type > class Ref;
/** \class Ref
* \ingroup Core_Module
*
* \brief A matrix or vector expression mapping an existing expressions
*
* \tparam PlainObjectType the equivalent matrix type of the mapped data
* \tparam Options specifies whether the pointer is \c #Aligned, or \c #Unaligned.
* The default is \c #Unaligned.
* \tparam StrideType optionally specifies strides. By default, Ref implies a contiguous storage along the inner dimension (inner stride==1),
* but accept a variable outer stride (leading dimension).
* This can be overridden by specifying strides.
* The type passed here must be a specialization of the Stride template, see examples below.
*
* This class permits to write non template functions taking Eigen's object as parameters while limiting the number of copies.
* A Ref<> object can represent either a const expression or a l-value:
* \code
* // in-out argument:
* void foo1(Ref<VectorXf> x);
*
* // read-only const argument:
* void foo2(const Ref<const VectorXf>& x);
* \endcode
*
* In the in-out case, the input argument must satisfies the constraints of the actual Ref<> type, otherwise a compilation issue will be triggered.
* By default, a Ref<VectorXf> can reference any dense vector expression of float having a contiguous memory layout.
* Likewise, a Ref<MatrixXf> can reference any column major dense matrix expression of float whose column's elements are contiguously stored with
* the possibility to have a constant space inbetween each column, i.e.: the inner stride mmust be equal to 1, but the outer-stride (or leading dimension),
* can be greater than the number of rows.
*
* In the const case, if the input expression does not match the above requirement, then it is evaluated into a temporary before being passed to the function.
* Here are some examples:
* \code
* MatrixXf A;
* VectorXf a;
* foo1(a.head()); // OK
* foo1(A.col()); // OK
* foo1(A.row()); // compilation error because here innerstride!=1
* foo2(A.row()); // The row is copied into a contiguous temporary
* foo2(2*a); // The expression is evaluated into a temporary
* foo2(A.col().segment(2,4)); // No temporary
* \endcode
*
* The range of inputs that can be referenced without temporary can be enlarged using the last two template parameter.
* Here is an example accepting an innerstride!=1:
* \code
* // in-out argument:
* void foo3(Ref<VectorXf,0,InnerStride<> > x);
* foo3(A.row()); // OK
* \endcode
* The downside here is that the function foo3 might be significantly slower than foo1 because it won't be able to exploit vectorization, and will involved more
* expensive address computations even if the input is contiguously stored in memory. To overcome this issue, one might propose to overloads internally calling a
* template function, e.g.:
* \code
* // in the .h:
* void foo(const Ref<MatrixXf>& A);
* void foo(const Ref<MatrixXf,0,Stride<> >& A);
*
* // in the .cpp:
* template<typename TypeOfA> void foo_impl(const TypeOfA& A) {
* ... // crazy code goes here
* }
* void foo(const Ref<MatrixXf>& A) { foo_impl(A); }
* void foo(const Ref<MatrixXf,0,Stride<> >& A) { foo_impl(A); }
* \endcode
*
*
* \sa PlainObjectBase::Map(), \ref TopicStorageOrders
*/
namespace internal {
template<typename _PlainObjectType, int _Options, typename _StrideType>
struct traits<Ref<_PlainObjectType, _Options, _StrideType> >
: public traits<Map<_PlainObjectType, _Options, _StrideType> >
{
typedef _PlainObjectType PlainObjectType;
typedef _StrideType StrideType;
enum {
Options = _Options
};
template<typename Derived> struct match {
enum {
HasDirectAccess = internal::has_direct_access<Derived>::ret,
StorageOrderMatch = PlainObjectType::IsVectorAtCompileTime || ((PlainObjectType::Flags&RowMajorBit)==(Derived::Flags&RowMajorBit)),
InnerStrideMatch = int(StrideType::InnerStrideAtCompileTime)==int(Dynamic)
|| int(StrideType::InnerStrideAtCompileTime)==int(Derived::InnerStrideAtCompileTime)
|| (int(StrideType::InnerStrideAtCompileTime)==0 && int(Derived::InnerStrideAtCompileTime)==1),
OuterStrideMatch = Derived::IsVectorAtCompileTime
|| int(StrideType::OuterStrideAtCompileTime)==int(Dynamic) || int(StrideType::OuterStrideAtCompileTime)==int(Derived::OuterStrideAtCompileTime),
AlignmentMatch = (_Options!=Aligned) || ((PlainObjectType::Flags&AlignedBit)==0) || ((traits<Derived>::Flags&AlignedBit)==AlignedBit),
MatchAtCompileTime = HasDirectAccess && StorageOrderMatch && InnerStrideMatch && OuterStrideMatch && AlignmentMatch
};
typedef typename internal::conditional<MatchAtCompileTime,internal::true_type,internal::false_type>::type type;
};
};
template<typename Derived>
struct traits<RefBase<Derived> > : public traits<Derived> {};
}
template<typename Derived> class RefBase
: public MapBase<Derived>
{
typedef typename internal::traits<Derived>::PlainObjectType PlainObjectType;
typedef typename internal::traits<Derived>::StrideType StrideType;
public:
typedef MapBase<Derived> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(RefBase)
inline Index innerStride() const
{
return StrideType::InnerStrideAtCompileTime != 0 ? m_stride.inner() : 1;
}
inline Index outerStride() const
{
return StrideType::OuterStrideAtCompileTime != 0 ? m_stride.outer()
: IsVectorAtCompileTime ? this->size()
: int(Flags)&RowMajorBit ? this->cols()
: this->rows();
}
RefBase()
: Base(0,RowsAtCompileTime==Dynamic?0:RowsAtCompileTime,ColsAtCompileTime==Dynamic?0:ColsAtCompileTime),
// Stride<> does not allow default ctor for Dynamic strides, so let' initialize it with dummy values:
m_stride(StrideType::OuterStrideAtCompileTime==Dynamic?0:StrideType::OuterStrideAtCompileTime,
StrideType::InnerStrideAtCompileTime==Dynamic?0:StrideType::InnerStrideAtCompileTime)
{}
protected:
typedef Stride<StrideType::OuterStrideAtCompileTime,StrideType::InnerStrideAtCompileTime> StrideBase;
template<typename Expression>
void construct(Expression& expr)
{
if(PlainObjectType::RowsAtCompileTime==1)
{
eigen_assert(expr.rows()==1 || expr.cols()==1);
::new (static_cast<Base*>(this)) Base(expr.data(), 1, expr.size());
}
else if(PlainObjectType::ColsAtCompileTime==1)
{
eigen_assert(expr.rows()==1 || expr.cols()==1);
::new (static_cast<Base*>(this)) Base(expr.data(), expr.size(), 1);
}
else
::new (static_cast<Base*>(this)) Base(expr.data(), expr.rows(), expr.cols());
::new (&m_stride) StrideBase(StrideType::OuterStrideAtCompileTime==0?0:expr.outerStride(),
StrideType::InnerStrideAtCompileTime==0?0:expr.innerStride());
}
StrideBase m_stride;
};
template<typename PlainObjectType, int Options, typename StrideType> class Ref
: public RefBase<Ref<PlainObjectType, Options, StrideType> >
{
typedef internal::traits<Ref> Traits;
public:
typedef RefBase<Ref> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Ref)
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename Derived>
inline Ref(PlainObjectBase<Derived>& expr,
typename internal::enable_if<bool(Traits::template match<Derived>::MatchAtCompileTime),Derived>::type* = 0)
{
Base::construct(expr);
}
template<typename Derived>
inline Ref(const DenseBase<Derived>& expr,
typename internal::enable_if<bool(internal::is_lvalue<Derived>::value&&bool(Traits::template match<Derived>::MatchAtCompileTime)),Derived>::type* = 0,
int = Derived::ThisConstantIsPrivateInPlainObjectBase)
#else
template<typename Derived>
inline Ref(DenseBase<Derived>& expr)
#endif
{
Base::construct(expr.const_cast_derived());
}
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Ref)
};
// this is the const ref version
template<typename PlainObjectType, int Options, typename StrideType> class Ref<const PlainObjectType, Options, StrideType>
: public RefBase<Ref<const PlainObjectType, Options, StrideType> >
{
typedef internal::traits<Ref> Traits;
public:
typedef RefBase<Ref> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Ref)
template<typename Derived>
inline Ref(const DenseBase<Derived>& expr)
{
// std::cout << match_helper<Derived>::HasDirectAccess << "," << match_helper<Derived>::OuterStrideMatch << "," << match_helper<Derived>::InnerStrideMatch << "\n";
// std::cout << int(StrideType::OuterStrideAtCompileTime) << " - " << int(Derived::OuterStrideAtCompileTime) << "\n";
// std::cout << int(StrideType::InnerStrideAtCompileTime) << " - " << int(Derived::InnerStrideAtCompileTime) << "\n";
construct(expr.derived(), typename Traits::template match<Derived>::type());
}
protected:
template<typename Expression>
void construct(const Expression& expr,internal::true_type)
{
Base::construct(expr);
}
template<typename Expression>
void construct(const Expression& expr, internal::false_type)
{
// std::cout << "Ref: copy\n";
m_object = expr;
Base::construct(m_object);
}
protected:
PlainObjectType m_object;
};
} // end namespace Eigen
#endif // EIGEN_REF_H

339
resources/3rdparty/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h

@ -1,339 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_GENERALIZEDEIGENSOLVER_H
#define EIGEN_GENERALIZEDEIGENSOLVER_H
#include "./RealQZ.h"
namespace Eigen {
/** \eigenvalues_module \ingroup Eigenvalues_Module
*
*
* \class GeneralizedEigenSolver
*
* \brief Computes the generalized eigenvalues and eigenvectors of a pair of general matrices
*
* \tparam _MatrixType the type of the matrices of which we are computing the
* eigen-decomposition; this is expected to be an instantiation of the Matrix
* class template. Currently, only real matrices are supported.
*
* The generalized eigenvalues and eigenvectors of a matrix pair \f$ A \f$ and \f$ B \f$ are scalars
* \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda Bv \f$. If
* \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
* \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
* B V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
* have \f$ A = B V D V^{-1} \f$. This is called the generalized eigen-decomposition.
*
* The generalized eigenvalues and eigenvectors of a matrix pair may be complex, even when the
* matrices are real. Moreover, the generalized eigenvalue might be infinite if the matrix B is
* singular. To workaround this difficulty, the eigenvalues are provided as a pair of complex \f$ \alpha \f$
* and real \f$ \beta \f$ such that: \f$ \lambda_i = \alpha_i / \beta_i \f$. If \f$ \beta_i \f$ is (nearly) zero,
* then one can consider the well defined left eigenvalue \f$ \mu = \beta_i / \alpha_i\f$ such that:
* \f$ \mu_i A v_i = B v_i \f$, or even \f$ \mu_i u_i^T A = u_i^T B \f$ where \f$ u_i \f$ is
* called the left eigenvector.
*
* Call the function compute() to compute the generalized eigenvalues and eigenvectors of
* a given matrix pair. Alternatively, you can use the
* GeneralizedEigenSolver(const MatrixType&, const MatrixType&, bool) constructor which computes the
* eigenvalues and eigenvectors at construction time. Once the eigenvalue and
* eigenvectors are computed, they can be retrieved with the eigenvalues() and
* eigenvectors() functions.
*
* Here is an usage example of this class:
* Example: \include GeneralizedEigenSolver.cpp
* Output: \verbinclude GeneralizedEigenSolver.out
*
* \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
*/
template<typename _MatrixType> class GeneralizedEigenSolver
{
public:
/** \brief Synonym for the template parameter \p _MatrixType. */
typedef _MatrixType MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
/** \brief Scalar type for matrices of type #MatrixType. */
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef typename MatrixType::Index Index;
/** \brief Complex scalar type for #MatrixType.
*
* This is \c std::complex<Scalar> if #Scalar is real (e.g.,
* \c float or \c double) and just \c Scalar if #Scalar is
* complex.
*/
typedef std::complex<RealScalar> ComplexScalar;
/** \brief Type for vector of real scalar values eigenvalues as returned by betas().
*
* This is a column vector with entries of type #Scalar.
* The length of the vector is the size of #MatrixType.
*/
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> VectorType;
/** \brief Type for vector of complex scalar values eigenvalues as returned by betas().
*
* This is a column vector with entries of type #ComplexScalar.
* The length of the vector is the size of #MatrixType.
*/
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ComplexVectorType;
/** \brief Expression type for the eigenvalues as returned by eigenvalues().
*/
typedef CwiseBinaryOp<internal::scalar_quotient_op<ComplexScalar,Scalar>,ComplexVectorType,VectorType> EigenvalueType;
/** \brief Type for matrix of eigenvectors as returned by eigenvectors().
*
* This is a square matrix with entries of type #ComplexScalar.
* The size is the same as the size of #MatrixType.
*/
typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
/** \brief Default constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via EigenSolver::compute(const MatrixType&, bool).
*
* \sa compute() for an example.
*/
GeneralizedEigenSolver() : m_eivec(), m_alphas(), m_betas(), m_isInitialized(false), m_realQZ(), m_matS(), m_tmp() {}
/** \brief Default constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem \a size.
* \sa GeneralizedEigenSolver()
*/
GeneralizedEigenSolver(Index size)
: m_eivec(size, size),
m_alphas(size),
m_betas(size),
m_isInitialized(false),
m_eigenvectorsOk(false),
m_realQZ(size),
m_matS(size, size),
m_tmp(size)
{}
/** \brief Constructor; computes the generalized eigendecomposition of given matrix pair.
*
* \param[in] A Square matrix whose eigendecomposition is to be computed.
* \param[in] B Square matrix whose eigendecomposition is to be computed.
* \param[in] computeEigenvectors If true, both the eigenvectors and the
* eigenvalues are computed; if false, only the eigenvalues are computed.
*
* This constructor calls compute() to compute the generalized eigenvalues
* and eigenvectors.
*
* \sa compute()
*/
GeneralizedEigenSolver(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true)
: m_eivec(A.rows(), A.cols()),
m_alphas(A.cols()),
m_betas(A.cols()),
m_isInitialized(false),
m_eigenvectorsOk(false),
m_realQZ(A.cols()),
m_matS(A.rows(), A.cols()),
m_tmp(A.cols())
{
compute(A, B, computeEigenvectors);
}
/* \brief Returns the computed generalized eigenvectors.
*
* \returns %Matrix whose columns are the (possibly complex) eigenvectors.
*
* \pre Either the constructor
* GeneralizedEigenSolver(const MatrixType&,const MatrixType&, bool) or the member function
* compute(const MatrixType&, const MatrixType& bool) has been called before, and
* \p computeEigenvectors was set to true (the default).
*
* Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
* to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
* eigenvectors are normalized to have (Euclidean) norm equal to one. The
* matrix returned by this function is the matrix \f$ V \f$ in the
* generalized eigendecomposition \f$ A = B V D V^{-1} \f$, if it exists.
*
* \sa eigenvalues()
*/
// EigenvectorsType eigenvectors() const;
/** \brief Returns an expression of the computed generalized eigenvalues.
*
* \returns An expression of the column vector containing the eigenvalues.
*
* It is a shortcut for \code this->alphas().cwiseQuotient(this->betas()); \endcode
* Not that betas might contain zeros. It is therefore not recommended to use this function,
* but rather directly deal with the alphas and betas vectors.
*
* \pre Either the constructor
* GeneralizedEigenSolver(const MatrixType&,const MatrixType&,bool) or the member function
* compute(const MatrixType&,const MatrixType&,bool) has been called before.
*
* The eigenvalues are repeated according to their algebraic multiplicity,
* so there are as many eigenvalues as rows in the matrix. The eigenvalues
* are not sorted in any particular order.
*
* \sa alphas(), betas(), eigenvectors()
*/
EigenvalueType eigenvalues() const
{
eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
return EigenvalueType(m_alphas,m_betas);
}
/** \returns A const reference to the vectors containing the alpha values
*
* This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
*
* \sa betas(), eigenvalues() */
ComplexVectorType alphas() const
{
eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
return m_alphas;
}
/** \returns A const reference to the vectors containing the beta values
*
* This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
*
* \sa alphas(), eigenvalues() */
VectorType betas() const
{
eigen_assert(m_isInitialized && "GeneralizedEigenSolver is not initialized.");
return m_betas;
}
/** \brief Computes generalized eigendecomposition of given matrix.
*
* \param[in] A Square matrix whose eigendecomposition is to be computed.
* \param[in] B Square matrix whose eigendecomposition is to be computed.
* \param[in] computeEigenvectors If true, both the eigenvectors and the
* eigenvalues are computed; if false, only the eigenvalues are
* computed.
* \returns Reference to \c *this
*
* This function computes the eigenvalues of the real matrix \p matrix.
* The eigenvalues() function can be used to retrieve them. If
* \p computeEigenvectors is true, then the eigenvectors are also computed
* and can be retrieved by calling eigenvectors().
*
* The matrix is first reduced to real generalized Schur form using the RealQZ
* class. The generalized Schur decomposition is then used to compute the eigenvalues
* and eigenvectors.
*
* The cost of the computation is dominated by the cost of the
* generalized Schur decomposition.
*
* This method reuses of the allocated data in the GeneralizedEigenSolver object.
*/
GeneralizedEigenSolver& compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true);
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
return m_realQZ.info();
}
/** Sets the maximal number of iterations allowed.
*/
GeneralizedEigenSolver& setMaxIterations(Index maxIters)
{
m_realQZ.setMaxIterations(maxIters);
return *this;
}
protected:
MatrixType m_eivec;
ComplexVectorType m_alphas;
VectorType m_betas;
bool m_isInitialized;
bool m_eigenvectorsOk;
RealQZ<MatrixType> m_realQZ;
MatrixType m_matS;
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
ColumnVectorType m_tmp;
};
//template<typename MatrixType>
//typename GeneralizedEigenSolver<MatrixType>::EigenvectorsType GeneralizedEigenSolver<MatrixType>::eigenvectors() const
//{
// eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
// eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
// Index n = m_eivec.cols();
// EigenvectorsType matV(n,n);
// // TODO
// return matV;
//}
template<typename MatrixType>
GeneralizedEigenSolver<MatrixType>&
GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors)
{
eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows());
// Reduce to generalized real Schur form:
// A = Q S Z and B = Q T Z
m_realQZ.compute(A, B, computeEigenvectors);
if (m_realQZ.info() == Success)
{
m_matS = m_realQZ.matrixS();
if (computeEigenvectors)
m_eivec = m_realQZ.matrixZ().transpose();
// Compute eigenvalues from matS
m_alphas.resize(A.cols());
m_betas.resize(A.cols());
Index i = 0;
while (i < A.cols())
{
if (i == A.cols() - 1 || m_matS.coeff(i+1, i) == Scalar(0))
{
m_alphas.coeffRef(i) = m_matS.coeff(i, i);
m_betas.coeffRef(i) = m_realQZ.matrixT().coeff(i,i);
++i;
}
else
{
Scalar p = Scalar(0.5) * (m_matS.coeff(i, i) - m_matS.coeff(i+1, i+1));
Scalar z = internal::sqrt(internal::abs(p * p + m_matS.coeff(i+1, i) * m_matS.coeff(i, i+1)));
m_alphas.coeffRef(i) = ComplexScalar(m_matS.coeff(i+1, i+1) + p, z);
m_alphas.coeffRef(i+1) = ComplexScalar(m_matS.coeff(i+1, i+1) + p, -z);
m_betas.coeffRef(i) = m_realQZ.matrixT().coeff(i,i);
m_betas.coeffRef(i+1) = m_realQZ.matrixT().coeff(i,i);
i += 2;
}
}
}
m_isInitialized = true;
m_eigenvectorsOk = false;//computeEigenvectors;
return *this;
}
} // end namespace Eigen
#endif // EIGEN_GENERALIZEDEIGENSOLVER_H

618
resources/3rdparty/eigen/Eigen/src/Eigenvalues/RealQZ.h

@ -1,618 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Alexey Korepanov <kaikaikai@yandex.ru>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_REAL_QZ_H
#define EIGEN_REAL_QZ_H
namespace Eigen {
/** \eigenvalues_module \ingroup Eigenvalues_Module
*
*
* \class RealQZ
*
* \brief Performs a real QZ decomposition of a pair of square matrices
*
* \tparam _MatrixType the type of the matrix of which we are computing the
* real QZ decomposition; this is expected to be an instantiation of the
* Matrix class template.
*
* Given a real square matrices A and B, this class computes the real QZ
* decomposition: \f$ A = Q S Z \f$, \f$ B = Q T Z \f$ where Q and Z are
* real orthogonal matrixes, T is upper-triangular matrix, and S is upper
* quasi-triangular matrix. An orthogonal matrix is a matrix whose
* inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular
* matrix is a block-triangular matrix whose diagonal consists of 1-by-1
* blocks and 2-by-2 blocks where further reduction is impossible due to
* complex eigenvalues.
*
* The eigenvalues of the pencil \f$ A - z B \f$ can be obtained from
* 1x1 and 2x2 blocks on the diagonals of S and T.
*
* Call the function compute() to compute the real QZ decomposition of a
* given pair of matrices. Alternatively, you can use the
* RealQZ(const MatrixType& B, const MatrixType& B, bool computeQZ)
* constructor which computes the real QZ decomposition at construction
* time. Once the decomposition is computed, you can use the matrixS(),
* matrixT(), matrixQ() and matrixZ() functions to retrieve the matrices
* S, T, Q and Z in the decomposition. If computeQZ==false, some time
* is saved by not computing matrices Q and Z.
*
* Example: \include RealQZ_compute.cpp
* Output: \include RealQZ_compute.out
*
* \note The implementation is based on the algorithm in "Matrix Computations"
* by Gene H. Golub and Charles F. Van Loan, and a paper "An algorithm for
* generalized eigenvalue problems" by C.B.Moler and G.W.Stewart.
*
* \sa class RealSchur, class ComplexSchur, class EigenSolver, class ComplexEigenSolver
*/
template<typename _MatrixType> class RealQZ
{
public:
typedef _MatrixType MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
typedef typename MatrixType::Index Index;
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
/** \brief Default constructor.
*
* \param [in] size Positive integer, size of the matrix whose QZ decomposition will be computed.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via compute(). The \p size parameter is only
* used as a hint. It is not an error to give a wrong \p size, but it may
* impair performance.
*
* \sa compute() for an example.
*/
RealQZ(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) :
m_S(size, size),
m_T(size, size),
m_Q(size, size),
m_Z(size, size),
m_workspace(size*2),
m_maxIters(400),
m_isInitialized(false)
{ }
/** \brief Constructor; computes real QZ decomposition of given matrices
*
* \param[in] A Matrix A.
* \param[in] B Matrix B.
* \param[in] computeQZ If false, A and Z are not computed.
*
* This constructor calls compute() to compute the QZ decomposition.
*/
RealQZ(const MatrixType& A, const MatrixType& B, bool computeQZ = true) :
m_S(A.rows(),A.cols()),
m_T(A.rows(),A.cols()),
m_Q(A.rows(),A.cols()),
m_Z(A.rows(),A.cols()),
m_workspace(A.rows()*2),
m_maxIters(400),
m_isInitialized(false) {
compute(A, B, computeQZ);
}
/** \brief Returns matrix Q in the QZ decomposition.
*
* \returns A const reference to the matrix Q.
*/
const MatrixType& matrixQ() const {
eigen_assert(m_isInitialized && "RealQZ is not initialized.");
eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition.");
return m_Q;
}
/** \brief Returns matrix Z in the QZ decomposition.
*
* \returns A const reference to the matrix Z.
*/
const MatrixType& matrixZ() const {
eigen_assert(m_isInitialized && "RealQZ is not initialized.");
eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition.");
return m_Z;
}
/** \brief Returns matrix S in the QZ decomposition.
*
* \returns A const reference to the matrix S.
*/
const MatrixType& matrixS() const {
eigen_assert(m_isInitialized && "RealQZ is not initialized.");
return m_S;
}
/** \brief Returns matrix S in the QZ decomposition.
*
* \returns A const reference to the matrix S.
*/
const MatrixType& matrixT() const {
eigen_assert(m_isInitialized && "RealQZ is not initialized.");
return m_T;
}
/** \brief Computes QZ decomposition of given matrix.
*
* \param[in] A Matrix A.
* \param[in] B Matrix B.
* \param[in] computeQZ If false, A and Z are not computed.
* \returns Reference to \c *this
*/
RealQZ& compute(const MatrixType& A, const MatrixType& B, bool computeQZ = true);
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful, \c NoConvergence otherwise.
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "RealQZ is not initialized.");
return m_info;
}
/** \brief Returns number of performed QR-like iterations.
*/
Index iterations() const
{
eigen_assert(m_isInitialized && "RealQZ is not initialized.");
return m_global_iter;
}
/** Sets the maximal number of iterations allowed to converge to one eigenvalue
* or decouple the problem.
*/
RealQZ& setMaxIterations(Index maxIters)
{
m_maxIters = maxIters;
return *this;
}
private:
MatrixType m_S, m_T, m_Q, m_Z;
Matrix<Scalar,Dynamic,1> m_workspace;
ComputationInfo m_info;
Index m_maxIters;
bool m_isInitialized;
bool m_computeQZ;
Scalar m_normOfT, m_normOfS;
Index m_global_iter;
typedef Matrix<Scalar,3,1> Vector3s;
typedef Matrix<Scalar,2,1> Vector2s;
typedef Matrix<Scalar,2,2> Matrix2s;
typedef JacobiRotation<Scalar> JRs;
void hessenbergTriangular();
void computeNorms();
Index findSmallSubdiagEntry(Index iu);
Index findSmallDiagEntry(Index f, Index l);
void splitOffTwoRows(Index i);
void pushDownZero(Index z, Index f, Index l);
void step(Index f, Index l, Index iter);
}; // RealQZ
/** \internal Reduces S and T to upper Hessenberg - triangular form */
template<typename MatrixType>
void RealQZ<MatrixType>::hessenbergTriangular()
{
const Index dim = m_S.cols();
// perform QR decomposition of T, overwrite T with R, save Q
HouseholderQR<MatrixType> qrT(m_T);
m_T = qrT.matrixQR();
m_T.template triangularView<StrictlyLower>().setZero();
m_Q = qrT.householderQ();
// overwrite S with Q* S
m_S.applyOnTheLeft(m_Q.adjoint());
// init Z as Identity
if (m_computeQZ)
m_Z = MatrixType::Identity(dim,dim);
// reduce S to upper Hessenberg with Givens rotations
for (Index j=0; j<=dim-3; j++) {
for (Index i=dim-1; i>=j+2; i--) {
JRs G;
// kill S(i,j)
if(m_S.coeff(i,j) != 0)
{
G.makeGivens(m_S.coeff(i-1,j), m_S.coeff(i,j), &m_S.coeffRef(i-1, j));
m_S.coeffRef(i,j) = Scalar(0.0);
m_S.rightCols(dim-j-1).applyOnTheLeft(i-1,i,G.adjoint());
m_T.rightCols(dim-i+1).applyOnTheLeft(i-1,i,G.adjoint());
}
// update Q
if (m_computeQZ)
m_Q.applyOnTheRight(i-1,i,G);
// kill T(i,i-1)
if(m_T.coeff(i,i-1)!=Scalar(0))
{
G.makeGivens(m_T.coeff(i,i), m_T.coeff(i,i-1), &m_T.coeffRef(i,i));
m_T.coeffRef(i,i-1) = Scalar(0.0);
m_S.applyOnTheRight(i,i-1,G);
m_T.topRows(i).applyOnTheRight(i,i-1,G);
}
// update Z
if (m_computeQZ)
m_Z.applyOnTheLeft(i,i-1,G.adjoint());
}
}
}
/** \internal Computes vector L1 norms of S and T when in Hessenberg-Triangular form already */
template<typename MatrixType>
inline void RealQZ<MatrixType>::computeNorms()
{
const Index size = m_S.cols();
m_normOfS = Scalar(0.0);
m_normOfT = Scalar(0.0);
for (Index j = 0; j < size; ++j)
{
m_normOfS += m_S.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
m_normOfT += m_T.row(j).segment(j, size - j).cwiseAbs().sum();
}
}
/** \internal Look for single small sub-diagonal element S(res, res-1) and return res (or 0) */
template<typename MatrixType>
inline typename MatrixType::Index RealQZ<MatrixType>::findSmallSubdiagEntry(Index iu)
{
Index res = iu;
while (res > 0)
{
Scalar s = internal::abs(m_S.coeff(res-1,res-1)) + internal::abs(m_S.coeff(res,res));
if (s == Scalar(0.0))
s = m_normOfS;
if (internal::abs(m_S.coeff(res,res-1)) < NumTraits<Scalar>::epsilon() * s)
break;
res--;
}
return res;
}
/** \internal Look for single small diagonal element T(res, res) for res between f and l, and return res (or f-1) */
template<typename MatrixType>
inline typename MatrixType::Index RealQZ<MatrixType>::findSmallDiagEntry(Index f, Index l)
{
Index res = l;
while (res >= f) {
if (internal::abs(m_T.coeff(res,res)) <= NumTraits<Scalar>::epsilon() * m_normOfT)
break;
res--;
}
return res;
}
/** \internal decouple 2x2 diagonal block in rows i, i+1 if eigenvalues are real */
template<typename MatrixType>
inline void RealQZ<MatrixType>::splitOffTwoRows(Index i)
{
const Index dim=m_S.cols();
if (internal::abs(m_S.coeff(i+1,i)==Scalar(0)))
return;
Index z = findSmallDiagEntry(i,i+1);
if (z==i-1)
{
// block of (S T^{-1})
Matrix2s STi = m_T.template block<2,2>(i,i).template triangularView<Upper>().
template solve<OnTheRight>(m_S.template block<2,2>(i,i));
Scalar p = Scalar(0.5)*(STi(0,0)-STi(1,1));
Scalar q = p*p + STi(1,0)*STi(0,1);
if (q>=0) {
Scalar z = internal::sqrt(q);
// one QR-like iteration for ABi - lambda I
// is enough - when we know exact eigenvalue in advance,
// convergence is immediate
JRs G;
if (p>=0)
G.makeGivens(p + z, STi(1,0));
else
G.makeGivens(p - z, STi(1,0));
m_S.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint());
m_T.rightCols(dim-i).applyOnTheLeft(i,i+1,G.adjoint());
// update Q
if (m_computeQZ)
m_Q.applyOnTheRight(i,i+1,G);
G.makeGivens(m_T.coeff(i+1,i+1), m_T.coeff(i+1,i));
m_S.topRows(i+2).applyOnTheRight(i+1,i,G);
m_T.topRows(i+2).applyOnTheRight(i+1,i,G);
// update Z
if (m_computeQZ)
m_Z.applyOnTheLeft(i+1,i,G.adjoint());
m_S.coeffRef(i+1,i) = Scalar(0.0);
m_T.coeffRef(i+1,i) = Scalar(0.0);
}
}
else
{
pushDownZero(z,i,i+1);
}
}
/** \internal use zero in T(z,z) to zero S(l,l-1), working in block f..l */
template<typename MatrixType>
inline void RealQZ<MatrixType>::pushDownZero(Index z, Index f, Index l)
{
JRs G;
const Index dim = m_S.cols();
for (Index zz=z; zz<l; zz++)
{
// push 0 down
Index firstColS = zz>f ? (zz-1) : zz;
G.makeGivens(m_T.coeff(zz, zz+1), m_T.coeff(zz+1, zz+1));
m_S.rightCols(dim-firstColS).applyOnTheLeft(zz,zz+1,G.adjoint());
m_T.rightCols(dim-zz).applyOnTheLeft(zz,zz+1,G.adjoint());
m_T.coeffRef(zz+1,zz+1) = Scalar(0.0);
// update Q
if (m_computeQZ)
m_Q.applyOnTheRight(zz,zz+1,G);
// kill S(zz+1, zz-1)
if (zz>f)
{
G.makeGivens(m_S.coeff(zz+1, zz), m_S.coeff(zz+1,zz-1));
m_S.topRows(zz+2).applyOnTheRight(zz, zz-1,G);
m_T.topRows(zz+1).applyOnTheRight(zz, zz-1,G);
m_S.coeffRef(zz+1,zz-1) = Scalar(0.0);
// update Z
if (m_computeQZ)
m_Z.applyOnTheLeft(zz,zz-1,G.adjoint());
}
}
// finally kill S(l,l-1)
G.makeGivens(m_S.coeff(l,l), m_S.coeff(l,l-1));
m_S.applyOnTheRight(l,l-1,G);
m_T.applyOnTheRight(l,l-1,G);
m_S.coeffRef(l,l-1)=Scalar(0.0);
// update Z
if (m_computeQZ)
m_Z.applyOnTheLeft(l,l-1,G.adjoint());
}
/** \internal QR-like iterative step for block f..l */
template<typename MatrixType>
inline void RealQZ<MatrixType>::step(Index f, Index l, Index iter) {
const Index dim = m_S.cols();
// x, y, z
Scalar x, y, z;
if (iter==10)
{
// Wilkinson ad hoc shift
const Scalar
a11=m_S.coeff(f+0,f+0), a12=m_S.coeff(f+0,f+1),
a21=m_S.coeff(f+1,f+0), a22=m_S.coeff(f+1,f+1), a32=m_S.coeff(f+2,f+1),
b12=m_T.coeff(f+0,f+1),
b11i=Scalar(1.0)/m_T.coeff(f+0,f+0),
b22i=Scalar(1.0)/m_T.coeff(f+1,f+1),
a87=m_S.coeff(l-1,l-2),
a98=m_S.coeff(l-0,l-1),
b77i=Scalar(1.0)/m_T.coeff(l-2,l-2),
b88i=Scalar(1.0)/m_T.coeff(l-1,l-1);
Scalar ss = internal::abs(a87*b77i) + internal::abs(a98*b88i),
lpl = Scalar(1.5)*ss,
ll = ss*ss;
x = ll + a11*a11*b11i*b11i - lpl*a11*b11i + a12*a21*b11i*b22i
- a11*a21*b12*b11i*b11i*b22i;
y = a11*a21*b11i*b11i - lpl*a21*b11i + a21*a22*b11i*b22i
- a21*a21*b12*b11i*b11i*b22i;
z = a21*a32*b11i*b22i;
}
else if (iter==16)
{
// another exceptional shift
x = m_S.coeff(f,f)/m_T.coeff(f,f)-m_S.coeff(l,l)/m_T.coeff(l,l) + m_S.coeff(l,l-1)*m_T.coeff(l-1,l) /
(m_T.coeff(l-1,l-1)*m_T.coeff(l,l));
y = m_S.coeff(f+1,f)/m_T.coeff(f,f);
z = 0;
}
else if (iter>23 && !(iter%8))
{
// extremely exceptional shift
x = internal::random<Scalar>(-1.0,1.0);
y = internal::random<Scalar>(-1.0,1.0);
z = internal::random<Scalar>(-1.0,1.0);
}
else
{
// Compute the shifts: (x,y,z,0...) = (AB^-1 - l1 I) (AB^-1 - l2 I) e1
// where l1 and l2 are the eigenvalues of the 2x2 matrix C = U V^-1 where
// U and V are 2x2 bottom right sub matrices of A and B. Thus:
// = AB^-1AB^-1 + l1 l2 I - (l1+l2)(AB^-1)
// = AB^-1AB^-1 + det(M) - tr(M)(AB^-1)
// Since we are only interested in having x, y, z with a correct ratio, we have:
const Scalar
a11 = m_S.coeff(f,f), a12 = m_S.coeff(f,f+1),
a21 = m_S.coeff(f+1,f), a22 = m_S.coeff(f+1,f+1),
a32 = m_S.coeff(f+2,f+1),
a88 = m_S.coeff(l-1,l-1), a89 = m_S.coeff(l-1,l),
a98 = m_S.coeff(l,l-1), a99 = m_S.coeff(l,l),
b11 = m_T.coeff(f,f), b12 = m_T.coeff(f,f+1),
b22 = m_T.coeff(f+1,f+1),
b88 = m_T.coeff(l-1,l-1), b89 = m_T.coeff(l-1,l),
b99 = m_T.coeff(l,l);
x = ( (a88/b88 - a11/b11)*(a99/b99 - a11/b11) - (a89/b99)*(a98/b88) + (a98/b88)*(b89/b99)*(a11/b11) ) * (b11/a21)
+ a12/b22 - (a11/b11)*(b12/b22);
y = (a22/b22-a11/b11) - (a21/b11)*(b12/b22) - (a88/b88-a11/b11) - (a99/b99-a11/b11) + (a98/b88)*(b89/b99);
z = a32/b22;
}
JRs G;
for (Index k=f; k<=l-2; k++)
{
// variables for Householder reflections
Vector2s essential2;
Scalar tau, beta;
Vector3s hr(x,y,z);
// Q_k to annihilate S(k+1,k-1) and S(k+2,k-1)
hr.makeHouseholderInPlace(tau, beta);
essential2 = hr.template bottomRows<2>();
Index fc=(std::max)(k-1,Index(0)); // first col to update
m_S.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data());
m_T.template middleRows<3>(k).rightCols(dim-fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data());
if (m_computeQZ)
m_Q.template middleCols<3>(k).applyHouseholderOnTheRight(essential2, tau, m_workspace.data());
if (k>f)
m_S.coeffRef(k+2,k-1) = m_S.coeffRef(k+1,k-1) = Scalar(0.0);
// Z_{k1} to annihilate T(k+2,k+1) and T(k+2,k)
hr << m_T.coeff(k+2,k+2),m_T.coeff(k+2,k),m_T.coeff(k+2,k+1);
hr.makeHouseholderInPlace(tau, beta);
essential2 = hr.template bottomRows<2>();
{
Index lr = (std::min)(k+4,dim); // last row to update
Map<Matrix<Scalar,Dynamic,1> > tmp(m_workspace.data(),lr);
// S
tmp = m_S.template middleCols<2>(k).topRows(lr) * essential2;
tmp += m_S.col(k+2).head(lr);
m_S.col(k+2).head(lr) -= tau*tmp;
m_S.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint();
// T
tmp = m_T.template middleCols<2>(k).topRows(lr) * essential2;
tmp += m_T.col(k+2).head(lr);
m_T.col(k+2).head(lr) -= tau*tmp;
m_T.template middleCols<2>(k).topRows(lr) -= (tau*tmp) * essential2.adjoint();
}
if (m_computeQZ)
{
// Z
Map<Matrix<Scalar,1,Dynamic> > tmp(m_workspace.data(),dim);
tmp = essential2.adjoint()*(m_Z.template middleRows<2>(k));
tmp += m_Z.row(k+2);
m_Z.row(k+2) -= tau*tmp;
m_Z.template middleRows<2>(k) -= essential2 * (tau*tmp);
}
m_T.coeffRef(k+2,k) = m_T.coeffRef(k+2,k+1) = Scalar(0.0);
// Z_{k2} to annihilate T(k+1,k)
G.makeGivens(m_T.coeff(k+1,k+1), m_T.coeff(k+1,k));
m_S.applyOnTheRight(k+1,k,G);
m_T.applyOnTheRight(k+1,k,G);
// update Z
if (m_computeQZ)
m_Z.applyOnTheLeft(k+1,k,G.adjoint());
m_T.coeffRef(k+1,k) = Scalar(0.0);
// update x,y,z
x = m_S.coeff(k+1,k);
y = m_S.coeff(k+2,k);
if (k < l-2)
z = m_S.coeff(k+3,k);
} // loop over k
// Q_{n-1} to annihilate y = S(l,l-2)
G.makeGivens(x,y);
m_S.applyOnTheLeft(l-1,l,G.adjoint());
m_T.applyOnTheLeft(l-1,l,G.adjoint());
if (m_computeQZ)
m_Q.applyOnTheRight(l-1,l,G);
m_S.coeffRef(l,l-2) = Scalar(0.0);
// Z_{n-1} to annihilate T(l,l-1)
G.makeGivens(m_T.coeff(l,l),m_T.coeff(l,l-1));
m_S.applyOnTheRight(l,l-1,G);
m_T.applyOnTheRight(l,l-1,G);
if (m_computeQZ)
m_Z.applyOnTheLeft(l,l-1,G.adjoint());
m_T.coeffRef(l,l-1) = Scalar(0.0);
}
template<typename MatrixType>
RealQZ<MatrixType>& RealQZ<MatrixType>::compute(const MatrixType& A_in, const MatrixType& B_in, bool computeQZ)
{
const Index dim = A_in.cols();
assert (A_in.rows()==dim && A_in.cols()==dim
&& B_in.rows()==dim && B_in.cols()==dim
&& "Need square matrices of the same dimension");
m_isInitialized = true;
m_computeQZ = computeQZ;
m_S = A_in; m_T = B_in;
m_workspace.resize(dim*2);
m_global_iter = 0;
// entrance point: hessenberg triangular decomposition
hessenbergTriangular();
// compute L1 vector norms of T, S into m_normOfS, m_normOfT
computeNorms();
Index l = dim-1,
f,
local_iter = 0;
while (l>0 && local_iter<m_maxIters)
{
f = findSmallSubdiagEntry(l);
// now rows and columns f..l (including) decouple from the rest of the problem
if (f>0) m_S.coeffRef(f,f-1) = Scalar(0.0);
if (f == l) // One root found
{
l--;
local_iter = 0;
}
else if (f == l-1) // Two roots found
{
splitOffTwoRows(f);
l -= 2;
local_iter = 0;
}
else // No convergence yet
{
// if there's zero on diagonal of T, we can isolate an eigenvalue with Givens rotations
Index z = findSmallDiagEntry(f,l);
if (z>=f)
{
// zero found
pushDownZero(z,f,l);
}
else
{
// We are sure now that S.block(f,f, l-f+1,l-f+1) is underuced upper-Hessenberg
// and T.block(f,f, l-f+1,l-f+1) is invertible uper-triangular, which allows to
// apply a QR-like iteration to rows and columns f..l.
step(f,l, local_iter);
local_iter++;
m_global_iter++;
}
}
}
// check if we converged before reaching iterations limit
m_info = (local_iter<m_maxIters) ? Success : NoConvergence;
return *this;
} // end compute
} // end namespace Eigen
#endif //EIGEN_REAL_QZ

6
resources/3rdparty/eigen/Eigen/src/MetisSupport/CMakeLists.txt

@ -1,6 +0,0 @@
FILE(GLOB Eigen_MetisSupport_SRCS "*.h")
INSTALL(FILES
${Eigen_MetisSupport_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/MetisSupport COMPONENT Devel
)

138
resources/3rdparty/eigen/Eigen/src/MetisSupport/MetisSupport.h

@ -1,138 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef METIS_SUPPORT_H
#define METIS_SUPPORT_H
namespace Eigen {
/**
* Get the fill-reducing ordering from the METIS package
*
* If A is the original matrix and Ap is the permuted matrix,
* the fill-reducing permutation is defined as follows :
* Row (column) i of A is the matperm(i) row (column) of Ap.
* WARNING: As computed by METIS, this corresponds to the vector iperm (instead of perm)
*/
template <typename Index>
class MetisOrdering
{
public:
typedef PermutationMatrix<Dynamic,Dynamic,Index> PermutationType;
typedef Matrix<Index,Dynamic,1> IndexVector;
template <typename MatrixType>
void get_symmetrized_graph(const MatrixType& A)
{
Index m = A.cols();
// Get the transpose of the input matrix
MatrixType At = A.transpose();
// Get the number of nonzeros elements in each row/col of At+A
Index TotNz = 0;
IndexVector visited(m);
visited.setConstant(-1);
for (int j = 0; j < m; j++)
{
// Compute the union structure of of A(j,:) and At(j,:)
visited(j) = j; // Do not include the diagonal element
// Get the nonzeros in row/column j of A
for (typename MatrixType::InnerIterator it(A, j); it; ++it)
{
Index idx = it.index(); // Get the row index (for column major) or column index (for row major)
if (visited(idx) != j )
{
visited(idx) = j;
++TotNz;
}
}
//Get the nonzeros in row/column j of At
for (typename MatrixType::InnerIterator it(At, j); it; ++it)
{
Index idx = it.index();
if(visited(idx) != j)
{
visited(idx) = j;
++TotNz;
}
}
}
// Reserve place for A + At
m_indexPtr.resize(m+1);
m_innerIndices.resize(TotNz);
// Now compute the real adjacency list of each column/row
visited.setConstant(-1);
Index CurNz = 0;
for (int j = 0; j < m; j++)
{
m_indexPtr(j) = CurNz;
visited(j) = j; // Do not include the diagonal element
// Add the pattern of row/column j of A to A+At
for (typename MatrixType::InnerIterator it(A,j); it; ++it)
{
Index idx = it.index(); // Get the row index (for column major) or column index (for row major)
if (visited(idx) != j )
{
visited(idx) = j;
m_innerIndices(CurNz) = idx;
CurNz++;
}
}
//Add the pattern of row/column j of At to A+At
for (typename MatrixType::InnerIterator it(At, j); it; ++it)
{
Index idx = it.index();
if(visited(idx) != j)
{
visited(idx) = j;
m_innerIndices(CurNz) = idx;
++CurNz;
}
}
}
m_indexPtr(m) = CurNz;
}
template <typename MatrixType>
void operator() (const MatrixType& A, PermutationType& matperm)
{
Index m = A.cols();
IndexVector perm(m),iperm(m);
// First, symmetrize the matrix graph.
get_symmetrized_graph(A);
int output_error;
// Call the fill-reducing routine from METIS
output_error = METIS_NodeND(&m, m_indexPtr.data(), m_innerIndices.data(), NULL, NULL, perm.data(), iperm.data());
if(output_error != METIS_OK)
{
//FIXME The ordering interface should define a class of possible errors
std::cerr << "ERROR WHILE CALLING THE METIS PACKAGE \n";
return;
}
// Get the fill-reducing permutation
//NOTE: If Ap is the permuted matrix then perm and iperm vectors are defined as follows
// Row (column) i of Ap is the perm(i) row(column) of A, and row (column) i of A is the iperm(i) row(column) of Ap
// To be consistent with the use of the permutation in SparseLU module, we thus keep the iperm vector
matperm.resize(m);
for (int j = 0; j < m; j++)
matperm.indices()(j) = iperm(j);
}
protected:
IndexVector m_indexPtr; // Pointer to the adjacenccy list of each row/column
IndexVector m_innerIndices; // Adjacency list
};
}// end namespace eigen
#endif

1849
resources/3rdparty/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h
File diff suppressed because it is too large
View File

158
resources/3rdparty/eigen/Eigen/src/OrderingMethods/Ordering.h

@ -1,158 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_ORDERING_H
#define EIGEN_ORDERING_H
#include "Amd.h"
namespace Eigen {
#include "Eigen_Colamd.h"
namespace internal {
/**
* Get the symmetric pattern A^T+A from the input matrix A.
* FIXME: The values should not be considered here
*/
template<typename MatrixType>
void ordering_helper_at_plus_a(const MatrixType& mat, MatrixType& symmat)
{
MatrixType C;
C = mat.transpose(); // NOTE: Could be costly
for (int i = 0; i < C.rows(); i++)
{
for (typename MatrixType::InnerIterator it(C, i); it; ++it)
it.valueRef() = 0.0;
}
symmat = C + mat;
}
}
/**
* Get the approximate minimum degree ordering
* If the matrix is not structurally symmetric, an ordering of A^T+A is computed
* \tparam Index The type of indices of the matrix
*/
template <typename Index>
class AMDOrdering
{
public:
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
/** Compute the permutation vector from a sparse matrix
* This routine is much faster if the input matrix is column-major
*/
template <typename MatrixType>
void operator()(const MatrixType& mat, PermutationType& perm)
{
// Compute the symmetric pattern
SparseMatrix<typename MatrixType::Scalar, ColMajor, Index> symm;
internal::ordering_helper_at_plus_a(mat,symm);
// Call the AMD routine
//m_mat.prune(keep_diag());
internal::minimum_degree_ordering(symm, perm);
}
/** Compute the permutation with a selfadjoint matrix */
template <typename SrcType, unsigned int SrcUpLo>
void operator()(const SparseSelfAdjointView<SrcType, SrcUpLo>& mat, PermutationType& perm)
{
SparseMatrix<typename SrcType::Scalar, ColMajor, Index> C = mat;
// Call the AMD routine
// m_mat.prune(keep_diag()); //Remove the diagonal elements
internal::minimum_degree_ordering(C, perm);
}
};
/**
* Get the natural ordering
*
*NOTE Returns an empty permutation matrix
* \tparam Index The type of indices of the matrix
*/
template <typename Index>
class NaturalOrdering
{
public:
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
/** Compute the permutation vector from a column-major sparse matrix */
template <typename MatrixType>
void operator()(const MatrixType& mat, PermutationType& perm)
{
perm.resize(0);
}
};
/**
* Get the column approximate minimum degree ordering
* The matrix should be in column-major format
*/
template<typename Index>
class COLAMDOrdering;
#include "Eigen_Colamd.h"
template<typename Index>
class COLAMDOrdering
{
public:
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
typedef Matrix<Index, Dynamic, 1> IndexVector;
/** Compute the permutation vector form a sparse matrix */
template <typename MatrixType>
void operator() (const MatrixType& mat, PermutationType& perm)
{
int m = mat.rows();
int n = mat.cols();
int nnz = mat.nonZeros();
// Get the recommended value of Alen to be used by colamd
int Alen = internal::colamd_recommended(nnz, m, n);
// Set the default parameters
double knobs [COLAMD_KNOBS];
int stats [COLAMD_STATS];
internal::colamd_set_defaults(knobs);
int info;
IndexVector p(n+1), A(Alen);
for(int i=0; i <= n; i++) p(i) = mat.outerIndexPtr()[i];
for(int i=0; i < nnz; i++) A(i) = mat.innerIndexPtr()[i];
// Call Colamd routine to compute the ordering
info = internal::colamd(m, n, Alen, A.data(), p.data(), knobs, stats);
eigen_assert( info && "COLAMD failed " );
perm.resize(n);
for (int i = 0; i < n; i++) perm.indices()(p(i)) = i;
}
};
} // end namespace Eigen
#endif

6
resources/3rdparty/eigen/Eigen/src/SparseLU/CMakeLists.txt

@ -1,6 +0,0 @@
FILE(GLOB Eigen_SparseLU_SRCS "*.h")
INSTALL(FILES
${Eigen_SparseLU_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/SparseLU COMPONENT Devel
)

630
resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU.h

@ -1,630 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSE_LU_H
#define EIGEN_SPARSE_LU_H
namespace Eigen {
// Data structure needed by all routines
#include "SparseLU_Structs.h"
#include "SparseLU_Matrix.h"
// Base structure containing all the factorization routines
#include "SparseLUBase.h"
/**
* \ingroup SparseLU_Module
* \brief Sparse supernodal LU factorization for general matrices
*
* This class implements the supernodal LU factorization for general matrices.
* It uses the main techniques from the sequential SuperLU package
* (http://crd-legacy.lbl.gov/~xiaoye/SuperLU/). It handles transparently real
* and complex arithmetics with single and double precision, depending on the
* scalar type of your input matrix.
* The code has been optimized to provide BLAS-3 operations during supernode-panel updates.
* It benefits directly from the built-in high-performant Eigen BLAS routines.
* Moreover, when the size of a supernode is very small, the BLAS calls are avoided to
* enable a better optimization from the compiler. For best performance,
* you should compile it with NDEBUG flag to avoid the numerous bounds checking on vectors.
*
* An important parameter of this class is the ordering method. It is used to reorder the columns
* (and eventually the rows) of the matrix to reduce the number of new elements that are created during
* numerical factorization. The cheapest method available is COLAMD.
* See \link Ordering_Modules the Ordering module \endlink for the list of
* built-in and external ordering methods.
*
* Simple example with key steps
* \code
* VectorXd x(n), b(n);
* SparseMatrix<double, ColMajor> A;
* SparseLU<SparseMatrix<scalar, ColMajor>, COLAMDOrdering<int> > solver;
* // fill A and b;
* // Compute the ordering permutation vector from the structural pattern of A
* solver.analyzePattern(A);
* // Compute the numerical factorization
* solver.factorize(A);
* //Use the factors to solve the linear system
* x = solver.solve(b);
* \endcode
*
* \WARNING The input matrix A should be in a \b compressed and \b column-major form.
* Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
*
* \NOTE Unlike the initial SuperLU implementation, there is no step to equilibrate the matrix.
* For badly scaled matrices, this step can be useful to reduce the pivoting during factorization.
* If this is the case for your matrices, you can try the basic scaling method at
* "unsupported/Eigen/src/IterativeSolvers/Scaling.h"
*
* \tparam _MatrixType The type of the sparse matrix. It must be a column-major SparseMatrix<>
* \tparam _OrderingType The ordering method to use, either AMD, COLAMD or METIS
*
*
* \sa \ref TutorialSparseDirectSolvers
* \sa \ref Ordering_Modules
*/
template <typename _MatrixType, typename _OrderingType>
class SparseLU
{
public:
typedef _MatrixType MatrixType;
typedef _OrderingType OrderingType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
typedef SparseMatrix<Scalar,ColMajor,Index> NCMatrix;
typedef SuperNodalMatrix<Scalar, Index> SCMatrix;
typedef Matrix<Scalar,Dynamic,1> ScalarVector;
typedef Matrix<Index,Dynamic,1> IndexVector;
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
public:
SparseLU():m_isInitialized(true),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0)
{
initperfvalues();
}
SparseLU(const MatrixType& matrix):m_isInitialized(true),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0)
{
initperfvalues();
compute(matrix);
}
~SparseLU()
{
// Free all explicit dynamic pointers
}
void analyzePattern (const MatrixType& matrix);
void factorize (const MatrixType& matrix);
void simplicialfactorize(const MatrixType& matrix);
/**
* Compute the symbolic and numeric factorization of the input sparse matrix.
* The input matrix should be in column-major storage.
*/
void compute (const MatrixType& matrix)
{
// Analyze
analyzePattern(matrix);
//Factorize
factorize(matrix);
}
inline Index rows() const { return m_mat.rows(); }
inline Index cols() const { return m_mat.cols(); }
/** Indicate that the pattern of the input matrix is symmetric */
void isSymmetric(bool sym)
{
m_symmetricmode = sym;
}
/** Set the threshold used for a diagonal entry to be an acceptable pivot. */
void diagPivotThresh(RealScalar thresh)
{
m_diagpivotthresh = thresh;
}
/** Return the number of nonzero elements in the L factor */
int nnzL()
{
if (m_factorizationIsOk)
return m_nnzL;
else
{
std::cerr<<"Numerical factorization should be done before\n";
return 0;
}
}
/** Return the number of nonzero elements in the U factor */
int nnzU()
{
if (m_factorizationIsOk)
return m_nnzU;
else
{
std::cerr<<"Numerical factorization should be done before\n";
return 0;
}
}
/** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
*
* \sa compute()
*/
template<typename Rhs>
inline const internal::solve_retval<SparseLU, Rhs> solve(const MatrixBase<Rhs>& B) const
{
eigen_assert(m_factorizationIsOk && "SparseLU is not initialized.");
eigen_assert(rows()==B.rows()
&& "SparseLU::solve(): invalid number of rows of the right hand side matrix B");
return internal::solve_retval<SparseLU, Rhs>(*this, B.derived());
}
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the PaStiX reports a problem
* \c InvalidInput if the input matrix is invalid
*
* \sa iparm()
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return m_info;
}
template<typename Rhs, typename Dest>
bool _solve(const MatrixBase<Rhs> &B, MatrixBase<Dest> &_X) const
{
Dest& X(_X.derived());
eigen_assert(m_factorizationIsOk && "The matrix should be factorized first");
EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
int nrhs = B.cols();
Index n = B.rows();
// Permute the right hand side to form X = Pr*B
// on return, X is overwritten by the computed solution
X.resize(n,nrhs);
for(int j = 0; j < nrhs; ++j)
X.col(j) = m_perm_r * B.col(j);
//Forward substitution with L
m_Lstore.solveInPlace(X);
// Backward solve with U
for (int k = m_Lstore.nsuper(); k >= 0; k--)
{
Index fsupc = m_Lstore.supToCol()[k];
Index istart = m_Lstore.rowIndexPtr()[fsupc];
Index nsupr = m_Lstore.rowIndexPtr()[fsupc+1] - istart;
Index nsupc = m_Lstore.supToCol()[k+1] - fsupc;
Index luptr = m_Lstore.colIndexPtr()[fsupc];
if (nsupc == 1)
{
for (int j = 0; j < nrhs; j++)
{
X(fsupc, j) /= m_Lstore.valuePtr()[luptr];
}
}
else
{
Map<const Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A( &(m_Lstore.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(nsupr) );
Map< Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
U = A.template triangularView<Upper>().solve(U);
}
for (int j = 0; j < nrhs; ++j)
{
for (int jcol = fsupc; jcol < fsupc + nsupc; jcol++)
{
typename MappedSparseMatrix<Scalar>::InnerIterator it(m_Ustore, jcol);
for ( ; it; ++it)
{
Index irow = it.index();
X(irow, j) -= X(jcol, j) * it.value();
}
}
}
} // End For U-solve
// Permute back the solution
for (int j = 0; j < nrhs; ++j)
X.col(j) = m_perm_c.inverse() * X.col(j);
return true;
}
protected:
// Functions
void initperfvalues()
{
m_perfv.panel_size = 12;
m_perfv.relax = 1;
m_perfv.maxsuper = 100;
m_perfv.rowblk = 200;
m_perfv.colblk = 60;
m_perfv.fillfactor = 20;
}
// Variables
mutable ComputationInfo m_info;
bool m_isInitialized;
bool m_factorizationIsOk;
bool m_analysisIsOk;
NCMatrix m_mat; // The input (permuted ) matrix
SCMatrix m_Lstore; // The lower triangular matrix (supernodal)
MappedSparseMatrix<Scalar> m_Ustore; // The upper triangular matrix
PermutationType m_perm_c; // Column permutation
PermutationType m_perm_r ; // Row permutation
IndexVector m_etree; // Column elimination tree
LU_GlobalLU_t<IndexVector, ScalarVector> m_glu;
// SuperLU/SparseLU options
bool m_symmetricmode;
// values for performance
LU_perfvalues m_perfv;
RealScalar m_diagpivotthresh; // Specifies the threshold used for a diagonal entry to be an acceptable pivot
int m_nnzL, m_nnzU; // Nonzeros in L and U factors
private:
// Copy constructor
SparseLU (SparseLU& ) {}
}; // End class SparseLU
// Functions needed by the anaysis phase
/**
* Compute the column permutation to minimize the fill-in
*
* - Apply this permutation to the input matrix -
*
* - Compute the column elimination tree on the permuted matrix
*
* - Postorder the elimination tree and the column permutation
*
*/
template <typename MatrixType, typename OrderingType>
void SparseLU<MatrixType, OrderingType>::analyzePattern(const MatrixType& mat)
{
//TODO It is possible as in SuperLU to compute row and columns scaling vectors to equilibrate the matrix mat.
OrderingType ord;
ord(mat,m_perm_c);
// Apply the permutation to the column of the input matrix
// m_mat = mat * m_perm_c.inverse(); //FIXME It should be less expensive here to permute only the structural pattern of the matrix
//First copy the whole input matrix.
m_mat = mat;
m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers. FIXME : This vector is filled but not subsequently used.
//Then, permute only the column pointers
for (int i = 0; i < mat.cols(); i++)
{
m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = mat.outerIndexPtr()[i];
m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = mat.outerIndexPtr()[i+1] - mat.outerIndexPtr()[i];
}
// Compute the column elimination tree of the permuted matrix
/*if (m_etree.size() == 0) */m_etree.resize(m_mat.cols());
SparseLUBase<Scalar,Index>::LU_sp_coletree(m_mat, m_etree);
// In symmetric mode, do not do postorder here
if (!m_symmetricmode) {
IndexVector post, iwork;
// Post order etree
SparseLUBase<Scalar,Index>::LU_TreePostorder(m_mat.cols(), m_etree, post);
// Renumber etree in postorder
int m = m_mat.cols();
iwork.resize(m+1);
for (int i = 0; i < m; ++i) iwork(post(i)) = post(m_etree(i));
m_etree = iwork;
// Postmultiply A*Pc by post, i.e reorder the matrix according to the postorder of the etree
PermutationType post_perm(m); //FIXME Use directly a constructor with post
for (int i = 0; i < m; i++)
post_perm.indices()(i) = post(i);
// Combine the two permutations : postorder the permutation for future use
m_perm_c = post_perm * m_perm_c;
} // end postordering
m_analysisIsOk = true;
}
// Functions needed by the numerical factorization phase
/**
* - Numerical factorization
* - Interleaved with the symbolic factorization
* On exit, info is
*
* = 0: successful factorization
*
* > 0: if info = i, and i is
*
* <= A->ncol: U(i,i) is exactly zero. The factorization has
* been completed, but the factor U is exactly singular,
* and division by zero will occur if it is used to solve a
* system of equations.
*
* > A->ncol: number of bytes allocated when memory allocation
* failure occurred, plus A->ncol. If lwork = -1, it is
* the estimated amount of space needed, plus A->ncol.
*/
template <typename MatrixType, typename OrderingType>
void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
{
eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
eigen_assert((matrix.rows() == matrix.cols()) && "Only for squared matrices");
typedef typename IndexVector::Scalar Index;
// Apply the column permutation computed in analyzepattern()
// m_mat = matrix * m_perm_c.inverse();
m_mat = matrix;
m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers.
//Then, permute only the column pointers
for (int i = 0; i < matrix.cols(); i++)
{
m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = matrix.outerIndexPtr()[i];
m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = matrix.outerIndexPtr()[i+1] - matrix.outerIndexPtr()[i];
}
int m = m_mat.rows();
int n = m_mat.cols();
int nnz = m_mat.nonZeros();
int maxpanel = m_perfv.panel_size * m;
// Allocate working storage common to the factor routines
int lwork = 0;
int info = SparseLUBase<Scalar,Index>::LUMemInit(m, n, nnz, lwork, m_perfv.fillfactor, m_perfv.panel_size, m_glu);
if (info)
{
std::cerr << "UNABLE TO ALLOCATE WORKING MEMORY\n\n" ;
m_factorizationIsOk = false;
return ;
}
// Set up pointers for integer working arrays
IndexVector segrep(m); segrep.setZero();
IndexVector parent(m); parent.setZero();
IndexVector xplore(m); xplore.setZero();
IndexVector repfnz(maxpanel);
IndexVector panel_lsub(maxpanel);
IndexVector xprune(n); xprune.setZero();
IndexVector marker(m*LU_NO_MARKER); marker.setZero();
repfnz.setConstant(-1);
panel_lsub.setConstant(-1);
// Set up pointers for scalar working arrays
ScalarVector dense;
dense.setZero(maxpanel);
ScalarVector tempv;
tempv.setZero(LU_NUM_TEMPV(m, m_perfv.panel_size, m_perfv.maxsuper, m_perfv.rowblk) );
// Compute the inverse of perm_c
PermutationType iperm_c(m_perm_c.inverse());
// Identify initial relaxed snodes
IndexVector relax_end(n);
if ( m_symmetricmode == true )
SparseLUBase<Scalar,Index>::LU_heap_relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
else
SparseLUBase<Scalar,Index>::LU_relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
m_perm_r.resize(m);
m_perm_r.indices().setConstant(-1);
marker.setConstant(-1);
m_glu.supno(0) = IND_EMPTY; m_glu.xsup.setConstant(0);
m_glu.xsup(0) = m_glu.xlsub(0) = m_glu.xusub(0) = m_glu.xlusup(0) = Index(0);
// Work on one 'panel' at a time. A panel is one of the following :
// (a) a relaxed supernode at the bottom of the etree, or
// (b) panel_size contiguous columns, <panel_size> defined by the user
int jcol,kcol;
IndexVector panel_histo(n);
Index nextu, nextlu, jsupno, fsupc, new_next;
Index pivrow; // Pivotal row number in the original row matrix
int nseg1; // Number of segments in U-column above panel row jcol
int nseg; // Number of segments in each U-column
int irep, icol;
int i, k, jj;
for (jcol = 0; jcol < n; )
{
if (relax_end(jcol) != IND_EMPTY)
{ // Starting a relaxed node from jcol
kcol = relax_end(jcol); // End index of the relaxed snode
// Factorize the relaxed supernode(jcol:kcol)
// First, determine the union of the row structure of the snode
info = SparseLUBase<Scalar,Index>::LU_snode_dfs(jcol, kcol, m_mat, xprune, marker, m_glu);
if ( info )
{
std::cerr << "MEMORY ALLOCATION FAILED IN SNODE_DFS() \n";
m_info = NumericalIssue;
m_factorizationIsOk = false;
return;
}
nextu = m_glu.xusub(jcol); //starting location of column jcol in ucol
nextlu = m_glu.xlusup(jcol); //Starting location of column jcol in lusup (rectangular supernodes)
jsupno = m_glu.supno(jcol); // Supernode number which column jcol belongs to
fsupc = m_glu.xsup(jsupno); //First column number of the current supernode
new_next = nextlu + (m_glu.xlsub(fsupc+1)-m_glu.xlsub(fsupc)) * (kcol - jcol + 1);
int mem;
while (new_next > m_glu.nzlumax )
{
mem = SparseLUBase<Scalar,Index>::LUMemXpand(m_glu.lusup, m_glu.nzlumax, nextlu, LUSUP, m_glu.num_expansions);
if (mem)
{
std::cerr << "MEMORY ALLOCATION FAILED FOR L FACTOR \n";
m_factorizationIsOk = false;
return;
}
}
// Now, left-looking factorize each column within the snode
for (icol = jcol; icol<=kcol; icol++){
m_glu.xusub(icol+1) = nextu;
// Scatter into SPA dense(*)
for (typename MatrixType::InnerIterator it(m_mat, icol); it; ++it)
dense(it.row()) = it.value();
// Numeric update within the snode
SparseLUBase<Scalar,Index>::LU_snode_bmod(icol, fsupc, dense, m_glu);
// Eliminate the current column
info = SparseLUBase<Scalar,Index>::LU_pivotL(icol, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu);
if ( info )
{
m_info = NumericalIssue;
std::cerr<< "THE MATRIX IS STRUCTURALLY SINGULAR ... ZERO COLUMN AT " << info <<std::endl;
m_factorizationIsOk = false;
return;
}
}
jcol = icol; // The last column te be eliminated
}
else
{ // Work on one panel of panel_size columns
// Adjust panel size so that a panel won't overlap with the next relaxed snode.
int panel_size = m_perfv.panel_size; // upper bound on panel width
for (k = jcol + 1; k < (std::min)(jcol+panel_size, n); k++)
{
if (relax_end(k) != IND_EMPTY)
{
panel_size = k - jcol;
break;
}
}
if (k == n)
panel_size = n - jcol;
// Symbolic outer factorization on a panel of columns
SparseLUBase<Scalar,Index>::LU_panel_dfs(m, panel_size, jcol, m_mat, m_perm_r.indices(), nseg1, dense, panel_lsub, segrep, repfnz, xprune, marker, parent, xplore, m_glu);
// Numeric sup-panel updates in topological order
SparseLUBase<Scalar,Index>::LU_panel_bmod(m, panel_size, jcol, nseg1, dense, tempv, segrep, repfnz, m_perfv, m_glu);
// Sparse LU within the panel, and below the panel diagonal
for ( jj = jcol; jj< jcol + panel_size; jj++)
{
k = (jj - jcol) * m; // Column index for w-wide arrays
nseg = nseg1; // begin after all the panel segments
//Depth-first-search for the current column
VectorBlock<IndexVector> panel_lsubk(panel_lsub, k, m);
VectorBlock<IndexVector> repfnz_k(repfnz, k, m);
info = SparseLUBase<Scalar,Index>::LU_column_dfs(m, jj, m_perm_r.indices(), m_perfv.maxsuper, nseg, panel_lsubk, segrep, repfnz_k, xprune, marker, parent, xplore, m_glu);
if ( info )
{
std::cerr << "UNABLE TO EXPAND MEMORY IN COLUMN_DFS() \n";
m_info = NumericalIssue;
m_factorizationIsOk = false;
return;
}
// Numeric updates to this column
VectorBlock<ScalarVector> dense_k(dense, k, m);
VectorBlock<IndexVector> segrep_k(segrep, nseg1, m-nseg1);
info = SparseLUBase<Scalar,Index>::LU_column_bmod(jj, (nseg - nseg1), dense_k, tempv, segrep_k, repfnz_k, jcol, m_glu);
if ( info )
{
std::cerr << "UNABLE TO EXPAND MEMORY IN COLUMN_BMOD() \n";
m_info = NumericalIssue;
m_factorizationIsOk = false;
return;
}
// Copy the U-segments to ucol(*)
info = SparseLUBase<Scalar,Index>::LU_copy_to_ucol(jj, nseg, segrep, repfnz_k ,m_perm_r.indices(), dense_k, m_glu);
if ( info )
{
std::cerr << "UNABLE TO EXPAND MEMORY IN COPY_TO_UCOL() \n";
m_info = NumericalIssue;
m_factorizationIsOk = false;
return;
}
// Form the L-segment
info = SparseLUBase<Scalar,Index>::LU_pivotL(jj, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu);
if ( info )
{
std::cerr<< "THE MATRIX IS STRUCTURALLY SINGULAR ... ZERO COLUMN AT " << info <<std::endl;
m_info = NumericalIssue;
m_factorizationIsOk = false;
return;
}
// Prune columns (0:jj-1) using column jj
SparseLUBase<Scalar,Index>::LU_pruneL(jj, m_perm_r.indices(), pivrow, nseg, segrep, repfnz_k, xprune, m_glu);
// Reset repfnz for this column
for (i = 0; i < nseg; i++)
{
irep = segrep(i);
repfnz_k(irep) = IND_EMPTY;
}
} // end SparseLU within the panel
jcol += panel_size; // Move to the next panel
} // end else
} // end for -- end elimination
// Count the number of nonzeros in factors
SparseLUBase<Scalar,Index>::LU_countnz(n, m_nnzL, m_nnzU, m_glu);
// Apply permutation to the L subscripts
SparseLUBase<Scalar,Index>::LU_fixupL(n, m_perm_r.indices(), m_glu);
// Create supernode matrix L
m_Lstore.setInfos(m, n, m_glu.lusup, m_glu.xlusup, m_glu.lsub, m_glu.xlsub, m_glu.supno, m_glu.xsup);
// Create the column major upper sparse matrix U;
new (&m_Ustore) MappedSparseMatrix<Scalar> ( m, n, m_nnzU, m_glu.xusub.data(), m_glu.usub.data(), m_glu.ucol.data() );
m_info = Success;
m_factorizationIsOk = true;
}
// #include "SparseLU_simplicialfactorize.h"
namespace internal {
template<typename _MatrixType, typename Derived, typename Rhs>
struct solve_retval<SparseLU<_MatrixType,Derived>, Rhs>
: solve_retval_base<SparseLU<_MatrixType,Derived>, Rhs>
{
typedef SparseLU<_MatrixType,Derived> Dec;
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dec()._solve(rhs(),dst);
}
};
} // end namespace internal
} // End namespace Eigen
#endif

74
resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLUBase.h

@ -1,74 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef SPARSELUBASE_H
#define SPARSELUBASE_H
/**
* Base class for sparseLU
*/
template <typename Scalar, typename Index>
struct SparseLUBase
{
typedef Matrix<Scalar,Dynamic,1> ScalarVector;
typedef Matrix<Index,Dynamic,1> IndexVector;
typedef typename ScalarVector::RealScalar RealScalar;
typedef VectorBlock<Matrix<Scalar,Dynamic,1> > BlockScalarVector;
typedef VectorBlock<Matrix<Index,Dynamic,1> > BlockIndexVector;
// typedef Ref<Matrix<Scalar,Dynamic,1> > BlockScalarVector;
// typedef Ref<Matrix<Index,Dynamic,1> > BlockIndexVector;
typedef LU_GlobalLU_t<IndexVector, ScalarVector> GlobalLU_t;
typedef SparseMatrix<Scalar,ColMajor,Index> MatrixType;
static int etree_find (int i, IndexVector& pp);
static int LU_sp_coletree(const MatrixType& mat, IndexVector& parent);
static void LU_nr_etdfs (int n, IndexVector& parent, IndexVector& first_kid, IndexVector& next_kid, IndexVector& post, int postnum);
static void LU_TreePostorder(int n, IndexVector& parent, IndexVector& post);
template <typename VectorType>
static int expand(VectorType& vec, int& length, int nbElts, int keep_prev, int& num_expansions);
static int LUMemInit(int m, int n, int annz, int lwork, int fillratio, int panel_size, GlobalLU_t& glu);
template <typename VectorType>
static int LUMemXpand(VectorType& vec, int& maxlen, int nbElts, LU_MemType memtype, int& num_expansions);
static void LU_heap_relax_snode (const int n, IndexVector& et, const int relax_columns, IndexVector& descendants, IndexVector& relax_end);
static void LU_relax_snode (const int n, IndexVector& et, const int relax_columns, IndexVector& descendants, IndexVector& relax_end);
static int LU_snode_dfs(const int jcol, const int kcol,const MatrixType& mat, IndexVector& xprune, IndexVector& marker, LU_GlobalLU_t<IndexVector, ScalarVector>& glu);
static int LU_snode_bmod (const int jcol, const int fsupc, ScalarVector& dense, GlobalLU_t& glu);
static int LU_pivotL(const int jcol, const RealScalar diagpivotthresh, IndexVector& perm_r, IndexVector& iperm_c, int& pivrow, GlobalLU_t& glu);
template <typename Traits>
static void LU_dfs_kernel(const int jj, IndexVector& perm_r,
int& nseg, IndexVector& panel_lsub, IndexVector& segrep,
Ref<IndexVector> repfnz_col, IndexVector& xprune, Ref<IndexVector> marker, IndexVector& parent,
IndexVector& xplore, GlobalLU_t& glu, int& nextl_col, int krow, Traits& traits);
static void LU_panel_dfs(const int m, const int w, const int jcol, MatrixType& A, IndexVector& perm_r, int& nseg, ScalarVector& dense, IndexVector& panel_lsub, IndexVector& segrep, IndexVector& repfnz, IndexVector& xprune, IndexVector& marker, IndexVector& parent, IndexVector& xplore, GlobalLU_t& glu);
static void LU_panel_bmod(const int m, const int w, const int jcol, const int nseg, ScalarVector& dense, ScalarVector& tempv, IndexVector& segrep, IndexVector& repfnz, LU_perfvalues& perfv, GlobalLU_t& glu);
static int LU_column_dfs(const int m, const int jcol, IndexVector& perm_r, int maxsuper, int& nseg, BlockIndexVector& lsub_col, IndexVector& segrep, BlockIndexVector& repfnz, IndexVector& xprune, IndexVector& marker, IndexVector& parent, IndexVector& xplore, GlobalLU_t& glu);
static int LU_column_bmod(const int jcol, const int nseg, BlockScalarVector& dense, ScalarVector& tempv, BlockIndexVector& segrep, BlockIndexVector& repfnz, int fpanelc, GlobalLU_t& glu);
static int LU_copy_to_ucol(const int jcol, const int nseg, IndexVector& segrep, BlockIndexVector& repfnz ,IndexVector& perm_r, BlockScalarVector& dense, GlobalLU_t& glu);
static void LU_pruneL(const int jcol, const IndexVector& perm_r, const int pivrow, const int nseg, const IndexVector& segrep, BlockIndexVector& repfnz, IndexVector& xprune, GlobalLU_t& glu);
static void LU_countnz(const int n, int& nnzL, int& nnzU, GlobalLU_t& glu);
static void LU_fixupL(const int n, const IndexVector& perm_r, GlobalLU_t& glu);
};
#include "SparseLU_Coletree.h"
#include "SparseLU_Memory.h"
#include "SparseLU_heap_relax_snode.h"
#include "SparseLU_relax_snode.h"
#include "SparseLU_snode_dfs.h"
#include "SparseLU_snode_bmod.h"
#include "SparseLU_pivotL.h"
#include "SparseLU_panel_dfs.h"
#include "SparseLU_kernel_bmod.h"
#include "SparseLU_panel_bmod.h"
#include "SparseLU_column_dfs.h"
#include "SparseLU_column_bmod.h"
#include "SparseLU_copy_to_ucol.h"
#include "SparseLU_pruneL.h"
#include "SparseLU_Utils.h"
#endif

180
resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_Coletree.h

@ -1,180 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*
* NOTE: This file is the modified version of sp_coletree.c file in SuperLU
* -- SuperLU routine (version 3.1) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* August 1, 2008
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef SPARSELU_COLETREE_H
#define SPARSELU_COLETREE_H
/** Find the root of the tree/set containing the vertex i : Use Path halving */
template< typename Scalar,typename Index>
int SparseLUBase<Scalar,Index>::etree_find (int i, IndexVector& pp)
{
int p = pp(i); // Parent
int gp = pp(p); // Grand parent
while (gp != p)
{
pp(i) = gp; // Parent pointer on find path is changed to former grand parent
i = gp;
p = pp(i);
gp = pp(p);
}
return p;
}
/** Compute the column elimination tree of a sparse matrix
* NOTE : The matrix is supposed to be in column-major format.
*
*/
template <typename Scalar, typename Index>
int SparseLUBase<Scalar,Index>::LU_sp_coletree(const MatrixType& mat, IndexVector& parent)
{
int nc = mat.cols(); // Number of columns
int nr = mat.rows(); // Number of rows
IndexVector root(nc); // root of subtree of etree
root.setZero();
IndexVector pp(nc); // disjoint sets
pp.setZero(); // Initialize disjoint sets
IndexVector firstcol(nr); // First nonzero column in each row
//Compute first nonzero column in each row
int row,col;
firstcol.setConstant(nc); //for (row = 0; row < nr; firstcol(row++) = nc);
for (col = 0; col < nc; col++)
{
for (typename MatrixType::InnerIterator it(mat, col); it; ++it)
{ // Is it necessary to browse the whole matrix, the lower part should do the job ??
row = it.row();
firstcol(row) = (std::min)(firstcol(row), col);
}
}
/* Compute etree by Liu's algorithm for symmetric matrices,
except use (firstcol[r],c) in place of an edge (r,c) of A.
Thus each row clique in A'*A is replaced by a star
centered at its first vertex, which has the same fill. */
int rset, cset, rroot;
for (col = 0; col < nc; col++)
{
pp(col) = col;
cset = col;
root(cset) = col;
parent(col) = nc;
for (typename MatrixType::InnerIterator it(mat, col); it; ++it)
{ // A sequence of interleaved find and union is performed
row = firstcol(it.row());
if (row >= col) continue;
rset = etree_find(row, pp); // Find the name of the set containing row
rroot = root(rset);
if (rroot != col)
{
parent(rroot) = col;
pp(cset) = rset;
cset = rset;
root(cset) = col;
}
}
}
return 0;
}
/**
* Depth-first search from vertex n. No recursion.
* This routine was contributed by Cédric Doucet, CEDRAT Group, Meylan, France.
*/
template <typename Scalar, typename Index>
void SparseLUBase<Scalar,Index>::LU_nr_etdfs (int n, IndexVector& parent, IndexVector& first_kid, IndexVector& next_kid, IndexVector& post, int postnum)
{
int current = n, first, next;
while (postnum != n)
{
// No kid for the current node
first = first_kid(current);
// no kid for the current node
if (first == -1)
{
// Numbering this node because it has no kid
post(current) = postnum++;
// looking for the next kid
next = next_kid(current);
while (next == -1)
{
// No more kids : back to the parent node
current = parent(current);
// numbering the parent node
post(current) = postnum++;
// Get the next kid
next = next_kid(current);
}
// stopping criterion
if (postnum == n+1) return;
// Updating current node
current = next;
}
else
{
current = first;
}
}
}
/**
* Post order a tree
* \param parent Input tree
* \param post postordered tree
*/
template <typename Scalar, typename Index>
void SparseLUBase<Scalar,Index>::LU_TreePostorder(int n, IndexVector& parent, IndexVector& post)
{
IndexVector first_kid, next_kid; // Linked list of children
int postnum;
// Allocate storage for working arrays and results
first_kid.resize(n+1);
next_kid.setZero(n+1);
post.setZero(n+1);
// Set up structure describing children
int v, dad;
first_kid.setConstant(-1);
for (v = n-1; v >= 0; v--)
{
dad = parent(v);
next_kid(v) = first_kid(dad);
first_kid(dad) = v;
}
// Depth-first search from dummy root vertex #n
postnum = 0;
LU_nr_etdfs(n, parent, first_kid, next_kid, post, postnum);
}
#endif

313
resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_Matrix.h

@ -1,313 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSELU_MATRIX_H
#define EIGEN_SPARSELU_MATRIX_H
/** \ingroup SparseLU_Module
* \brief a class to manipulate the L supernodal factor from the SparseLU factorization
*
* This class contain the data to easily store
* and manipulate the supernodes during the factorization and solution phase of Sparse LU.
* Only the lower triangular matrix has supernodes.
*
* NOTE : This class corresponds to the SCformat structure in SuperLU
*
*/
/* TO DO
* InnerIterator as for sparsematrix
* SuperInnerIterator to iterate through all supernodes
* Function for triangular solve
*/
template <typename _Scalar, typename _Index>
class SuperNodalMatrix
{
public:
typedef _Scalar Scalar;
typedef _Index Index;
typedef Matrix<Index,Dynamic,1> IndexVector;
typedef Matrix<Scalar,Dynamic,1> ScalarVector;
public:
SuperNodalMatrix()
{
}
SuperNodalMatrix(int m, int n, ScalarVector& nzval, IndexVector& nzval_colptr, IndexVector& rowind,
IndexVector& rowind_colptr, IndexVector& col_to_sup, IndexVector& sup_to_col )
{
setInfos(m, n, nzval, nzval_colptr, rowind, rowind_colptr, col_to_sup, sup_to_col);
}
~SuperNodalMatrix()
{
}
/**
* Set appropriate pointers for the lower triangular supernodal matrix
* These infos are available at the end of the numerical factorization
* FIXME This class will be modified such that it can be use in the course
* of the factorization.
*/
void setInfos(int m, int n, ScalarVector& nzval, IndexVector& nzval_colptr, IndexVector& rowind,
IndexVector& rowind_colptr, IndexVector& col_to_sup, IndexVector& sup_to_col )
{
m_row = m;
m_col = n;
m_nzval = nzval.data();
m_nzval_colptr = nzval_colptr.data();
m_rowind = rowind.data();
m_rowind_colptr = rowind_colptr.data();
m_nsuper = col_to_sup(n);
m_col_to_sup = col_to_sup.data();
m_sup_to_col = sup_to_col.data();
}
/**
* Number of rows
*/
int rows()
{
return m_row;
}
/**
* Number of columns
*/
int cols()
{
return m_col;
}
/**
* Return the array of nonzero values packed by column
*
* The size is nnz
*/
Scalar* valuePtr()
{
return m_nzval;
}
const Scalar* valuePtr() const
{
return m_nzval;
}
/**
* Return the pointers to the beginning of each column in \ref valuePtr()
*/
Index* colIndexPtr()
{
return m_nzval_colptr;
}
const Index* colIndexPtr() const
{
return m_nzval_colptr;
}
/**
* Return the array of compressed row indices of all supernodes
*/
Index* rowIndex()
{
return m_rowind;
}
const Index* rowIndex() const
{
return m_rowind;
}
/**
* Return the location in \em rowvaluePtr() which starts each column
*/
Index* rowIndexPtr()
{
return m_rowind_colptr;
}
const Index* rowIndexPtr() const
{
return m_rowind_colptr;
}
/**
* Return the array of column-to-supernode mapping
*/
Index* colToSup()
{
return m_col_to_sup;
}
const Index* colToSup() const
{
return m_col_to_sup;
}
/**
* Return the array of supernode-to-column mapping
*/
Index* supToCol()
{
return m_sup_to_col;
}
const Index* supToCol() const
{
return m_sup_to_col;
}
/**
* Return the number of supernodes
*/
int nsuper() const
{
return m_nsuper;
}
class InnerIterator;
template<typename Dest>
void solveInPlace( MatrixBase<Dest>&X) const;
protected:
Index m_row; // Number of rows
Index m_col; // Number of columns
Index m_nsuper; // Number of supernodes
Scalar* m_nzval; //array of nonzero values packed by column
Index* m_nzval_colptr; //nzval_colptr[j] Stores the location in nzval[] which starts column j
Index* m_rowind; // Array of compressed row indices of rectangular supernodes
Index* m_rowind_colptr; //rowind_colptr[j] stores the location in rowind[] which starts column j
Index* m_col_to_sup; // col_to_sup[j] is the supernode number to which column j belongs
Index* m_sup_to_col; //sup_to_col[s] points to the starting column of the s-th supernode
private :
};
/**
* \brief InnerIterator class to iterate over nonzero values of the current column in the supernode
*
*/
template<typename Scalar, typename Index>
class SuperNodalMatrix<Scalar,Index>::InnerIterator
{
public:
InnerIterator(const SuperNodalMatrix& mat, Index outer)
: m_matrix(mat),
m_outer(outer),
m_idval(mat.colIndexPtr()[outer]),
m_startval(m_idval),
m_endval(mat.colIndexPtr()[outer+1]),
m_idrow(mat.rowIndexPtr()[outer]),
m_startidrow(m_idrow),
m_endidrow(mat.rowIndexPtr()[outer+1])
{}
inline InnerIterator& operator++()
{
m_idval++;
m_idrow++;
return *this;
}
inline Scalar value() const { return m_matrix.valuePtr()[m_idval]; }
inline Scalar& valueRef() { return const_cast<Scalar&>(m_matrix.valuePtr()[m_idval]); }
inline Index index() const { return m_matrix.rowIndex()[m_idrow]; }
inline Index row() const { return index(); }
inline Index col() const { return m_outer; }
inline Index supIndex() const { return m_matrix.colToSup()[m_outer]; }
inline operator bool() const
{
return ( (m_idval < m_endval) && (m_idval > m_startval) &&
(m_idrow < m_endidrow) && (m_idrow > m_startidrow) );
}
protected:
const SuperNodalMatrix& m_matrix; // Supernodal lower triangular matrix
const Index m_outer; // Current column
Index m_idval; //Index to browse the values in the current column
const Index m_startval; // Start of the column value
const Index m_endval; // End of the column value
Index m_idrow; //Index to browse the row indices
const Index m_startidrow; // Start of the row indices of the current column value
const Index m_endidrow; // End of the row indices of the current column value
};
/**
* \brief Solve with the supernode triangular matrix
*
*/
template<typename Scalar, typename Index>
template<typename Dest>
void SuperNodalMatrix<Scalar,Index>::solveInPlace( MatrixBase<Dest>&X) const
{
Index n = X.rows();
int nrhs = X.cols();
const Scalar * Lval = valuePtr(); // Nonzero values
Matrix<Scalar,Dynamic,Dynamic> work(n, nrhs); // working vector
work.setZero();
for (int k = 0; k <= nsuper(); k ++)
{
Index fsupc = supToCol()[k]; // First column of the current supernode
Index istart = rowIndexPtr()[fsupc]; // Pointer index to the subscript of the current column
Index nsupr = rowIndexPtr()[fsupc+1] - istart; // Number of rows in the current supernode
Index nsupc = supToCol()[k+1] - fsupc; // Number of columns in the current supernode
Index nrow = nsupr - nsupc; // Number of rows in the non-diagonal part of the supernode
Index irow; //Current index row
if (nsupc == 1 )
{
for (int j = 0; j < nrhs; j++)
{
InnerIterator it(*this, fsupc);
++it; // Skip the diagonal element
for (; it; ++it)
{
irow = it.row();
X(irow, j) -= X(fsupc, j) * it.value();
}
}
}
else
{
// The supernode has more than one column
Index luptr = colIndexPtr()[fsupc];
// Triangular solve
Map<const Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A( &(Lval[luptr]), nsupc, nsupc, OuterStride<>(nsupr) );
Map< Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
U = A.template triangularView<UnitLower>().solve(U);
// Matrix-vector product
new (&A) Map<const Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > ( &(Lval[luptr+nsupc]), nrow, nsupc, OuterStride<>(nsupr) );
work.block(0, 0, nrow, nrhs) = A * U;
//Begin Scatter
for (int j = 0; j < nrhs; j++)
{
Index iptr = istart + nsupc;
for (int i = 0; i < nrow; i++)
{
irow = rowIndex()[iptr];
X(irow, j) -= work(i, j); // Scatter operation
work(i, j) = Scalar(0);
iptr++;
}
}
}
}
}
#endif

204
resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_Memory.h

@ -1,204 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*
* NOTE: This file is the modified version of [s,d,c,z]memory.c files in SuperLU
* -- SuperLU routine (version 3.1) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* August 1, 2008
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef EIGEN_SPARSELU_MEMORY
#define EIGEN_SPARSELU_MEMORY
#define LU_NO_MARKER 3
#define LU_NUM_TEMPV(m,w,t,b) ((std::max)(m, (t+b)*w) )
#define IND_EMPTY (-1)
#define LU_Reduce(alpha) ((alpha + 1) / 2) // i.e (alpha-1)/2 + 1
#define LU_GluIntArray(n) (5* (n) + 5)
#define LU_TempSpace(m, w) ( (2*w + 4 + LU_NO_MARKER) * m * sizeof(Index) \
+ (w + 1) * m * sizeof(Scalar) )
/**
* Expand the existing storage to accomodate more fill-ins
* \param vec Valid pointer to the vector to allocate or expand
* \param [in,out]length At input, contain the current length of the vector that is to be increased. At output, length of the newly allocated vector
* \param [in]nbElts Current number of elements in the factors
* \param keep_prev 1: use length and do not expand the vector; 0: compute new_len and expand
* \param [in,out]num_expansions Number of times the memory has been expanded
*/
template <typename Scalar, typename Index>
template <typename VectorType>
int SparseLUBase<Scalar,Index>::expand(VectorType& vec, int& length, int nbElts, int keep_prev, int& num_expansions)
{
float alpha = 1.5; // Ratio of the memory increase
int new_len; // New size of the allocated memory
if(num_expansions == 0 || keep_prev)
new_len = length ; // First time allocate requested
else
new_len = alpha * length ;
VectorType old_vec; // Temporary vector to hold the previous values
if (nbElts > 0 )
old_vec = vec.segment(0,nbElts);
//Allocate or expand the current vector
try
{
vec.resize(new_len);
}
catch(std::bad_alloc& )
{
if ( !num_expansions )
{
// First time to allocate from LUMemInit()
throw; // Pass the exception to LUMemInit() which has a try... catch block
}
if (keep_prev)
{
// In this case, the memory length should not not be reduced
return new_len;
}
else
{
// Reduce the size and increase again
int tries = 0; // Number of attempts
do
{
alpha = LU_Reduce(alpha);
new_len = alpha * length ;
try
{
vec.resize(new_len);
}
catch(std::bad_alloc& )
{
tries += 1;
if ( tries > 10) return new_len;
}
} while (!vec.size());
}
}
//Copy the previous values to the newly allocated space
if (nbElts > 0)
vec.segment(0, nbElts) = old_vec;
length = new_len;
if(num_expansions) ++num_expansions;
return 0;
}
/**
* \brief Allocate various working space for the numerical factorization phase.
* \param m number of rows of the input matrix
* \param n number of columns
* \param annz number of initial nonzeros in the matrix
* \param lwork if lwork=-1, this routine returns an estimated size of the required memory
* \param glu persistent data to facilitate multiple factors : will be deleted later ??
* \return an estimated size of the required memory if lwork = -1; otherwise, return the size of actually allocated memory when allocation failed, and 0 on success
* NOTE Unlike SuperLU, this routine does not support successive factorization with the same pattern and the same row permutation
*/
template <typename Scalar, typename Index>
int SparseLUBase<Scalar,Index>::LUMemInit(int m, int n, int annz, int lwork, int fillratio, int panel_size, GlobalLU_t& glu)
{
int& num_expansions = glu.num_expansions; //No memory expansions so far
num_expansions = 0;
glu.nzumax = glu.nzlumax = (std::max)(fillratio * annz, m*n); // estimated number of nonzeros in U
glu.nzlmax = (std::max)(1., fillratio/4.) * annz; // estimated nnz in L factor
// Return the estimated size to the user if necessary
if (lwork == IND_EMPTY)
{
int estimated_size;
estimated_size = LU_GluIntArray(n) * sizeof(Index) + LU_TempSpace(m, panel_size)
+ (glu.nzlmax + glu.nzumax) * sizeof(Index) + (glu.nzlumax+glu.nzumax) * sizeof(Scalar) + n;
return estimated_size;
}
// Setup the required space
// First allocate Integer pointers for L\U factors
glu.xsup.resize(n+1);
glu.supno.resize(n+1);
glu.xlsub.resize(n+1);
glu.xlusup.resize(n+1);
glu.xusub.resize(n+1);
// Reserve memory for L/U factors
do
{
try
{
expand<ScalarVector>(glu.lusup, glu.nzlumax, 0, 0, num_expansions);
expand<ScalarVector>(glu.ucol,glu.nzumax, 0, 0, num_expansions);
expand<IndexVector>(glu.lsub,glu.nzlmax, 0, 0, num_expansions);
expand<IndexVector>(glu.usub,glu.nzumax, 0, 1, num_expansions);
}
catch(std::bad_alloc& )
{
//Reduce the estimated size and retry
glu.nzlumax /= 2;
glu.nzumax /= 2;
glu.nzlmax /= 2;
if (glu.nzlumax < annz ) return glu.nzlumax;
}
} while (!glu.lusup.size() || !glu.ucol.size() || !glu.lsub.size() || !glu.usub.size());
++num_expansions;
return 0;
} // end LuMemInit
/**
* \brief Expand the existing storage
* \param vec vector to expand
* \param [in,out]maxlen On input, previous size of vec (Number of elements to copy ). on output, new size
* \param nbElts current number of elements in the vector.
* \param glu Global data structure
* \return 0 on success, > 0 size of the memory allocated so far
*/
template <typename Scalar, typename Index>
template <typename VectorType>
int SparseLUBase<Scalar,Index>::LUMemXpand(VectorType& vec, int& maxlen, int nbElts, LU_MemType memtype, int& num_expansions)
{
int failed_size;
if (memtype == USUB)
failed_size = expand<VectorType>(vec, maxlen, nbElts, 1, num_expansions);
else
failed_size = expand<VectorType>(vec, maxlen, nbElts, 0, num_expansions);
if (failed_size)
return failed_size;
return 0 ;
}
#endif

103
resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_Structs.h

@ -1,103 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*
* NOTE: This file comes from a partly modified version of files slu_[s,d,c,z]defs.h
* -- SuperLU routine (version 4.1) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* November, 2010
*
* Global data structures used in LU factorization -
*
* nsuper: #supernodes = nsuper + 1, numbered [0, nsuper].
* (xsup,supno): supno[i] is the supernode no to which i belongs;
* xsup(s) points to the beginning of the s-th supernode.
* e.g. supno 0 1 2 2 3 3 3 4 4 4 4 4 (n=12)
* xsup 0 1 2 4 7 12
* Note: dfs will be performed on supernode rep. relative to the new
* row pivoting ordering
*
* (xlsub,lsub): lsub[*] contains the compressed subscript of
* rectangular supernodes; xlsub[j] points to the starting
* location of the j-th column in lsub[*]. Note that xlsub
* is indexed by column.
* Storage: original row subscripts
*
* During the course of sparse LU factorization, we also use
* (xlsub,lsub) for the purpose of symmetric pruning. For each
* supernode {s,s+1,...,t=s+r} with first column s and last
* column t, the subscript set
* lsub[j], j=xlsub[s], .., xlsub[s+1]-1
* is the structure of column s (i.e. structure of this supernode).
* It is used for the storage of numerical values.
* Furthermore,
* lsub[j], j=xlsub[t], .., xlsub[t+1]-1
* is the structure of the last column t of this supernode.
* It is for the purpose of symmetric pruning. Therefore, the
* structural subscripts can be rearranged without making physical
* interchanges among the numerical values.
*
* However, if the supernode has only one column, then we
* only keep one set of subscripts. For any subscript interchange
* performed, similar interchange must be done on the numerical
* values.
*
* The last column structures (for pruning) will be removed
* after the numercial LU factorization phase.
*
* (xlusup,lusup): lusup[*] contains the numerical values of the
* rectangular supernodes; xlusup[j] points to the starting
* location of the j-th column in storage vector lusup[*]
* Note: xlusup is indexed by column.
* Each rectangular supernode is stored by column-major
* scheme, consistent with Fortran 2-dim array storage.
*
* (xusub,ucol,usub): ucol[*] stores the numerical values of
* U-columns outside the rectangular supernodes. The row
* subscript of nonzero ucol[k] is stored in usub[k].
* xusub[i] points to the starting location of column i in ucol.
* Storage: new row subscripts; that is subscripts of PA.
*/
#ifndef EIGEN_LU_STRUCTS
#define EIGEN_LU_STRUCTS
typedef enum {LUSUP, UCOL, LSUB, USUB, LLVL, ULVL} LU_MemType;
template <typename IndexVector, typename ScalarVector>
struct LU_GlobalLU_t {
typedef typename IndexVector::Scalar Index;
IndexVector xsup; //First supernode column ... xsup(s) points to the beginning of the s-th supernode
IndexVector supno; // Supernode number corresponding to this column (column to supernode mapping)
ScalarVector lusup; // nonzero values of L ordered by columns
IndexVector lsub; // Compressed row indices of L rectangular supernodes.
IndexVector xlusup; // pointers to the beginning of each column in lusup
IndexVector xlsub; // pointers to the beginning of each column in lsub
Index nzlmax; // Current max size of lsub
Index nzlumax; // Current max size of lusup
ScalarVector ucol; // nonzero values of U ordered by columns
IndexVector usub; // row indices of U columns in ucol
IndexVector xusub; // Pointers to the beginning of each column of U in ucol
Index nzumax; // Current max size of ucol
Index n; // Number of columns in the matrix
int num_expansions;
};
// Values to set for performance
struct LU_perfvalues {
int panel_size; // a panel consists of at most <panel_size> consecutive columns
int relax; // To control degree of relaxing supernodes. If the number of nodes (columns)
// in a subtree of the elimination tree is less than relax, this subtree is considered
// as one supernode regardless of the row structures of those columns
int maxsuper; // The maximum size for a supernode in complete LU
int rowblk; // The minimum row dimension for 2-D blocking to be used;
int colblk; // The minimum column dimension for 2-D blocking to be used;
int fillfactor; // The estimated fills factors for L and U, compared with A
};
#endif

75
resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_Utils.h

@ -1,75 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSELU_UTILS_H
#define EIGEN_SPARSELU_UTILS_H
/**
* \brief Count Nonzero elements in the factors
*/
template <typename Scalar, typename Index>
void SparseLUBase<Scalar,Index>::LU_countnz(const int n, int& nnzL, int& nnzU, GlobalLU_t& glu)
{
nnzL = 0;
nnzU = (glu.xusub)(n);
int nsuper = (glu.supno)(n);
int jlen;
int i, j, fsupc;
if (n <= 0 ) return;
// For each supernode
for (i = 0; i <= nsuper; i++)
{
fsupc = glu.xsup(i);
jlen = glu.xlsub(fsupc+1) - glu.xlsub(fsupc);
for (j = fsupc; j < glu.xsup(i+1); j++)
{
nnzL += jlen;
nnzU += j - fsupc + 1;
jlen--;
}
}
}
/**
* \brief Fix up the data storage lsub for L-subscripts.
*
* It removes the subscripts sets for structural pruning,
* and applies permutation to the remaining subscripts
*
*/
template <typename Scalar, typename Index>
void SparseLUBase<Scalar,Index>::LU_fixupL(const int n, const IndexVector& perm_r, GlobalLU_t& glu)
{
int fsupc, i, j, k, jstart;
int nextl = 0;
int nsuper = (glu.supno)(n);
// For each supernode
for (i = 0; i <= nsuper; i++)
{
fsupc = glu.xsup(i);
jstart = glu.xlsub(fsupc);
glu.xlsub(fsupc) = nextl;
for (j = jstart; j < glu.xlsub(fsupc + 1); j++)
{
glu.lsub(nextl) = perm_r(glu.lsub(j)); // Now indexed into P*A
nextl++;
}
for (k = fsupc+1; k < glu.xsup(i+1); k++)
glu.xlsub(k) = nextl; // other columns in supernode i
}
glu.xlsub(n) = nextl;
}
#endif

162
resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h

@ -1,162 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*
* NOTE: This file is the modified version of xcolumn_bmod.c file in SuperLU
* -- SuperLU routine (version 3.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef SPARSELU_COLUMN_BMOD_H
#define SPARSELU_COLUMN_BMOD_H
/**
* \brief Performs numeric block updates (sup-col) in topological order
*
* \param jcol current column to update
* \param nseg Number of segments in the U part
* \param dense Store the full representation of the column
* \param tempv working array
* \param segrep segment representative ...
* \param repfnz ??? First nonzero column in each row ??? ...
* \param fpanelc First column in the current panel
* \param glu Global LU data.
* \return 0 - successful return
* > 0 - number of bytes allocated when run out of space
*
*/
template <typename Scalar, typename Index>
int SparseLUBase<Scalar,Index>::LU_column_bmod(const int jcol, const int nseg, BlockScalarVector& dense, ScalarVector& tempv, BlockIndexVector& segrep, BlockIndexVector& repfnz, int fpanelc, GlobalLU_t& glu)
{
int jsupno, k, ksub, krep, ksupno;
int lptr, nrow, isub, irow, nextlu, new_next, ufirst;
int fsupc, nsupc, nsupr, luptr, kfnz, no_zeros;
/* krep = representative of current k-th supernode
* fsupc = first supernodal column
* nsupc = number of columns in a supernode
* nsupr = number of rows in a supernode
* luptr = location of supernodal LU-block in storage
* kfnz = first nonz in the k-th supernodal segment
* no_zeros = no lf leading zeros in a supernodal U-segment
*/
jsupno = glu.supno(jcol);
// For each nonzero supernode segment of U[*,j] in topological order
k = nseg - 1;
int d_fsupc; // distance between the first column of the current panel and the
// first column of the current snode
int fst_col; // First column within small LU update
int segsize;
for (ksub = 0; ksub < nseg; ksub++)
{
krep = segrep(k); k--;
ksupno = glu.supno(krep);
if (jsupno != ksupno )
{
// outside the rectangular supernode
fsupc = glu.xsup(ksupno);
fst_col = (std::max)(fsupc, fpanelc);
// Distance from the current supernode to the current panel;
// d_fsupc = 0 if fsupc > fpanelc
d_fsupc = fst_col - fsupc;
luptr = glu.xlusup(fst_col) + d_fsupc;
lptr = glu.xlsub(fsupc) + d_fsupc;
kfnz = repfnz(krep);
kfnz = (std::max)(kfnz, fpanelc);
segsize = krep - kfnz + 1;
nsupc = krep - fst_col + 1;
nsupr = glu.xlsub(fsupc+1) - glu.xlsub(fsupc);
nrow = nsupr - d_fsupc - nsupc;
// Perform a triangular solver and block update,
// then scatter the result of sup-col update to dense
no_zeros = kfnz - fst_col;
if(segsize==1)
LU_kernel_bmod<1>::run(segsize, dense, tempv, glu.lusup, luptr, nsupr, nrow, glu.lsub, lptr, no_zeros);
else
LU_kernel_bmod<Dynamic>::run(segsize, dense, tempv, glu.lusup, luptr, nsupr, nrow, glu.lsub, lptr, no_zeros);
} // end if jsupno
} // end for each segment
// Process the supernodal portion of L\U[*,j]
nextlu = glu.xlusup(jcol);
fsupc = glu.xsup(jsupno);
// copy the SPA dense into L\U[*,j]
int mem;
new_next = nextlu + glu.xlsub(fsupc + 1) - glu.xlsub(fsupc);
while (new_next > glu.nzlumax )
{
mem = LUMemXpand<ScalarVector>(glu.lusup, glu.nzlumax, nextlu, LUSUP, glu.num_expansions);
if (mem) return mem;
}
for (isub = glu.xlsub(fsupc); isub < glu.xlsub(fsupc+1); isub++)
{
irow = glu.lsub(isub);
glu.lusup(nextlu) = dense(irow);
dense(irow) = Scalar(0.0);
++nextlu;
}
glu.xlusup(jcol + 1) = nextlu; // close L\U(*,jcol);
/* For more updates within the panel (also within the current supernode),
* should start from the first column of the panel, or the first column
* of the supernode, whichever is bigger. There are two cases:
* 1) fsupc < fpanelc, then fst_col <-- fpanelc
* 2) fsupc >= fpanelc, then fst_col <-- fsupc
*/
fst_col = (std::max)(fsupc, fpanelc);
if (fst_col < jcol)
{
// Distance between the current supernode and the current panel
// d_fsupc = 0 if fsupc >= fpanelc
d_fsupc = fst_col - fsupc;
lptr = glu.xlsub(fsupc) + d_fsupc;
luptr = glu.xlusup(fst_col) + d_fsupc;
nsupr = glu.xlsub(fsupc+1) - glu.xlsub(fsupc); // leading dimension
nsupc = jcol - fst_col; // excluding jcol
nrow = nsupr - d_fsupc - nsupc;
// points to the beginning of jcol in snode L\U(jsupno)
ufirst = glu.xlusup(jcol) + d_fsupc;
Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A( &(glu.lusup.data()[luptr]), nsupc, nsupc, OuterStride<>(nsupr) );
VectorBlock<ScalarVector> u(glu.lusup, ufirst, nsupc);
u = A.template triangularView<UnitLower>().solve(u);
new (&A) Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > ( &(glu.lusup.data()[luptr+nsupc]), nrow, nsupc, OuterStride<>(nsupr) );
VectorBlock<ScalarVector> l(glu.lusup, ufirst+nsupc, nrow);
l.noalias() -= A * u;
} // End if fst_col
return 0;
}
#endif

164
resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h

@ -1,164 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*
* NOTE: This file is the modified version of [s,d,c,z]column_dfs.c file in SuperLU
* -- SuperLU routine (version 2.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* November 15, 1997
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef SPARSELU_COLUMN_DFS_H
#define SPARSELU_COLUMN_DFS_H
/**
* \brief Performs a symbolic factorization on column jcol and decide the supernode boundary
*
* A supernode representative is the last column of a supernode.
* The nonzeros in U[*,j] are segments that end at supernodes representatives.
* The routine returns a list of the supernodal representatives
* in topological order of the dfs that generates them.
* The location of the first nonzero in each supernodal segment
* (supernodal entry location) is also returned.
*
* \param m number of rows in the matrix
* \param jcol Current column
* \param perm_r Row permutation
* \param maxsuper Maximum number of column allowed in a supernode
* \param [in,out] nseg Number of segments in current U[*,j] - new segments appended
* \param lsub_col defines the rhs vector to start the dfs
* \param [in,out] segrep Segment representatives - new segments appended
* \param repfnz First nonzero location in each row
* \param xprune
* \param marker marker[i] == jj, if i was visited during dfs of current column jj;
* \param parent
* \param xplore working array
* \param glu global LU data
* \return 0 success
* > 0 number of bytes allocated when run out of space
*
*/
template<typename IndexVector, typename ScalarVector>
struct LU_column_dfs_traits
{
typedef typename IndexVector::Scalar Index;
typedef typename ScalarVector::Scalar Scalar;
LU_column_dfs_traits(Index jcol, Index& jsuper, LU_GlobalLU_t<IndexVector, ScalarVector>& glu)
: m_jcol(jcol), m_jsuper_ref(jsuper), m_glu(glu)
{}
bool update_segrep(Index /*krep*/, Index /*jj*/)
{
return true;
}
void mem_expand(IndexVector& lsub, int& nextl, int chmark)
{
if (nextl >= m_glu.nzlmax)
SparseLUBase<Scalar,Index>::LUMemXpand(lsub, m_glu.nzlmax, nextl, LSUB, m_glu.num_expansions);
if (chmark != (m_jcol-1)) m_jsuper_ref = IND_EMPTY;
}
enum { ExpandMem = true };
int m_jcol;
int& m_jsuper_ref;
LU_GlobalLU_t<IndexVector, ScalarVector>& m_glu;
};
template <typename Scalar, typename Index>
int SparseLUBase<Scalar,Index>::LU_column_dfs(const int m, const int jcol, IndexVector& perm_r, int maxsuper, int& nseg, BlockIndexVector& lsub_col, IndexVector& segrep, BlockIndexVector& repfnz, IndexVector& xprune, IndexVector& marker, IndexVector& parent, IndexVector& xplore, GlobalLU_t& glu)
{
int jsuper = glu.supno(jcol);
int nextl = glu.xlsub(jcol);
VectorBlock<IndexVector> marker2(marker, 2*m, m);
LU_column_dfs_traits<IndexVector, ScalarVector> traits(jcol, jsuper, glu);
// For each nonzero in A(*,jcol) do dfs
for (int k = 0; lsub_col[k] != IND_EMPTY; k++)
{
int krow = lsub_col(k);
lsub_col(k) = IND_EMPTY;
int kmark = marker2(krow);
// krow was visited before, go to the next nonz;
if (kmark == jcol) continue;
LU_dfs_kernel(jcol, perm_r, nseg, glu.lsub, segrep, repfnz, xprune, marker2, parent,
xplore, glu, nextl, krow, traits);
} // for each nonzero ...
int fsupc, jptr, jm1ptr, ito, ifrom, istop;
int nsuper = glu.supno(jcol);
int jcolp1 = jcol + 1;
int jcolm1 = jcol - 1;
// check to see if j belongs in the same supernode as j-1
if ( jcol == 0 )
{ // Do nothing for column 0
nsuper = glu.supno(0) = 0 ;
}
else
{
fsupc = glu.xsup(nsuper);
jptr = glu.xlsub(jcol); // Not yet compressed
jm1ptr = glu.xlsub(jcolm1);
// Use supernodes of type T2 : see SuperLU paper
if ( (nextl-jptr != jptr-jm1ptr-1) ) jsuper = IND_EMPTY;
// Make sure the number of columns in a supernode doesn't
// exceed threshold
if ( (jcol - fsupc) >= maxsuper) jsuper = IND_EMPTY;
/* If jcol starts a new supernode, reclaim storage space in
* glu.lsub from previous supernode. Note we only store
* the subscript set of the first and last columns of
* a supernode. (first for num values, last for pruning)
*/
if (jsuper == IND_EMPTY)
{ // starts a new supernode
if ( (fsupc < jcolm1-1) )
{ // >= 3 columns in nsuper
ito = glu.xlsub(fsupc+1);
glu.xlsub(jcolm1) = ito;
istop = ito + jptr - jm1ptr;
xprune(jcolm1) = istop; // intialize xprune(jcol-1)
glu.xlsub(jcol) = istop;
for (ifrom = jm1ptr; ifrom < nextl; ++ifrom, ++ito)
glu.lsub(ito) = glu.lsub(ifrom);
nextl = ito; // = istop + length(jcol)
}
nsuper++;
glu.supno(jcol) = nsuper;
} // if a new supernode
} // end else: jcol > 0
// Tidy up the pointers before exit
glu.xsup(nsuper+1) = jcolp1;
glu.supno(jcolp1) = nsuper;
xprune(jcol) = nextl; // Intialize upper bound for pruning
glu.xlsub(jcolp1) = nextl;
return 0;
}
#endif

100
resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h

@ -1,100 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*
* NOTE: This file is the modified version of [s,d,c,z]copy_to_ucol.c file in SuperLU
* -- SuperLU routine (version 2.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* November 15, 1997
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef SPARSELU_COPY_TO_UCOL_H
#define SPARSELU_COPY_TO_UCOL_H
/**
* \brief Performs numeric block updates (sup-col) in topological order
*
* \param jcol current column to update
* \param nseg Number of segments in the U part
* \param segrep segment representative ...
* \param repfnz First nonzero column in each row ...
* \param perm_r Row permutation
* \param dense Store the full representation of the column
* \param glu Global LU data.
* \return 0 - successful return
* > 0 - number of bytes allocated when run out of space
*
*/
template <typename Scalar, typename Index>
int SparseLUBase<Scalar,Index>::LU_copy_to_ucol(const int jcol, const int nseg, IndexVector& segrep, BlockIndexVector& repfnz ,IndexVector& perm_r, BlockScalarVector& dense, GlobalLU_t& glu)
{
Index ksub, krep, ksupno;
Index jsupno = glu.supno(jcol);
// For each nonzero supernode segment of U[*,j] in topological order
int k = nseg - 1, i;
Index nextu = glu.xusub(jcol);
Index kfnz, isub, segsize;
Index new_next,irow;
Index fsupc, mem;
for (ksub = 0; ksub < nseg; ksub++)
{
krep = segrep(k); k--;
ksupno = glu.supno(krep);
if (jsupno != ksupno ) // should go into ucol();
{
kfnz = repfnz(krep);
if (kfnz != IND_EMPTY)
{ // Nonzero U-segment
fsupc = glu.xsup(ksupno);
isub = glu.xlsub(fsupc) + kfnz - fsupc;
segsize = krep - kfnz + 1;
new_next = nextu + segsize;
while (new_next > glu.nzumax)
{
mem = LUMemXpand<ScalarVector>(glu.ucol, glu.nzumax, nextu, UCOL, glu.num_expansions);
if (mem) return mem;
mem = LUMemXpand<IndexVector>(glu.usub, glu.nzumax, nextu, USUB, glu.num_expansions);
if (mem) return mem;
}
for (i = 0; i < segsize; i++)
{
irow = glu.lsub(isub);
glu.usub(nextu) = perm_r(irow); // Unlike the L part, the U part is stored in its final order
glu.ucol(nextu) = dense(irow);
dense(irow) = Scalar(0.0);
nextu++;
isub++;
}
} // end nonzero U-segment
} // end if jsupno
} // end for each segment
glu.xusub(jcol + 1) = nextu; // close U(*,jcol)
return 0;
}
#endif

119
resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h

@ -1,119 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/* This file is a modified version of heap_relax_snode.c file in SuperLU
* -- SuperLU routine (version 3.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef SPARSELU_HEAP_RELAX_SNODE_H
#define SPARSELU_HEAP_RELAX_SNODE_H
#include "SparseLU_Coletree.h"
/**
* \brief Identify the initial relaxed supernodes
*
* This routine applied to a symmetric elimination tree.
* It assumes that the matrix has been reordered according to the postorder of the etree
* \param et elimination tree
* \param relax_columns Maximum number of columns allowed in a relaxed snode
* \param descendants Number of descendants of each node in the etree
* \param relax_end last column in a supernode
*/
template <typename Scalar, typename Index>
void SparseLUBase<Scalar,Index>::LU_heap_relax_snode (const int n, IndexVector& et, const int relax_columns, IndexVector& descendants, IndexVector& relax_end)
{
// The etree may not be postordered, but its heap ordered
IndexVector post;
LU_TreePostorder(n, et, post); // Post order etree
IndexVector inv_post(n+1);
int i;
for (i = 0; i < n+1; ++i) inv_post(post(i)) = i; // inv_post = post.inverse()???
// Renumber etree in postorder
IndexVector iwork(n);
IndexVector et_save(n+1);
for (i = 0; i < n; ++i)
{
iwork(post(i)) = post(et(i));
}
et_save = et; // Save the original etree
et = iwork;
// compute the number of descendants of each node in the etree
relax_end.setConstant(IND_EMPTY);
int j, parent;
descendants.setZero();
for (j = 0; j < n; j++)
{
parent = et(j);
if (parent != n) // not the dummy root
descendants(parent) += descendants(j) + 1;
}
// Identify the relaxed supernodes by postorder traversal of the etree
int snode_start; // beginning of a snode
int k;
int nsuper_et_post = 0; // Number of relaxed snodes in postordered etree
int nsuper_et = 0; // Number of relaxed snodes in the original etree
int l;
for (j = 0; j < n; )
{
parent = et(j);
snode_start = j;
while ( parent != n && descendants(parent) < relax_columns )
{
j = parent;
parent = et(j);
}
// Found a supernode in postordered etree, j is the last column
++nsuper_et_post;
k = n;
for (i = snode_start; i <= j; ++i)
k = (std::min)(k, inv_post(i));
l = inv_post(j);
if ( (l - k) == (j - snode_start) ) // Same number of columns in the snode
{
// This is also a supernode in the original etree
relax_end(k) = l; // Record last column
++nsuper_et;
}
else
{
for (i = snode_start; i <= j; ++i)
{
l = inv_post(i);
if (descendants(i) == 0)
{
relax_end(l) = l;
++nsuper_et;
}
}
}
j++;
// Search for a new leaf
while (descendants(j) != 0 && j < n) j++;
} // End postorder traversal of the etree
// Recover the original etree
et = et_save;
}
#endif

109
resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h

@ -1,109 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef SPARSELU_KERNEL_BMOD_H
#define SPARSELU_KERNEL_BMOD_H
/**
* \brief Performs numeric block updates from a given supernode to a single column
*
* \param segsize Size of the segment (and blocks ) to use for updates
* \param [in,out]dense Packed values of the original matrix
* \param tempv temporary vector to use for updates
* \param lusup array containing the supernodes
* \param nsupr Number of rows in the supernode
* \param nrow Number of rows in the rectangular part of the supernode
* \param lsub compressed row subscripts of supernodes
* \param lptr pointer to the first column of the current supernode in lsub
* \param no_zeros Number of nonzeros elements before the diagonal part of the supernode
* \return 0 on success
*/
template <int SegSizeAtCompileTime> struct LU_kernel_bmod
{
template <typename BlockScalarVector, typename ScalarVector, typename IndexVector>
EIGEN_DONT_INLINE static void run(const int segsize, BlockScalarVector& dense, ScalarVector& tempv, ScalarVector& lusup, int& luptr, const int nsupr, const int nrow, IndexVector& lsub, const int lptr, const int no_zeros)
{
typedef typename ScalarVector::Scalar Scalar;
// First, copy U[*,j] segment from dense(*) to tempv(*)
// The result of triangular solve is in tempv[*];
// The result of matric-vector update is in dense[*]
int isub = lptr + no_zeros;
int i, irow;
for (i = 0; i < ((SegSizeAtCompileTime==Dynamic)?segsize:SegSizeAtCompileTime); i++)
{
irow = lsub(isub);
tempv(i) = dense(irow);
++isub;
}
// Dense triangular solve -- start effective triangle
luptr += nsupr * no_zeros + no_zeros;
// Form Eigen matrix and vector
Map<Matrix<Scalar,SegSizeAtCompileTime,SegSizeAtCompileTime>, 0, OuterStride<> > A( &(lusup.data()[luptr]), segsize, segsize, OuterStride<>(nsupr) );
Map<Matrix<Scalar,SegSizeAtCompileTime,1> > u(tempv.data(), segsize);
u = A.template triangularView<UnitLower>().solve(u);
// Dense matrix-vector product y <-- B*x
luptr += segsize;
Map<Matrix<Scalar,Dynamic,SegSizeAtCompileTime>, 0, OuterStride<> > B( &(lusup.data()[luptr]), nrow, segsize, OuterStride<>(nsupr) );
Map<Matrix<Scalar,Dynamic,1> > l(tempv.data()+segsize, nrow);
if(SegSizeAtCompileTime==2)
l = u(0) * B.col(0) + u(1) * B.col(1);
else if(SegSizeAtCompileTime==3)
l = u(0) * B.col(0) + u(1) * B.col(1) + u(2) * B.col(2);
else
l.noalias() = B * u;
// Scatter tempv[] into SPA dense[] as a temporary storage
isub = lptr + no_zeros;
for (i = 0; i < ((SegSizeAtCompileTime==Dynamic)?segsize:SegSizeAtCompileTime); i++)
{
irow = lsub(isub++);
dense(irow) = tempv(i);
}
// Scatter l into SPA dense[]
for (i = 0; i < nrow; i++)
{
irow = lsub(isub++);
dense(irow) -= l(i);
}
}
};
template <> struct LU_kernel_bmod<1>
{
template <typename BlockScalarVector, typename ScalarVector, typename IndexVector>
EIGEN_DONT_INLINE static void run(const int /*segsize*/, BlockScalarVector& dense, ScalarVector& /*tempv*/, ScalarVector& lusup, int& luptr, const int nsupr, const int nrow, IndexVector& lsub, const int lptr, const int no_zeros)
{
typedef typename ScalarVector::Scalar Scalar;
Scalar f = dense(lsub(lptr + no_zeros));
luptr += nsupr * no_zeros + no_zeros + 1;
const Scalar* a(lusup.data() + luptr);
const typename IndexVector::Scalar* irow(lsub.data()+lptr + no_zeros + 1);
int i = 0;
for (; i+1 < nrow; i+=2)
{
int i0 = *(irow++);
int i1 = *(irow++);
Scalar a0 = *(a++);
Scalar a1 = *(a++);
Scalar d0 = dense.coeff(i0);
Scalar d1 = dense.coeff(i1);
d0 -= f*a0;
d1 -= f*a1;
dense.coeffRef(i0) = d0;
dense.coeffRef(i1) = d1;
}
if(i<nrow)
dense.coeffRef(*(irow++)) -= f * *(a++);
}
};
#endif

204
resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h

@ -1,204 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*
* NOTE: This file is the modified version of [s,d,c,z]panel_bmod.c file in SuperLU
* -- SuperLU routine (version 3.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef SPARSELU_PANEL_BMOD_H
#define SPARSELU_PANEL_BMOD_H
/**
* \brief Performs numeric block updates (sup-panel) in topological order.
*
* Before entering this routine, the original nonzeros in the panel
* were already copied i nto the spa[m,w]
*
* \param m number of rows in the matrix
* \param w Panel size
* \param jcol Starting column of the panel
* \param nseg Number of segments in the U part
* \param dense Store the full representation of the panel
* \param tempv working array
* \param segrep segment representative... first row in the segment
* \param repfnz First nonzero rows
* \param glu Global LU data.
*
*
*/
template <typename Scalar, typename Index>
void SparseLUBase<Scalar,Index>::LU_panel_bmod(const int m, const int w, const int jcol, const int nseg, ScalarVector& dense, ScalarVector& tempv, IndexVector& segrep, IndexVector& repfnz, LU_perfvalues& perfv, GlobalLU_t& glu)
{
int ksub,jj,nextl_col;
int fsupc, nsupc, nsupr, nrow;
int krep, kfnz;
int lptr; // points to the row subscripts of a supernode
int luptr; // ...
int segsize,no_zeros ;
// For each nonz supernode segment of U[*,j] in topological order
int k = nseg - 1;
for (ksub = 0; ksub < nseg; ksub++)
{ // For each updating supernode
/* krep = representative of current k-th supernode
* fsupc = first supernodal column
* nsupc = number of columns in a supernode
* nsupr = number of rows in a supernode
*/
krep = segrep(k); k--;
fsupc = glu.xsup(glu.supno(krep));
nsupc = krep - fsupc + 1;
nsupr = glu.xlsub(fsupc+1) - glu.xlsub(fsupc);
nrow = nsupr - nsupc;
lptr = glu.xlsub(fsupc);
// loop over the panel columns to detect the actual number of columns and rows
int u_rows = 0;
int u_cols = 0;
for (jj = jcol; jj < jcol + w; jj++)
{
nextl_col = (jj-jcol) * m;
VectorBlock<IndexVector> repfnz_col(repfnz, nextl_col, m); // First nonzero column index for each row
kfnz = repfnz_col(krep);
if ( kfnz == IND_EMPTY )
continue; // skip any zero segment
segsize = krep - kfnz + 1;
u_cols++;
u_rows = (std::max)(segsize,u_rows);
}
// if the blocks are large enough, use level 3
// TODO find better heuristics!
if( nsupc >= perfv.colblk && nrow > perfv.rowblk && u_cols>perfv.relax)
{
Map<Matrix<Scalar,Dynamic,Dynamic> > U(tempv.data(), u_rows, u_cols);
// gather U
int u_col = 0;
for (jj = jcol; jj < jcol + w; jj++)
{
nextl_col = (jj-jcol) * m;
VectorBlock<IndexVector> repfnz_col(repfnz, nextl_col, m); // First nonzero column index for each row
VectorBlock<ScalarVector> dense_col(dense, nextl_col, m); // Scatter/gather entire matrix column from/to here
kfnz = repfnz_col(krep);
if ( kfnz == IND_EMPTY )
continue; // skip any zero segment
segsize = krep - kfnz + 1;
luptr = glu.xlusup(fsupc);
no_zeros = kfnz - fsupc;
int isub = lptr + no_zeros;
int off = u_rows-segsize;
for (int i = 0; i < off; i++) U(i,u_col) = 0;
for (int i = 0; i < segsize; i++)
{
int irow = glu.lsub(isub);
U(i+off,u_col) = dense_col(irow);
++isub;
}
u_col++;
}
// solve U = A^-1 U
luptr = glu.xlusup(fsupc);
no_zeros = (krep - u_rows + 1) - fsupc;
luptr += nsupr * no_zeros + no_zeros;
Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A(glu.lusup.data()+luptr, u_rows, u_rows, OuterStride<>(nsupr) );
U = A.template triangularView<UnitLower>().solve(U);
// update
luptr += u_rows;
Map<Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > B(glu.lusup.data()+luptr, nrow, u_rows, OuterStride<>(nsupr) );
assert(tempv.size()>w*u_rows + nrow*w);
Map<Matrix<Scalar,Dynamic,Dynamic> > L(tempv.data()+w*u_rows, nrow, u_cols);
L.noalias() = B * U;
// scatter U and L
u_col = 0;
for (jj = jcol; jj < jcol + w; jj++)
{
nextl_col = (jj-jcol) * m;
VectorBlock<IndexVector> repfnz_col(repfnz, nextl_col, m); // First nonzero column index for each row
VectorBlock<ScalarVector> dense_col(dense, nextl_col, m); // Scatter/gather entire matrix column from/to here
kfnz = repfnz_col(krep);
if ( kfnz == IND_EMPTY )
continue; // skip any zero segment
segsize = krep - kfnz + 1;
no_zeros = kfnz - fsupc;
int isub = lptr + no_zeros;
int off = u_rows-segsize;
for (int i = 0; i < segsize; i++)
{
int irow = glu.lsub(isub++);
dense_col(irow) = U.coeff(i+off,u_col);
U.coeffRef(i+off,u_col) = 0;
}
// Scatter l into SPA dense[]
for (int i = 0; i < nrow; i++)
{
int irow = glu.lsub(isub++);
dense_col(irow) -= L.coeff(i,u_col);
L.coeffRef(i,u_col) = 0;
}
u_col++;
}
}
else // level 2 only
{
// Sequence through each column in the panel
for (jj = jcol; jj < jcol + w; jj++)
{
nextl_col = (jj-jcol) * m;
VectorBlock<IndexVector> repfnz_col(repfnz, nextl_col, m); // First nonzero column index for each row
VectorBlock<ScalarVector> dense_col(dense, nextl_col, m); // Scatter/gather entire matrix column from/to here
kfnz = repfnz_col(krep);
if ( kfnz == IND_EMPTY )
continue; // skip any zero segment
segsize = krep - kfnz + 1;
luptr = glu.xlusup(fsupc);
// Perform a trianglar solve and block update,
// then scatter the result of sup-col update to dense[]
no_zeros = kfnz - fsupc;
if(segsize==1) LU_kernel_bmod<1>::run(segsize, dense_col, tempv, glu.lusup, luptr, nsupr, nrow, glu.lsub, lptr, no_zeros);
else if(segsize==2) LU_kernel_bmod<2>::run(segsize, dense_col, tempv, glu.lusup, luptr, nsupr, nrow, glu.lsub, lptr, no_zeros);
else if(segsize==3) LU_kernel_bmod<3>::run(segsize, dense_col, tempv, glu.lusup, luptr, nsupr, nrow, glu.lsub, lptr, no_zeros);
else LU_kernel_bmod<Dynamic>::run(segsize, dense_col, tempv, glu.lusup, luptr, nsupr, nrow, glu.lsub, lptr, no_zeros);
} // End for each column in the panel
}
} // End for each updating supernode
}
#endif

247
resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h

@ -1,247 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*
* NOTE: This file is the modified version of [s,d,c,z]panel_dfs.c file in SuperLU
* -- SuperLU routine (version 2.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* November 15, 1997
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef SPARSELU_PANEL_DFS_H
#define SPARSELU_PANEL_DFS_H
template <typename Scalar, typename Index>
template <typename Traits>
void SparseLUBase<Scalar,Index>::LU_dfs_kernel(const int jj, IndexVector& perm_r,
int& nseg, IndexVector& panel_lsub, IndexVector& segrep,
Ref<IndexVector> repfnz_col, IndexVector& xprune, Ref<IndexVector> marker, IndexVector& parent,
IndexVector& xplore, GlobalLU_t& glu,
int& nextl_col, int krow, Traits& traits
)
{
int kmark = marker(krow);
// For each unmarked krow of jj
marker(krow) = jj;
int kperm = perm_r(krow);
if (kperm == IND_EMPTY ) {
// krow is in L : place it in structure of L(*, jj)
panel_lsub(nextl_col++) = krow; // krow is indexed into A
traits.mem_expand(panel_lsub, nextl_col, kmark);
}
else
{
// krow is in U : if its supernode-representative krep
// has been explored, update repfnz(*)
// krep = supernode representative of the current row
int krep = glu.xsup(glu.supno(kperm)+1) - 1;
// First nonzero element in the current column:
int myfnz = repfnz_col(krep);
if (myfnz != IND_EMPTY )
{
// Representative visited before
if (myfnz > kperm ) repfnz_col(krep) = kperm;
}
else
{
// Otherwise, perform dfs starting at krep
int oldrep = IND_EMPTY;
parent(krep) = oldrep;
repfnz_col(krep) = kperm;
int xdfs = glu.xlsub(krep);
int maxdfs = xprune(krep);
int kpar;
do
{
// For each unmarked kchild of krep
while (xdfs < maxdfs)
{
int kchild = glu.lsub(xdfs);
xdfs++;
int chmark = marker(kchild);
if (chmark != jj )
{
marker(kchild) = jj;
int chperm = perm_r(kchild);
if (chperm == IND_EMPTY)
{
// case kchild is in L: place it in L(*, j)
panel_lsub(nextl_col++) = kchild;
traits.mem_expand(panel_lsub, nextl_col, chmark);
}
else
{
// case kchild is in U :
// chrep = its supernode-rep. If its rep has been explored,
// update its repfnz(*)
int chrep = glu.xsup(glu.supno(chperm)+1) - 1;
myfnz = repfnz_col(chrep);
if (myfnz != IND_EMPTY)
{ // Visited before
if (myfnz > chperm)
repfnz_col(chrep) = chperm;
}
else
{ // Cont. dfs at snode-rep of kchild
xplore(krep) = xdfs;
oldrep = krep;
krep = chrep; // Go deeper down G(L)
parent(krep) = oldrep;
repfnz_col(krep) = chperm;
xdfs = glu.xlsub(krep);
maxdfs = xprune(krep);
} // end if myfnz != -1
} // end if chperm == -1
} // end if chmark !=jj
} // end while xdfs < maxdfs
// krow has no more unexplored nbrs :
// Place snode-rep krep in postorder DFS, if this
// segment is seen for the first time. (Note that
// "repfnz(krep)" may change later.)
// Baktrack dfs to its parent
if(traits.update_segrep(krep,jj))
//if (marker1(krep) < jcol )
{
segrep(nseg) = krep;
++nseg;
//marker1(krep) = jj;
}
kpar = parent(krep); // Pop recursion, mimic recursion
if (kpar == IND_EMPTY)
break; // dfs done
krep = kpar;
xdfs = xplore(krep);
maxdfs = xprune(krep);
} while (kpar != IND_EMPTY); // Do until empty stack
} // end if (myfnz = -1)
} // end if (kperm == -1)
}
/**
* \brief Performs a symbolic factorization on a panel of columns [jcol, jcol+w)
*
* A supernode representative is the last column of a supernode.
* The nonzeros in U[*,j] are segments that end at supernodes representatives
*
* The routine returns a list of the supernodal representatives
* in topological order of the dfs that generates them. This list is
* a superset of the topological order of each individual column within
* the panel.
* The location of the first nonzero in each supernodal segment
* (supernodal entry location) is also returned. Each column has
* a separate list for this purpose.
*
* Two markers arrays are used for dfs :
* marker[i] == jj, if i was visited during dfs of current column jj;
* marker1[i] >= jcol, if i was visited by earlier columns in this panel;
*
* \param [in]m number of rows in the matrix
* \param [in]w Panel size
* \param [in]jcol Starting column of the panel
* \param [in]A Input matrix in column-major storage
* \param [in]perm_r Row permutation
* \param [out]nseg Number of U segments
* \param [out]dense Accumulate the column vectors of the panel
* \param [out]panel_lsub Subscripts of the row in the panel
* \param [out]segrep Segment representative i.e first nonzero row of each segment
* \param [out]repfnz First nonzero location in each row
* \param [out]xprune
* \param [out]marker
*
*
*/
template<typename IndexVector>
struct LU_panel_dfs_traits
{
typedef typename IndexVector::Scalar Index;
LU_panel_dfs_traits(Index jcol, Index* marker)
: m_jcol(jcol), m_marker(marker)
{}
bool update_segrep(Index krep, Index jj)
{
if(m_marker[krep]<m_jcol)
{
m_marker[krep] = jj;
return true;
}
return false;
}
void mem_expand(IndexVector& /*glu.lsub*/, int /*nextl*/, int /*chmark*/) {}
enum { ExpandMem = false };
Index m_jcol;
Index* m_marker;
};
template <typename Scalar, typename Index>
void SparseLUBase<Scalar,Index>::LU_panel_dfs(const int m, const int w, const int jcol, MatrixType& A, IndexVector& perm_r, int& nseg, ScalarVector& dense, IndexVector& panel_lsub, IndexVector& segrep, IndexVector& repfnz, IndexVector& xprune, IndexVector& marker, IndexVector& parent, IndexVector& xplore, GlobalLU_t& glu)
{
int nextl_col; // Next available position in panel_lsub[*,jj]
// Initialize pointers
VectorBlock<IndexVector> marker1(marker, m, m);
nseg = 0;
LU_panel_dfs_traits<IndexVector> traits(jcol, marker1.data());
// For each column in the panel
for (int jj = jcol; jj < jcol + w; jj++)
{
nextl_col = (jj - jcol) * m;
VectorBlock<IndexVector> repfnz_col(repfnz, nextl_col, m); // First nonzero location in each row
VectorBlock<ScalarVector> dense_col(dense,nextl_col, m); // Accumulate a column vector here
// For each nnz in A[*, jj] do depth first search
for (typename MatrixType::InnerIterator it(A, jj); it; ++it)
{
int krow = it.row();
dense_col(krow) = it.value();
int kmark = marker(krow);
if (kmark == jj)
continue; // krow visited before, go to the next nonzero
LU_dfs_kernel(jj, perm_r, nseg, panel_lsub, segrep, repfnz_col, xprune, marker, parent,
xplore, glu, nextl_col, krow, traits);
}// end for nonzeros in column jj
} // end for column jj
}
#endif

125
resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h

@ -1,125 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*
* NOTE: This file is the modified version of xpivotL.c file in SuperLU
* -- SuperLU routine (version 3.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef SPARSELU_PIVOTL_H
#define SPARSELU_PIVOTL_H
/**
* \brief Performs the numerical pivotin on the current column of L, and the CDIV operation.
*
* Pivot policy :
* (1) Compute thresh = u * max_(i>=j) abs(A_ij);
* (2) IF user specifies pivot row k and abs(A_kj) >= thresh THEN
* pivot row = k;
* ELSE IF abs(A_jj) >= thresh THEN
* pivot row = j;
* ELSE
* pivot row = m;
*
* Note: If you absolutely want to use a given pivot order, then set u=0.0.
*
* \param jcol The current column of L
* \param u diagonal pivoting threshold
* \param [in,out]perm_r Row permutation (threshold pivoting)
* \param [in] iperm_c column permutation - used to finf diagonal of Pc*A*Pc'
* \param [out]pivrow The pivot row
* \param glu Global LU data
* \return 0 if success, i > 0 if U(i,i) is exactly zero
*
*/
template <typename Scalar, typename Index>
int SparseLUBase<Scalar,Index>::LU_pivotL(const int jcol, const RealScalar diagpivotthresh, IndexVector& perm_r, IndexVector& iperm_c, int& pivrow, GlobalLU_t& glu)
{
Index fsupc = (glu.xsup)((glu.supno)(jcol)); // First column in the supernode containing the column jcol
Index nsupc = jcol - fsupc; // Number of columns in the supernode portion, excluding jcol; nsupc >=0
Index lptr = glu.xlsub(fsupc); // pointer to the starting location of the row subscripts for this supernode portion
Index nsupr = glu.xlsub(fsupc+1) - lptr; // Number of rows in the supernode
Scalar* lu_sup_ptr = &(glu.lusup.data()[glu.xlusup(fsupc)]); // Start of the current supernode
Scalar* lu_col_ptr = &(glu.lusup.data()[glu.xlusup(jcol)]); // Start of jcol in the supernode
Index* lsub_ptr = &(glu.lsub.data()[lptr]); // Start of row indices of the supernode
// Determine the largest abs numerical value for partial pivoting
Index diagind = iperm_c(jcol); // diagonal index
RealScalar pivmax = 0.0;
Index pivptr = nsupc;
Index diag = IND_EMPTY;
RealScalar rtemp;
Index isub, icol, itemp, k;
for (isub = nsupc; isub < nsupr; ++isub) {
rtemp = std::abs(lu_col_ptr[isub]);
if (rtemp > pivmax) {
pivmax = rtemp;
pivptr = isub;
}
if (lsub_ptr[isub] == diagind) diag = isub;
}
// Test for singularity
if ( pivmax == 0.0 ) {
pivrow = lsub_ptr[pivptr];
perm_r(pivrow) = jcol;
return (jcol+1);
}
RealScalar thresh = diagpivotthresh * pivmax;
// Choose appropriate pivotal element
{
// Test if the diagonal element can be used as a pivot (given the threshold value)
if (diag >= 0 )
{
// Diagonal element exists
rtemp = std::abs(lu_col_ptr[diag]);
if (rtemp != 0.0 && rtemp >= thresh) pivptr = diag;
}
pivrow = lsub_ptr[pivptr];
}
// Record pivot row
perm_r(pivrow) = jcol;
// Interchange row subscripts
if (pivptr != nsupc )
{
std::swap( lsub_ptr[pivptr], lsub_ptr[nsupc] );
// Interchange numerical values as well, for the two rows in the whole snode
// such that L is indexed the same way as A
for (icol = 0; icol <= nsupc; icol++)
{
itemp = pivptr + icol * nsupr;
std::swap(lu_sup_ptr[itemp], lu_sup_ptr[nsupc + icol * nsupr]);
}
}
// cdiv operations
Scalar temp = Scalar(1.0) / lu_col_ptr[nsupc];
for (k = nsupc+1; k < nsupr; k++)
lu_col_ptr[k] *= temp;
return 0;
}
#endif

129
resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h

@ -1,129 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*
* NOTE: This file is the modified version of [s,d,c,z]pruneL.c file in SuperLU
* -- SuperLU routine (version 2.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* November 15, 1997
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef SPARSELU_PRUNEL_H
#define SPARSELU_PRUNEL_H
/**
* \brief Prunes the L-structure.
*
* It prunes the L-structure of supernodes whose L-structure contains the current pivot row "pivrow"
*
*
* \param jcol The current column of L
* \param [in]perm_r Row permutation
* \param [out]pivrow The pivot row
* \param nseg Number of segments
* \param segrep
* \param repfnz
* \param [out]xprune
* \param glu Global LU data
*
*/
template <typename Scalar, typename Index>
void SparseLUBase<Scalar,Index>::LU_pruneL(const int jcol, const IndexVector& perm_r, const int pivrow, const int nseg, const IndexVector& segrep, BlockIndexVector& repfnz, IndexVector& xprune, GlobalLU_t& glu)
{
// For each supernode-rep irep in U(*,j]
int jsupno = glu.supno(jcol);
int i,irep,irep1;
bool movnum, do_prune = false;
Index kmin, kmax, minloc, maxloc,krow;
for (i = 0; i < nseg; i++)
{
irep = segrep(i);
irep1 = irep + 1;
do_prune = false;
// Don't prune with a zero U-segment
if (repfnz(irep) == IND_EMPTY) continue;
// If a snode overlaps with the next panel, then the U-segment
// is fragmented into two parts -- irep and irep1. We should let
// pruning occur at the rep-column in irep1s snode.
if (glu.supno(irep) == glu.supno(irep1) ) continue; // don't prune
// If it has not been pruned & it has a nonz in row L(pivrow,i)
if (glu.supno(irep) != jsupno )
{
if ( xprune (irep) >= glu.xlsub(irep1) )
{
kmin = glu.xlsub(irep);
kmax = glu.xlsub(irep1) - 1;
for (krow = kmin; krow <= kmax; krow++)
{
if (glu.lsub(krow) == pivrow)
{
do_prune = true;
break;
}
}
}
if (do_prune)
{
// do a quicksort-type partition
// movnum=true means that the num values have to be exchanged
movnum = false;
if (irep == glu.xsup(glu.supno(irep)) ) // Snode of size 1
movnum = true;
while (kmin <= kmax)
{
if (perm_r(glu.lsub(kmax)) == IND_EMPTY)
kmax--;
else if ( perm_r(glu.lsub(kmin)) != IND_EMPTY)
kmin++;
else
{
// kmin below pivrow (not yet pivoted), and kmax
// above pivrow: interchange the two suscripts
std::swap(glu.lsub(kmin), glu.lsub(kmax));
// If the supernode has only one column, then we
// only keep one set of subscripts. For any subscript
// intercnahge performed, similar interchange must be
// done on the numerical values.
if (movnum)
{
minloc = glu.xlusup(irep) + ( kmin - glu.xlsub(irep) );
maxloc = glu.xlusup(irep) + ( kmax - glu.xlsub(irep) );
std::swap(glu.lusup(minloc), glu.lusup(maxloc));
}
kmin++;
kmax--;
}
} // end while
xprune(irep) = kmin; //Pruning
} // end if do_prune
} // end pruning
} // End for each U-segment
}
#endif

73
resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h

@ -1,73 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/* This file is a modified version of heap_relax_snode.c file in SuperLU
* -- SuperLU routine (version 3.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef SPARSELU_RELAX_SNODE_H
#define SPARSELU_RELAX_SNODE_H
/**
* \brief Identify the initial relaxed supernodes
*
* This routine is applied to a column elimination tree.
* It assumes that the matrix has been reordered according to the postorder of the etree
* \param et elimination tree
* \param relax_columns Maximum number of columns allowed in a relaxed snode
* \param descendants Number of descendants of each node in the etree
* \param relax_end last column in a supernode
*/
template <typename Scalar, typename Index>
void SparseLUBase<Scalar,Index>::LU_relax_snode (const int n, IndexVector& et, const int relax_columns, IndexVector& descendants, IndexVector& relax_end)
{
// compute the number of descendants of each node in the etree
int j, parent;
relax_end.setConstant(IND_EMPTY);
descendants.setZero();
for (j = 0; j < n; j++)
{
parent = et(j);
if (parent != n) // not the dummy root
descendants(parent) += descendants(j) + 1;
}
// Identify the relaxed supernodes by postorder traversal of the etree
int snode_start; // beginning of a snode
for (j = 0; j < n; )
{
parent = et(j);
snode_start = j;
while ( parent != n && descendants(parent) < relax_columns )
{
j = parent;
parent = et(j);
}
// Found a supernode in postordered etree, j is the last column
relax_end(snode_start) = j; // Record last column
j++;
// Search for a new leaf
while (descendants(j) != 0 && j < n) j++;
} // End postorder traversal of the etree
}
#endif

72
resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_snode_bmod.h

@ -1,72 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*
* NOTE: This file is the modified version of [s,d,c,z]snode_bmod.c file in SuperLU
* -- SuperLU routine (version 3.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* October 15, 2003
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef SPARSELU_SNODE_BMOD_H
#define SPARSELU_SNODE_BMOD_H
template <typename Scalar, typename Index>
int SparseLUBase<Scalar,Index>::LU_snode_bmod (const int jcol, const int fsupc, ScalarVector& dense, GlobalLU_t& glu)
{
/* lsub : Compressed row subscripts of ( rectangular supernodes )
* xlsub : xlsub[j] is the starting location of the j-th column in lsub(*)
* lusup : Numerical values of the rectangular supernodes
* xlusup[j] is the starting location of the j-th column in lusup(*)
*/
int nextlu = glu.xlusup(jcol); // Starting location of the next column to add
int irow, isub;
// Process the supernodal portion of L\U[*,jcol]
for (isub = glu.xlsub(fsupc); isub < glu.xlsub(fsupc+1); isub++)
{
irow = glu.lsub(isub);
glu.lusup(nextlu) = dense(irow);
dense(irow) = 0;
++nextlu;
}
glu.xlusup(jcol + 1) = nextlu; // Initialize xlusup for next column ( jcol+1 )
if (fsupc < jcol ){
int luptr = glu.xlusup(fsupc); // points to the first column of the supernode
int nsupr = glu.xlsub(fsupc + 1) -glu.xlsub(fsupc); //Number of rows in the supernode
int nsupc = jcol - fsupc; // Number of columns in the supernodal portion of L\U[*,jcol]
int ufirst = glu.xlusup(jcol); // points to the beginning of column jcol in supernode L\U(jsupno)
int nrow = nsupr - nsupc; // Number of rows in the off-diagonal blocks
// Solve the triangular system for U(fsupc:jcol, jcol) with L(fspuc:jcol, fsupc:jcol)
Map<Matrix<Scalar,Dynamic,Dynamic>,0,OuterStride<> > A( &(glu.lusup.data()[luptr]), nsupc, nsupc, OuterStride<>(nsupr) );
VectorBlock<ScalarVector> u(glu.lusup, ufirst, nsupc);
u = A.template triangularView<UnitLower>().solve(u); // Call the Eigen dense triangular solve interface
// Update the trailing part of the column jcol U(jcol:jcol+nrow, jcol) using L(jcol:jcol+nrow, fsupc:jcol) and U(fsupc:jcol)
new (&A) Map<Matrix<Scalar,Dynamic,Dynamic>,0,OuterStride<> > ( &(glu.lusup.data()[luptr+nsupc]), nrow, nsupc, OuterStride<>(nsupr) );
VectorBlock<ScalarVector> l(glu.lusup, ufirst+nsupc, nrow);
l.noalias() -= A * u;
}
return 0;
}
#endif

95
resources/3rdparty/eigen/Eigen/src/SparseLU/SparseLU_snode_dfs.h

@ -1,95 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
/*
* NOTE: This file is the modified version of [s,d,c,z]snode_dfs.c file in SuperLU
* -- SuperLU routine (version 2.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* November 15, 1997
*
* Copyright (c) 1994 by Xerox Corporation. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
* EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program for any
* purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is
* granted, provided the above notices are retained, and a notice that
* the code was modified is included with the above copyright notice.
*/
#ifndef SPARSELU_SNODE_DFS_H
#define SPARSELU_SNODE_DFS_H
/**
* \brief Determine the union of the row structures of those columns within the relaxed snode.
* NOTE: The relaxed snodes are leaves of the supernodal etree, therefore,
* the portion outside the rectangular supernode must be zero.
*
* \param jcol start of the supernode
* \param kcol end of the supernode
* \param asub Row indices
* \param colptr Pointer to the beginning of each column
* \param xprune (out) The pruned tree ??
* \param marker (in/out) working vector
* \return 0 on success, > 0 size of the memory when memory allocation failed
*/
template <typename Scalar, typename Index>
int SparseLUBase<Scalar,Index>::LU_snode_dfs(const int jcol, const int kcol,const MatrixType& mat, IndexVector& xprune, IndexVector& marker, GlobalLU_t& glu)
{
int mem;
Index nsuper = ++glu.supno(jcol); // Next available supernode number
int nextl = glu.xlsub(jcol); //Index of the starting location of the jcol-th column in lsub
int krow,kmark;
for (int i = jcol; i <=kcol; i++)
{
// For each nonzero in A(*,i)
for (typename MatrixType::InnerIterator it(mat, i); it; ++it)
{
krow = it.row();
kmark = marker(krow);
if ( kmark != kcol )
{
// First time to visit krow
marker(krow) = kcol;
glu.lsub(nextl++) = krow;
if( nextl >= glu.nzlmax )
{
mem = LUMemXpand<IndexVector>(glu.lsub, glu.nzlmax, nextl, LSUB, glu.num_expansions);
if (mem) return mem; // Memory expansion failed... Return the memory allocated so far
}
}
}
glu.supno(i) = nsuper;
}
// If supernode > 1, then make a copy of the subscripts for pruning
if (jcol < kcol)
{
Index new_next = nextl + (nextl - glu.xlsub(jcol));
while (new_next > glu.nzlmax)
{
mem = LUMemXpand<IndexVector>(glu.lsub, glu.nzlmax, nextl, LSUB, glu.num_expansions);
if (mem) return mem; // Memory expansion failed... Return the memory allocated so far
}
Index ifrom, ito = nextl;
for (ifrom = glu.xlsub(jcol); ifrom < nextl;)
glu.lsub(ito++) = glu.lsub(ifrom++);
for (int i = jcol+1; i <=kcol; i++) glu.xlsub(i) = nextl;
nextl = ito;
}
glu.xsup(nsuper+1) = kcol + 1; // Start of next available supernode
glu.supno(kcol+1) = nsuper;
xprune(kcol) = nextl;
glu.xlsub(kcol+1) = nextl;
return 0;
}
#endif

125
resources/3rdparty/eigen/bench/spbench/sp_solver.cpp

@ -1,125 +0,0 @@
// Small bench routine for Eigen available in Eigen
// (C) Desire NUENTSA WAKAM, INRIA
#include <iostream>
#include <fstream>
#include <iomanip>
#include <Eigen/Jacobi>
#include <Eigen/Householder>
#include <Eigen/IterativeLinearSolvers>
#include <Eigen/LU>
#include <unsupported/Eigen/SparseExtra>
//#include <Eigen/SparseLU>
#include <Eigen/SuperLUSupport>
// #include <unsupported/Eigen/src/IterativeSolvers/Scaling.h>
#include <bench/BenchTimer.h>
#include <unsupported/Eigen/IterativeSolvers>
using namespace std;
using namespace Eigen;
int main(int argc, char **args)
{
SparseMatrix<double, ColMajor> A;
typedef SparseMatrix<double, ColMajor>::Index Index;
typedef Matrix<double, Dynamic, Dynamic> DenseMatrix;
typedef Matrix<double, Dynamic, 1> DenseRhs;
VectorXd b, x, tmp;
BenchTimer timer,totaltime;
//SparseLU<SparseMatrix<double, ColMajor> > solver;
// SuperLU<SparseMatrix<double, ColMajor> > solver;
ConjugateGradient<SparseMatrix<double, ColMajor>, Lower,IncompleteCholesky<double,Lower> > solver;
ifstream matrix_file;
string line;
int n;
// Set parameters
// solver.iparm(IPARM_THREAD_NBR) = 4;
/* Fill the matrix with sparse matrix stored in Matrix-Market coordinate column-oriented format */
if (argc < 2) assert(false && "please, give the matrix market file ");
timer.start();
totaltime.start();
loadMarket(A, args[1]);
cout << "End charging matrix " << endl;
bool iscomplex=false, isvector=false;
int sym;
getMarketHeader(args[1], sym, iscomplex, isvector);
if (iscomplex) { cout<< " Not for complex matrices \n"; return -1; }
if (isvector) { cout << "The provided file is not a matrix file\n"; return -1;}
if (sym != 0) { // symmetric matrices, only the lower part is stored
SparseMatrix<double, ColMajor> temp;
temp = A;
A = temp.selfadjointView<Lower>();
}
timer.stop();
n = A.cols();
// ====== TESTS FOR SPARSE TUTORIAL ======
// cout<< "OuterSize " << A.outerSize() << " inner " << A.innerSize() << endl;
// SparseMatrix<double, RowMajor> mat1(A);
// SparseMatrix<double, RowMajor> mat2;
// cout << " norm of A " << mat1.norm() << endl; ;
// PermutationMatrix<Dynamic, Dynamic, int> perm(n);
// perm.resize(n,1);
// perm.indices().setLinSpaced(n, 0, n-1);
// mat2 = perm * mat1;
// mat.subrows();
// mat2.resize(n,n);
// mat2.reserve(10);
// mat2.setConstant();
// std::cout<< "NORM " << mat1.squaredNorm()<< endl;
cout<< "Time to load the matrix " << timer.value() <<endl;
/* Fill the right hand side */
// solver.set_restart(374);
if (argc > 2)
loadMarketVector(b, args[2]);
else
{
b.resize(n);
tmp.resize(n);
// tmp.setRandom();
for (int i = 0; i < n; i++) tmp(i) = i;
b = A * tmp ;
}
// Scaling<SparseMatrix<double> > scal;
// scal.computeRef(A);
// b = scal.LeftScaling().cwiseProduct(b);
/* Compute the factorization */
cout<< "Starting the factorization "<< endl;
timer.reset();
timer.start();
cout<< "Size of Input Matrix "<< b.size()<<"\n\n";
cout<< "Rows and columns "<< A.rows() <<" " <<A.cols() <<"\n";
solver.compute(A);
// solver.analyzePattern(A);
// solver.factorize(A);
if (solver.info() != Success) {
std::cout<< "The solver failed \n";
return -1;
}
timer.stop();
float time_comp = timer.value();
cout <<" Compute Time " << time_comp<< endl;
timer.reset();
timer.start();
x = solver.solve(b);
// x = scal.RightScaling().cwiseProduct(x);
timer.stop();
float time_solve = timer.value();
cout<< " Time to solve " << time_solve << endl;
/* Check the accuracy */
VectorXd tmp2 = b - A*x;
double tempNorm = tmp2.norm()/b.norm();
cout << "Relative norm of the computed solution : " << tempNorm <<"\n";
// cout << "Iterations : " << solver.iterations() << "\n";
totaltime.stop();
cout << "Total time " << totaltime.value() << "\n";
// std::cout<<x.transpose()<<"\n";
return 0;
}

31
resources/3rdparty/eigen/bench/spbench/spbench.dtd

@ -1,31 +0,0 @@
<!ELEMENT BENCH (AVAILSOLVER+,LINEARSYSTEM+)>
<!ELEMENT AVAILSOLVER (SOLVER+)>
<!ELEMENT SOLVER (TYPE,PACKAGE)>
<!ELEMENT TYPE (#PCDATA)> <!-- One of LU, LLT, LDLT, ITER -->
<!ELEMENT PACKAGE (#PCDATA)> <!-- Derived from a library -->
<!ELEMENT LINEARSYSTEM (MATRIX,SOLVER_STAT+,BEST_SOLVER,GLOBAL_PARAMS*)>
<!ELEMENT MATRIX (NAME,SIZE,ENTRIES,PATTERN?,SYMMETRY,POSDEF?,ARITHMETIC,RHS*)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT SIZE (#PCDATA)>
<!ELEMENT ENTRIES (#PCDATA)> <!-- The number of nonzeros elements -->
<!ELEMENT PATTERN (#PCDATA)> <!-- Is structural pattern symmetric or not -->
<!ELEMENT SYMMETRY (#PCDATA)> <!-- symmmetry with numerical values -->
<!ELEMENT POSDEF (#PCDATA)> <!-- Is the matrix positive definite or not -->
<!ELEMENT ARITHMETIC (#PCDATA)>
<!ELEMENT RHS (SOURCE)> <!-- A matrix can have one or more right hand side associated. -->
<!ELEMENT SOURCE (#PCDATA)> <!-- Source of the right hand side, either generated or provided -->
<!ELEMENT SOLVER_STAT (PARAMS*,TIME,ERROR,ITER?)>
<!ELEMENT PARAMS (#PCDATA)>
<!ELEMENT TIME (COMPUTE,SOLVE,TOTAL)>
<!ELEMENT COMPUTE (#PCDATA)> <!-- Time to analyze,to factorize, or to setup the preconditioner-->
<!ELEMENT SOLVE (#PCDATA)> <!-- Time to solve with all the available rhs -->
<!ELEMENT TOTAL (#PCDATA)>
<!ELEMENT ERROR (#PCDATA)> <!-- Either the relative error or the relative residual norm -->
<!ELEMENT ITER (#PCDATA)> <!-- Number of iterations -->
<!ELEMENT BEST_SOLVER CDATA> <!-- Id of the best solver -->
<!ELEMENT GLOBAL_PARAMS (#PCDATA)> <!-- Parameters shared by all solvers -->
<!ATTLIST SOLVER ID CDATA #REQUIRED>
<!ATTLIST SOLVER_STAT ID CDATA #REQUIRED>
<!ATTLIST BEST_SOLVER ID CDATA #REQUIRED>
<!ATTLIST RHS ID CDATA #IMPLIED>

94
resources/3rdparty/eigen/bench/spbench/spbenchstyle.h

@ -1,94 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef SPBENCHSTYLE_H
#define SPBENCHSTYLE_H
void printBenchStyle(std::ofstream& out)
{
out << "<xsl:stylesheet id='stylesheet' version='1.0' \
xmlns:xsl='http://www.w3.org/1999/XSL/Transform' >\n \
<xsl:template match='xsl:stylesheet' />\n \
<xsl:template match='/'> <!-- Root of the document -->\n \
<html>\n \
<head> \n \
<style type='text/css'> \n \
td { white-space: nowrap;}\n \
</style>\n \
</head>\n \
<body>";
out<<"<table border='1' width='100%' height='100%'>\n \
<TR> <!-- Write the table header -->\n \
<TH>Matrix</TH> <TH>N</TH> <TH> NNZ</TH> <TH> Sym</TH> <TH> SPD</TH> <TH> </TH>\n \
<xsl:for-each select='BENCH/AVAILSOLVER/SOLVER'>\n \
<xsl:sort select='@ID' data-type='number'/>\n \
<TH>\n \
<xsl:value-of select='TYPE' />\n \
<xsl:text></xsl:text>\n \
<xsl:value-of select='PACKAGE' />\n \
<xsl:text></xsl:text>\n \
</TH>\n \
</xsl:for-each>\n \
</TR>";
out<<" <xsl:for-each select='BENCH/LINEARSYSTEM'>\n \
<TR> <!-- print statistics for one linear system-->\n \
<TH rowspan='4'> <xsl:value-of select='MATRIX/NAME' /> </TH>\n \
<TD rowspan='4'> <xsl:value-of select='MATRIX/SIZE' /> </TD>\n \
<TD rowspan='4'> <xsl:value-of select='MATRIX/ENTRIES' /> </TD>\n \
<TD rowspan='4'> <xsl:value-of select='MATRIX/SYMMETRY' /> </TD>\n \
<TD rowspan='4'> <xsl:value-of select='MATRIX/POSDEF' /> </TD>\n \
<TH> Compute Time </TH>\n \
<xsl:for-each select='SOLVER_STAT'>\n \
<xsl:sort select='@ID' data-type='number'/>\n \
<TD> <xsl:value-of select='TIME/COMPUTE' /> </TD>\n \
</xsl:for-each>\n \
</TR>";
out<<" <TR>\n \
<TH> Solve Time </TH>\n \
<xsl:for-each select='SOLVER_STAT'>\n \
<xsl:sort select='@ID' data-type='number'/>\n \
<TD> <xsl:value-of select='TIME/SOLVE' /> </TD>\n \
</xsl:for-each>\n \
</TR>\n \
<TR>\n \
<TH> Total Time </TH>\n \
<xsl:for-each select='SOLVER_STAT'>\n \
<xsl:sort select='@ID' data-type='number'/>\n \
<xsl:choose>\n \
<xsl:when test='@ID=../BEST_SOLVER/@ID'>\n \
<TD style='background-color:red'> <xsl:value-of select='TIME/TOTAL' /> </TD>\n \
</xsl:when>\n \
<xsl:otherwise>\n \
<TD> <xsl:value-of select='TIME/TOTAL' /></TD>\n \
</xsl:otherwise>\n \
</xsl:choose>\n \
</xsl:for-each>\n \
</TR>";
out<<" <TR>\n \
<TH> Error </TH>\n \
<xsl:for-each select='SOLVER_STAT'>\n \
<xsl:sort select='@ID' data-type='number'/>\n \
<TD> <xsl:value-of select='ERROR' />\n \
<xsl:if test='ITER'>\n \
<xsl:text>(</xsl:text>\n \
<xsl:value-of select='ITER' />\n \
<xsl:text>)</xsl:text>\n \
</xsl:if> </TD>\n \
</xsl:for-each>\n \
</TR>\n \
</xsl:for-each>\n \
</table>\n \
</body>\n \
</html>\n \
</xsl:template>\n \
</xsl:stylesheet>\n\n";
}
#endif

93
resources/3rdparty/eigen/bench/spbench/test_sparseLU.cpp

@ -1,93 +0,0 @@
// Small bench routine for Eigen available in Eigen
// (C) Desire NUENTSA WAKAM, INRIA
#include <iostream>
#include <fstream>
#include <iomanip>
#include <unsupported/Eigen/SparseExtra>
#include <Eigen/SparseLU>
#include <bench/BenchTimer.h>
#ifdef EIGEN_METIS_SUPPORT
#include <Eigen/MetisSupport>
#endif
using namespace std;
using namespace Eigen;
int main(int argc, char **args)
{
// typedef complex<double> scalar;
typedef double scalar;
SparseMatrix<scalar, ColMajor> A;
typedef SparseMatrix<scalar, ColMajor>::Index Index;
typedef Matrix<scalar, Dynamic, Dynamic> DenseMatrix;
typedef Matrix<scalar, Dynamic, 1> DenseRhs;
Matrix<scalar, Dynamic, 1> b, x, tmp;
// SparseLU<SparseMatrix<scalar, ColMajor>, AMDOrdering<int> > solver;
// #ifdef EIGEN_METIS_SUPPORT
// SparseLU<SparseMatrix<scalar, ColMajor>, MetisOrdering<int> > solver;
// std::cout<< "ORDERING : METIS\n";
// #else
SparseLU<SparseMatrix<scalar, ColMajor>, COLAMDOrdering<int> > solver;
std::cout<< "ORDERING : COLAMD\n";
// #endif
ifstream matrix_file;
string line;
int n;
BenchTimer timer;
// Set parameters
/* Fill the matrix with sparse matrix stored in Matrix-Market coordinate column-oriented format */
if (argc < 2) assert(false && "please, give the matrix market file ");
loadMarket(A, args[1]);
cout << "End charging matrix " << endl;
bool iscomplex=false, isvector=false;
int sym;
getMarketHeader(args[1], sym, iscomplex, isvector);
// if (iscomplex) { cout<< " Not for complex matrices \n"; return -1; }
if (isvector) { cout << "The provided file is not a matrix file\n"; return -1;}
if (sym != 0) { // symmetric matrices, only the lower part is stored
SparseMatrix<scalar, ColMajor> temp;
temp = A;
A = temp.selfadjointView<Lower>();
}
n = A.cols();
/* Fill the right hand side */
if (argc > 2)
loadMarketVector(b, args[2]);
else
{
b.resize(n);
tmp.resize(n);
// tmp.setRandom();
for (int i = 0; i < n; i++) tmp(i) = i;
b = A * tmp ;
}
/* Compute the factorization */
// solver.isSymmetric(true);
timer.start();
// solver.compute(A);
solver.analyzePattern(A);
timer.stop();
cout << "Time to analyze " << timer.value() << std::endl;
timer.reset();
timer.start();
solver.factorize(A);
timer.stop();
cout << "Factorize Time " << timer.value() << std::endl;
timer.reset();
timer.start();
x = solver.solve(b);
timer.stop();
cout << "solve time " << timer.value() << std::endl;
/* Check the accuracy */
Matrix<scalar, Dynamic, 1> tmp2 = b - A*x;
scalar tempNorm = tmp2.norm()/b.norm();
cout << "Relative norm of the computed solution : " << tempNorm <<"\n";
cout << "Number of nonzeros in the factor : " << solver.nnzL() + solver.nnzU() << std::endl;
return 0;
}

44
resources/3rdparty/eigen/blas/GeneralRank1Update.h

@ -1,44 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_GENERAL_RANK1UPDATE_H
#define EIGEN_GENERAL_RANK1UPDATE_H
namespace internal {
/* Optimized matrix += alpha * uv' */
template<typename Scalar, typename Index, int StorageOrder, bool ConjLhs, bool ConjRhs>
struct general_rank1_update;
template<typename Scalar, typename Index, bool ConjLhs, bool ConjRhs>
struct general_rank1_update<Scalar,Index,ColMajor,ConjLhs,ConjRhs>
{
static void run(Index rows, Index cols, Scalar* mat, Index stride, const Scalar* u, const Scalar* v, Scalar alpha)
{
typedef Map<const Matrix<Scalar,Dynamic,1> > OtherMap;
typedef typename conj_expr_if<ConjLhs,OtherMap>::type ConjRhsType;
conj_if<ConjRhs> cj;
for (Index i=0; i<cols; ++i)
Map<Matrix<Scalar,Dynamic,1> >(mat+stride*i,rows) += alpha * cj(v[i]) * ConjRhsType(OtherMap(u,rows));
}
};
template<typename Scalar, typename Index, bool ConjLhs, bool ConjRhs>
struct general_rank1_update<Scalar,Index,RowMajor,ConjLhs,ConjRhs>
{
static void run(Index rows, Index cols, Scalar* mat, Index stride, const Scalar* u, const Scalar* v, Scalar alpha)
{
general_rank1_update<Scalar,Index,ColMajor,ConjRhs,ConjRhs>::run(rows,cols,mat,stride,u,v,alpha);
}
};
} // end namespace internal
#endif // EIGEN_GENERAL_RANK1UPDATE_H

54
resources/3rdparty/eigen/blas/PackedSelfadjointProduct.h

@ -1,54 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SELFADJOINT_PACKED_PRODUCT_H
#define EIGEN_SELFADJOINT_PACKED_PRODUCT_H
namespace internal {
/* Optimized matrix += alpha * uv'
* The matrix is in packed form.
*/
template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjLhs, bool ConjRhs>
struct selfadjoint_packed_rank1_update;
template<typename Scalar, typename Index, int UpLo, bool ConjLhs, bool ConjRhs>
struct selfadjoint_packed_rank1_update<Scalar,Index,ColMajor,UpLo,ConjLhs,ConjRhs>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static void run(Index size, Scalar* mat, const Scalar* vec, RealScalar alpha)
{
typedef Map<const Matrix<Scalar,Dynamic,1> > OtherMap;
typedef typename conj_expr_if<ConjLhs,OtherMap>::type ConjRhsType;
conj_if<ConjRhs> cj;
for (Index i=0; i<size; ++i)
{
Map<Matrix<Scalar,Dynamic,1> >(mat, UpLo==Lower ? size-i : (i+1))
+= alpha * cj(vec[i]) * ConjRhsType(OtherMap(vec+(UpLo==Lower ? i : 0), UpLo==Lower ? size-i : (i+1)));
//FIXME This should be handled outside.
mat[UpLo==Lower ? 0 : i] = real(mat[UpLo==Lower ? 0 : i]);
mat += UpLo==Lower ? size-i : (i+1);
}
}
};
template<typename Scalar, typename Index, int UpLo, bool ConjLhs, bool ConjRhs>
struct selfadjoint_packed_rank1_update<Scalar,Index,RowMajor,UpLo,ConjLhs,ConjRhs>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static void run(Index size, Scalar* mat, const Scalar* vec, RealScalar alpha)
{
selfadjoint_packed_rank1_update<Scalar,Index,ColMajor,UpLo==Lower?Upper:Lower,ConjRhs,ConjLhs>::run(size,mat,vec,alpha);
}
};
} // end namespace internal
#endif // EIGEN_SELFADJOINT_PACKED_PRODUCT_H

79
resources/3rdparty/eigen/blas/PackedTriangularMatrixVector.h

@ -1,79 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PACKED_TRIANGULAR_MATRIX_VECTOR_H
#define EIGEN_PACKED_TRIANGULAR_MATRIX_VECTOR_H
namespace internal {
template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs, int StorageOrder>
struct packed_triangular_matrix_vector_product;
template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs>
struct packed_triangular_matrix_vector_product<Index,Mode,LhsScalar,ConjLhs,RhsScalar,ConjRhs,ColMajor>
{
typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
enum {
IsLower = (Mode & Lower) ==Lower,
HasUnitDiag = (Mode & UnitDiag)==UnitDiag,
HasZeroDiag = (Mode & ZeroDiag)==ZeroDiag
};
static void run(Index size, const LhsScalar* lhs, const RhsScalar* rhs, ResScalar* res, ResScalar alpha)
{
internal::conj_if<ConjRhs> cj;
typedef Map<const Matrix<LhsScalar,Dynamic,1> > LhsMap;
typedef typename conj_expr_if<ConjLhs,LhsMap>::type ConjLhsType;
typedef Map<Matrix<ResScalar,Dynamic,1> > ResMap;
for (Index i=0; i<size; ++i)
{
Index s = IsLower&&(HasUnitDiag||HasZeroDiag) ? 1 : 0;
Index r = IsLower ? size-i: i+1;
if (EIGEN_IMPLIES(HasUnitDiag||HasZeroDiag, (--r)>0))
ResMap(res+(IsLower ? s+i : 0),r) += alpha * cj(rhs[i]) * ConjLhsType(LhsMap(lhs+s,r));
if (HasUnitDiag)
res[i] += alpha * cj(rhs[i]);
lhs += IsLower ? size-i: i+1;
}
};
};
template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs>
struct packed_triangular_matrix_vector_product<Index,Mode,LhsScalar,ConjLhs,RhsScalar,ConjRhs,RowMajor>
{
typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
enum {
IsLower = (Mode & Lower) ==Lower,
HasUnitDiag = (Mode & UnitDiag)==UnitDiag,
HasZeroDiag = (Mode & ZeroDiag)==ZeroDiag
};
static void run(Index size, const LhsScalar* lhs, const RhsScalar* rhs, ResScalar* res, ResScalar alpha)
{
internal::conj_if<ConjRhs> cj;
typedef Map<const Matrix<LhsScalar,Dynamic,1> > LhsMap;
typedef typename conj_expr_if<ConjLhs,LhsMap>::type ConjLhsType;
typedef Map<const Matrix<RhsScalar,Dynamic,1> > RhsMap;
typedef typename conj_expr_if<ConjRhs,RhsMap>::type ConjRhsType;
for (Index i=0; i<size; ++i)
{
Index s = !IsLower&&(HasUnitDiag||HasZeroDiag) ? 1 : 0;
Index r = IsLower ? i+1 : size-i;
if (EIGEN_IMPLIES(HasUnitDiag||HasZeroDiag, (--r)>0))
res[i] += alpha * (ConjLhsType(LhsMap(lhs+s,r)).cwiseProduct(ConjRhsType(RhsMap(rhs+(IsLower ? 0 : s+i),r)))).sum();
if (HasUnitDiag)
res[i] += alpha * cj(rhs[i]);
lhs += IsLower ? i+1 : size-i;
}
};
};
} // end namespace internal
#endif // EIGEN_PACKED_TRIANGULAR_MATRIX_VECTOR_H

88
resources/3rdparty/eigen/blas/PackedTriangularSolverVector.h

@ -1,88 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PACKED_TRIANGULAR_SOLVER_VECTOR_H
#define EIGEN_PACKED_TRIANGULAR_SOLVER_VECTOR_H
namespace internal {
template<typename LhsScalar, typename RhsScalar, typename Index, int Side, int Mode, bool Conjugate, int StorageOrder>
struct packed_triangular_solve_vector;
// forward and backward substitution, row-major, rhs is a vector
template<typename LhsScalar, typename RhsScalar, typename Index, int Mode, bool Conjugate>
struct packed_triangular_solve_vector<LhsScalar, RhsScalar, Index, OnTheLeft, Mode, Conjugate, RowMajor>
{
enum {
IsLower = (Mode&Lower)==Lower
};
static void run(Index size, const LhsScalar* lhs, RhsScalar* rhs)
{
internal::conj_if<Conjugate> cj;
typedef Map<const Matrix<LhsScalar,Dynamic,1> > LhsMap;
typedef typename conj_expr_if<Conjugate,LhsMap>::type ConjLhsType;
lhs += IsLower ? 0 : (size*(size+1)>>1)-1;
for(Index pi=0; pi<size; ++pi)
{
Index i = IsLower ? pi : size-pi-1;
Index s = IsLower ? 0 : 1;
if (pi>0)
rhs[i] -= (ConjLhsType(LhsMap(lhs+s,pi))
.cwiseProduct(Map<const Matrix<RhsScalar,Dynamic,1> >(rhs+(IsLower ? 0 : i+1),pi))).sum();
if (!(Mode & UnitDiag))
rhs[i] /= cj(lhs[IsLower ? i : 0]);
IsLower ? lhs += pi+1 : lhs -= pi+2;
}
}
};
// forward and backward substitution, column-major, rhs is a vector
template<typename LhsScalar, typename RhsScalar, typename Index, int Mode, bool Conjugate>
struct packed_triangular_solve_vector<LhsScalar, RhsScalar, Index, OnTheLeft, Mode, Conjugate, ColMajor>
{
enum {
IsLower = (Mode&Lower)==Lower
};
static void run(Index size, const LhsScalar* lhs, RhsScalar* rhs)
{
internal::conj_if<Conjugate> cj;
typedef Map<const Matrix<LhsScalar,Dynamic,1> > LhsMap;
typedef typename conj_expr_if<Conjugate,LhsMap>::type ConjLhsType;
lhs += IsLower ? 0 : size*(size-1)>>1;
for(Index pi=0; pi<size; ++pi)
{
Index i = IsLower ? pi : size-pi-1;
Index r = size - pi - 1;
if (!(Mode & UnitDiag))
rhs[i] /= cj(lhs[IsLower ? 0 : i]);
if (r>0)
Map<Matrix<RhsScalar,Dynamic,1> >(rhs+(IsLower? i+1 : 0),r) -=
rhs[i] * ConjLhsType(LhsMap(lhs+(IsLower? 1 : 0),r));
IsLower ? lhs += size-pi : lhs -= r;
}
}
};
template<typename LhsScalar, typename RhsScalar, typename Index, int Mode, bool Conjugate, int StorageOrder>
struct packed_triangular_solve_vector<LhsScalar, RhsScalar, Index, OnTheRight, Mode, Conjugate, StorageOrder>
{
static void run(Index size, const LhsScalar* lhs, RhsScalar* rhs)
{
packed_triangular_solve_vector<LhsScalar,RhsScalar,Index,OnTheLeft,
((Mode&Upper)==Upper ? Lower : Upper) | (Mode&UnitDiag),
Conjugate,StorageOrder==RowMajor?ColMajor:RowMajor
>::run(size, lhs, rhs);
}
};
} // end namespace internal
#endif // EIGEN_PACKED_TRIANGULAR_SOLVER_VECTOR_H

57
resources/3rdparty/eigen/blas/Rank2Update.h

@ -1,57 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_RANK2UPDATE_H
#define EIGEN_RANK2UPDATE_H
namespace internal {
/* Optimized selfadjoint matrix += alpha * uv' + conj(alpha)*vu'
* This is the low-level version of SelfadjointRank2Update.h
*/
template<typename Scalar, typename Index, int UpLo>
struct rank2_update_selector
{
static void run(Index size, Scalar* mat, Index stride, const Scalar* u, const Scalar* v, Scalar alpha)
{
typedef Map<const Matrix<Scalar,Dynamic,1> > OtherMap;
for (Index i=0; i<size; ++i)
{
Map<Matrix<Scalar,Dynamic,1> >(mat+stride*i+(UpLo==Lower ? i : 0), UpLo==Lower ? size-i : (i+1)) +=
conj(alpha) * conj(u[i]) * OtherMap(v+(UpLo==Lower ? i : 0), UpLo==Lower ? size-i : (i+1))
+ alpha * conj(v[i]) * OtherMap(u+(UpLo==Lower ? i : 0), UpLo==Lower ? size-i : (i+1));
}
}
};
/* Optimized selfadjoint matrix += alpha * uv' + conj(alpha)*vu'
* The matrix is in packed form.
*/
template<typename Scalar, typename Index, int UpLo>
struct packed_rank2_update_selector
{
static void run(Index size, Scalar* mat, const Scalar* u, const Scalar* v, Scalar alpha)
{
typedef Map<const Matrix<Scalar,Dynamic,1> > OtherMap;
Index offset = 0;
for (Index i=0; i<size; ++i)
{
Map<Matrix<Scalar,Dynamic,1> >(mat+offset, UpLo==Lower ? size-i : (i+1)) +=
conj(alpha) * conj(u[i]) * OtherMap(v+(UpLo==Lower ? i : 0), UpLo==Lower ? size-i : (i+1))
+ alpha * conj(v[i]) * OtherMap(u+(UpLo==Lower ? i : 0), UpLo==Lower ? size-i : (i+1));
//FIXME This should be handled outside.
mat[offset+(UpLo==Lower ? 0 : i)] = real(mat[offset+(UpLo==Lower ? 0 : i)]);
offset += UpLo==Lower ? size-i : (i+1);
}
}
};
} // end namespace internal
#endif // EIGEN_RANK2UPDATE_H

110
resources/3rdparty/eigen/doc/I17_SparseLinearSystems.dox

@ -1,110 +0,0 @@
namespace Eigen {
/** \page TopicSparseSystems Solving Sparse Linear Systems
In Eigen, there are several methods available to solve linear systems when the coefficient matrix is sparse. Because of the special representation of this class of matrices, special care should be taken in order to get a good performance. See \ref TutorialSparse for a detailed introduction about sparse matrices in Eigen. In this page, we briefly present the main steps that are common to all the linear solvers in Eigen together with the main concepts behind them. Depending on the properties of the matrix, the desired accuracy, the end-user is able to tune these steps in order to improve the performance of its code. However, an impatient user does not need to know deeply what's hiding behind these steps: the last section presents a benchmark routine that can be easily used to get an insight on the performance of all the available solvers.
\b Table \b of \b contents \n
- \ref TheSparseCompute
- \ref TheSparseSolve
- \ref BenchmarkRoutine
As summarized in \ref TutorialSparseDirectSolvers, there are many built-in solvers in Eigen as well as interface to external solvers libraries. All these solvers follow the same calling sequence. The basic steps are as follows :
\code
#include <Eigen/RequiredModuleName>
// ...
SparseMatrix<double> A;
// fill A
VectorXd b, x;
// fill b
// solve Ax = b
SolverClassName<SparseMatrix<double> > solver;
solver.compute(A);
if(solver.info()!=Succeeded) {
// decomposition failed
return;
}
x = solver.solve(b);
if(solver.info()!=Succeeded) {
// solving failed
return;
}
\endcode
\section TheSparseCompute The Compute Step
In the compute() function, the matrix is generally factorized: LLT for self-adjoint matrices, LDLT for general hermitian matrices and LU for non hermitian matrices. These are the results of using direct solvers. For this class of solvers precisely, the compute step is further subdivided into analyzePattern() and factorize().
The goal of analyzePattern() is to reorder the nonzero elements of the matrix, such that the factorization step creates less fill-in. This step exploits only the structure of the matrix. Hence, the results of this step can be used for other linear systems where the matrix has the same structure. Note however that sometimes, some external solvers (like SuperLU) require that the values of the matrix are set in this step, for instance to equilibrate the rows and columns of the matrix. In this situation, the results of this step can note be used with other matrices.
Eigen provides a limited set of methods to reorder the matrix in this step, either built-in (COLAMD, AMD) or external (METIS). These methods are set in template parameter list of the solver :
\code
DirectSolverClassName<SparseMatrix<double>, OrderingMethod<IndexType> > solver;
\endcode
See \link Ordering_Modules the Ordering module \endlink for the list of available methods and the associated options.
In factorize(), the factors of the coefficient matrix are computed. This step should be called each time the values of the matrix change. However, the structural pattern of the matrix should not change between multiple calls.
For iterative solvers, the compute step is used to eventually setup a preconditioner. Remember that, basically, the goal of the preconditioner is to speedup the convergence of an iterative method by solving a modified linear system where the coefficient matrix has more clustered eigenvalues. For real problems, an iterative solver should always be used with a preconditioner. In Eigen, a preconditioner is selected by simply adding it as a template parameter to the iterative solver object.
\code
IterativeSolverClassName<SparseMatrix<double>, PreconditionerName<SparseMatrix<double> > solver;
\endcode
The member function preconditioner() returns a read-write reference to the preconditioner
to directly interact with it.
For instance, with the ILUT preconditioner, the incomplete factors L and U are computed in this step.
See \link Sparse_modules the Sparse module \endlink for the list of available preconditioners in Eigen.
\section TheSparseSolve The Solve step
The solve() function computes the solution of the linear systems with one or many right hand sides.
\code
X = solver.solve(B);
\endcode
Here, B can be a vector or a matrix where the columns form the different right hand sides. The solve() function can be called several times as well, for instance When all the right hand sides are not available at once.
\code
x1 = solver.solve(b1);
// Get the second right hand side b2
x2 = solver.solve(b2);
// ...
\endcode
For direct methods, the solution are computed at the machine precision. Sometimes, the solution need not be too accurate. In this case, the iterative methods are more suitable and the desired accuracy can be set before the solve step using setTolerance(). For all the available functions, please, refer to the documentation of the \link IterativeLinearSolvers_module Iterative solvers module \endlink.
\section BenchmarkRoutine
Most of the time, all you need is to know how much time it will take to qolve your system, and hopefully, what is the most suitable solver. In Eigen, we provide a benchmark routine that can be used for this purpose. It is very easy to use. First, it should be activated at the configuration step with the flag TEST_REAL_CASES. Then, in bench/spbench, you can compile the routine by typing \b make \e spbenchsolver. You can then run it with --help option to get the list of all available options. Basically, the matrices to test should be in \link http://math.nist.gov/MatrixMarket/formats.html MatrixMarket Coordinate format \endlink, and the routine returns the statistics from all available solvers in Eigen.
The following table gives an example of XHTML statistics from several Eigen built-in and external solvers.
<TABLE border="1">
<TR><TH>Matrix <TH> N <TH> NNZ <TH> <TH > UMFPACK <TH > SUPERLU <TH > PASTIX LU <TH >BiCGSTAB <TH > BiCGSTAB+ILUT <TH >GMRES+ILUT<TH > LDLT <TH> CHOLMOD LDLT <TH > PASTIX LDLT <TH > LLT <TH > CHOLMOD SP LLT <TH > CHOLMOD LLT <TH > PASTIX LLT <TH> CG</TR>
<TR><TH rowspan="4">vector_graphics <TD rowspan="4"> 12855 <TD rowspan="4"> 72069 <TH>Compute Time <TD>0.0254549<TD>0.0215677<TD>0.0701827<TD>0.000153388<TD>0.0140107<TD>0.0153709<TD>0.0101601<TD style="background-color:red">0.00930502<TD>0.0649689
<TR><TH>Solve Time <TD>0.00337835<TD>0.000951826<TD>0.00484373<TD>0.0374886<TD>0.0046445<TD>0.00847754<TD>0.000541813<TD style="background-color:red">0.000293696<TD>0.00485376
<TR><TH>Total Time <TD>0.0288333<TD>0.0225195<TD>0.0750265<TD>0.037642<TD>0.0186552<TD>0.0238484<TD>0.0107019<TD style="background-color:red">0.00959871<TD>0.0698227
<TR><TH>Error(Iter) <TD> 1.299e-16 <TD> 2.04207e-16 <TD> 4.83393e-15 <TD> 3.94856e-11 (80) <TD> 1.03861e-12 (3) <TD> 5.81088e-14 (6) <TD> 1.97578e-16 <TD> 1.83927e-16 <TD> 4.24115e-15
<TR><TH rowspan="4">poisson_SPD <TD rowspan="4"> 19788 <TD rowspan="4"> 308232 <TH>Compute Time <TD>0.425026<TD>1.82378<TD>0.617367<TD>0.000478921<TD>1.34001<TD>1.33471<TD>0.796419<TD>0.857573<TD>0.473007<TD>0.814826<TD style="background-color:red">0.184719<TD>0.861555<TD>0.470559<TD>0.000458188
<TR><TH>Solve Time <TD>0.0280053<TD>0.0194402<TD>0.0268747<TD>0.249437<TD>0.0548444<TD>0.0926991<TD>0.00850204<TD>0.0053171<TD>0.0258932<TD>0.00874603<TD style="background-color:red">0.00578155<TD>0.00530361<TD>0.0248942<TD>0.239093
<TR><TH>Total Time <TD>0.453031<TD>1.84322<TD>0.644241<TD>0.249916<TD>1.39486<TD>1.42741<TD>0.804921<TD>0.862891<TD>0.4989<TD>0.823572<TD style="background-color:red">0.190501<TD>0.866859<TD>0.495453<TD>0.239551
<TR><TH>Error(Iter) <TD> 4.67146e-16 <TD> 1.068e-15 <TD> 1.3397e-15 <TD> 6.29233e-11 (201) <TD> 3.68527e-11 (6) <TD> 3.3168e-15 (16) <TD> 1.86376e-15 <TD> 1.31518e-16 <TD> 1.42593e-15 <TD> 3.45361e-15 <TD> 3.14575e-16 <TD> 2.21723e-15 <TD> 7.21058e-16 <TD> 9.06435e-12 (261)
<TR><TH rowspan="4">sherman2 <TD rowspan="4"> 1080 <TD rowspan="4"> 23094 <TH>Compute Time <TD style="background-color:red">0.00631754<TD>0.015052<TD>0.0247514 <TD> -<TD>0.0214425<TD>0.0217988
<TR><TH>Solve Time <TD style="background-color:red">0.000478424<TD>0.000337998<TD>0.0010291 <TD> -<TD>0.00243152<TD>0.00246152
<TR><TH>Total Time <TD style="background-color:red">0.00679597<TD>0.01539<TD>0.0257805 <TD> -<TD>0.023874<TD>0.0242603
<TR><TH>Error(Iter) <TD> 1.83099e-15 <TD> 8.19351e-15 <TD> 2.625e-14 <TD> 1.3678e+69 (1080) <TD> 4.1911e-12 (7) <TD> 5.0299e-13 (12)
<TR><TH rowspan="4">bcsstk01_SPD <TD rowspan="4"> 48 <TD rowspan="4"> 400 <TH>Compute Time <TD>0.000169079<TD>0.00010789<TD>0.000572538<TD>1.425e-06<TD>9.1612e-05<TD>8.3985e-05<TD style="background-color:red">5.6489e-05<TD>7.0913e-05<TD>0.000468251<TD>5.7389e-05<TD>8.0212e-05<TD>5.8394e-05<TD>0.000463017<TD>1.333e-06
<TR><TH>Solve Time <TD>1.2288e-05<TD>1.1124e-05<TD>0.000286387<TD>8.5896e-05<TD>1.6381e-05<TD>1.6984e-05<TD style="background-color:red">3.095e-06<TD>4.115e-06<TD>0.000325438<TD>3.504e-06<TD>7.369e-06<TD>3.454e-06<TD>0.000294095<TD>6.0516e-05
<TR><TH>Total Time <TD>0.000181367<TD>0.000119014<TD>0.000858925<TD>8.7321e-05<TD>0.000107993<TD>0.000100969<TD style="background-color:red">5.9584e-05<TD>7.5028e-05<TD>0.000793689<TD>6.0893e-05<TD>8.7581e-05<TD>6.1848e-05<TD>0.000757112<TD>6.1849e-05
<TR><TH>Error(Iter) <TD> 1.03474e-16 <TD> 2.23046e-16 <TD> 2.01273e-16 <TD> 4.87455e-07 (48) <TD> 1.03553e-16 (2) <TD> 3.55965e-16 (2) <TD> 2.48189e-16 <TD> 1.88808e-16 <TD> 1.97976e-16 <TD> 2.37248e-16 <TD> 1.82701e-16 <TD> 2.71474e-16 <TD> 2.11322e-16 <TD> 3.547e-09 (48)
<TR><TH rowspan="4">sherman1 <TD rowspan="4"> 1000 <TD rowspan="4"> 3750 <TH>Compute Time <TD>0.00228805<TD>0.00209231<TD>0.00528268<TD>9.846e-06<TD>0.00163522<TD>0.00162155<TD>0.000789259<TD style="background-color:red">0.000804495<TD>0.00438269
<TR><TH>Solve Time <TD>0.000213788<TD>9.7983e-05<TD>0.000938831<TD>0.00629835<TD>0.000361764<TD>0.00078794<TD>4.3989e-05<TD style="background-color:red">2.5331e-05<TD>0.000917166
<TR><TH>Total Time <TD>0.00250184<TD>0.00219029<TD>0.00622151<TD>0.0063082<TD>0.00199698<TD>0.00240949<TD>0.000833248<TD style="background-color:red">0.000829826<TD>0.00529986
<TR><TH>Error(Iter) <TD> 1.16839e-16 <TD> 2.25968e-16 <TD> 2.59116e-16 <TD> 3.76779e-11 (248) <TD> 4.13343e-11 (4) <TD> 2.22347e-14 (10) <TD> 2.05861e-16 <TD> 1.83555e-16 <TD> 1.02917e-15
<TR><TH rowspan="4">young1c <TD rowspan="4"> 841 <TD rowspan="4"> 4089 <TH>Compute Time <TD>0.00235843<TD style="background-color:red">0.00217228<TD>0.00568075<TD>1.2735e-05<TD>0.00264866<TD>0.00258236
<TR><TH>Solve Time <TD>0.000329599<TD style="background-color:red">0.000168634<TD>0.00080118<TD>0.0534738<TD>0.00187193<TD>0.00450211
<TR><TH>Total Time <TD>0.00268803<TD style="background-color:red">0.00234091<TD>0.00648193<TD>0.0534865<TD>0.00452059<TD>0.00708447
<TR><TH>Error(Iter) <TD> 1.27029e-16 <TD> 2.81321e-16 <TD> 5.0492e-15 <TD> 8.0507e-11 (706) <TD> 3.00447e-12 (8) <TD> 1.46532e-12 (16)
<TR><TH rowspan="4">mhd1280b <TD rowspan="4"> 1280 <TD rowspan="4"> 22778 <TH>Compute Time <TD>0.00234898<TD>0.00207079<TD>0.00570918<TD>2.5976e-05<TD>0.00302563<TD>0.00298036<TD>0.00144525<TD style="background-color:red">0.000919922<TD>0.00426444
<TR><TH>Solve Time <TD>0.00103392<TD>0.000211911<TD>0.00105<TD>0.0110432<TD>0.000628287<TD>0.00392089<TD>0.000138303<TD style="background-color:red">6.2446e-05<TD>0.00097564
<TR><TH>Total Time <TD>0.0033829<TD>0.0022827<TD>0.00675918<TD>0.0110692<TD>0.00365392<TD>0.00690124<TD>0.00158355<TD style="background-color:red">0.000982368<TD>0.00524008
<TR><TH>Error(Iter) <TD> 1.32953e-16 <TD> 3.08646e-16 <TD> 6.734e-16 <TD> 8.83132e-11 (40) <TD> 1.51153e-16 (1) <TD> 6.08556e-16 (8) <TD> 1.89264e-16 <TD> 1.97477e-16 <TD> 6.68126e-09
<TR><TH rowspan="4">crashbasis <TD rowspan="4"> 160000 <TD rowspan="4"> 1750416 <TH>Compute Time <TD>3.2019<TD>5.7892<TD>15.7573<TD style="background-color:red">0.00383515<TD>3.1006<TD>3.09921
<TR><TH>Solve Time <TD>0.261915<TD>0.106225<TD>0.402141<TD style="background-color:red">1.49089<TD>0.24888<TD>0.443673
<TR><TH>Total Time <TD>3.46381<TD>5.89542<TD>16.1594<TD style="background-color:red">1.49473<TD>3.34948<TD>3.54288
<TR><TH>Error(Iter) <TD> 1.76348e-16 <TD> 4.58395e-16 <TD> 1.67982e-14 <TD> 8.64144e-11 (61) <TD> 8.5996e-12 (2) <TD> 6.04042e-14 (5)
</TABLE>
*/
}

7
resources/3rdparty/eigen/doc/snippets/GeneralizedEigenSolver.cpp

@ -1,7 +0,0 @@
GeneralizedEigenSolver<MatrixXf> ges;
MatrixXf A = MatrixXf::Random(4,4);
MatrixXf B = MatrixXf::Random(4,4);
ges.compute(A, B);
cout << "The (complex) numerators of the generalzied eigenvalues are: " << ges.alphas().transpose() << endl;
cout << "The (real) denominatore of the generalzied eigenvalues are: " << ges.betas().transpose() << endl;
cout << "The (complex) generalzied eigenvalues are (alphas./beta): " << ges.eigenvalues().transpose() << endl;

7
resources/3rdparty/eigen/doc/snippets/HouseholderQR_householderQ.cpp

@ -1,7 +0,0 @@
MatrixXf A(MatrixXf::Random(5,3)), thinQ(MatrixXf::Identity(5,3)), Q;
A.setRandom();
HouseholderQR<MatrixXf> qr(A);
Q = qr.householderQ();
thinQ = qr.householderQ() * thinQ;
std::cout << "The complete unitary matrix Q is:\n" << Q << "\n\n";
std::cout << "The thin matrix Q is:\n" << thinQ << "\n\n";

17
resources/3rdparty/eigen/doc/snippets/RealQZ_compute.cpp

@ -1,17 +0,0 @@
MatrixXf A = MatrixXf::Random(4,4);
MatrixXf B = MatrixXf::Random(4,4);
RealQZ<MatrixXf> qz(4); // preallocate space for 4x4 matrices
qz.compute(A,B); // A = Q S Z, B = Q T Z
// print original matrices and result of decomposition
cout << "A:\n" << A << "\n" << "B:\n" << B << "\n";
cout << "S:\n" << qz.matrixS() << "\n" << "T:\n" << qz.matrixT() << "\n";
cout << "Q:\n" << qz.matrixQ() << "\n" << "Z:\n" << qz.matrixZ() << "\n";
// verify precision
cout << "\nErrors:"
<< "\n|A-QSZ|: " << (A-qz.matrixQ()*qz.matrixS()*qz.matrixZ()).norm()
<< ", |B-QTZ|: " << (B-qz.matrixQ()*qz.matrixT()*qz.matrixZ()).norm()
<< "\n|QQ* - I|: " << (qz.matrixQ()*qz.matrixQ().adjoint() - MatrixXf::Identity(4,4)).norm()
<< ", |ZZ* - I|: " << (qz.matrixZ()*qz.matrixZ().adjoint() - MatrixXf::Identity(4,4)).norm()
<< "\n";

63
resources/3rdparty/eigen/test/eigensolver_generalized_real.cpp

@ -1,63 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <limits>
#include <Eigen/Eigenvalues>
template<typename MatrixType> void generalized_eigensolver_real(const MatrixType& m)
{
typedef typename MatrixType::Index Index;
/* this test covers the following files:
GeneralizedEigenSolver.h
*/
Index rows = m.rows();
Index cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
MatrixType a = MatrixType::Random(rows,cols);
MatrixType b = MatrixType::Random(rows,cols);
MatrixType a1 = MatrixType::Random(rows,cols);
MatrixType b1 = MatrixType::Random(rows,cols);
MatrixType spdA = a.adjoint() * a + a1.adjoint() * a1;
MatrixType spdB = b.adjoint() * b + b1.adjoint() * b1;
// lets compare to GeneralizedSelfAdjointEigenSolver
GeneralizedSelfAdjointEigenSolver<MatrixType> symmEig(spdA, spdB);
GeneralizedEigenSolver<MatrixType> eig(spdA, spdB);
VERIFY_IS_EQUAL(eig.eigenvalues().imag().cwiseAbs().maxCoeff(), 0);
VectorType realEigenvalues = eig.eigenvalues().real();
std::sort(realEigenvalues.data(), realEigenvalues.data()+realEigenvalues.size());
VERIFY_IS_APPROX(realEigenvalues, symmEig.eigenvalues());
}
void test_eigensolver_generalized_real()
{
int s;
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( generalized_eigensolver_real(Matrix4f()) );
s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
CALL_SUBTEST_2( generalized_eigensolver_real(MatrixXd(s,s)) );
// some trivial but implementation-wise tricky cases
CALL_SUBTEST_2( generalized_eigensolver_real(MatrixXd(1,1)) );
CALL_SUBTEST_2( generalized_eigensolver_real(MatrixXd(2,2)) );
CALL_SUBTEST_3( generalized_eigensolver_real(Matrix<double,1,1>()) );
CALL_SUBTEST_4( generalized_eigensolver_real(Matrix2d()) );
}
EIGEN_UNUSED_VARIABLE(s)
}

321
resources/3rdparty/eigen/test/evaluators.cpp

@ -1,321 +0,0 @@
#define EIGEN_ENABLE_EVALUATORS
#include "main.h"
using internal::copy_using_evaluator;
using namespace std;
#define VERIFY_IS_APPROX_EVALUATOR(DEST,EXPR) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (EXPR).eval());
#define VERIFY_IS_APPROX_EVALUATOR2(DEST,EXPR,REF) VERIFY_IS_APPROX(copy_using_evaluator(DEST,(EXPR)), (REF).eval());
void test_evaluators()
{
// Testing Matrix evaluator and Transpose
Vector2d v = Vector2d::Random();
const Vector2d v_const(v);
Vector2d v2;
RowVector2d w;
VERIFY_IS_APPROX_EVALUATOR(v2, v);
VERIFY_IS_APPROX_EVALUATOR(v2, v_const);
// Testing Transpose
VERIFY_IS_APPROX_EVALUATOR(w, v.transpose()); // Transpose as rvalue
VERIFY_IS_APPROX_EVALUATOR(w, v_const.transpose());
copy_using_evaluator(w.transpose(), v); // Transpose as lvalue
VERIFY_IS_APPROX(w,v.transpose().eval());
copy_using_evaluator(w.transpose(), v_const);
VERIFY_IS_APPROX(w,v_const.transpose().eval());
// Testing Array evaluator
ArrayXXf a(2,3);
ArrayXXf b(3,2);
a << 1,2,3, 4,5,6;
const ArrayXXf a_const(a);
VERIFY_IS_APPROX_EVALUATOR(b, a.transpose());
VERIFY_IS_APPROX_EVALUATOR(b, a_const.transpose());
// Testing CwiseNullaryOp evaluator
copy_using_evaluator(w, RowVector2d::Random());
VERIFY((w.array() >= -1).all() && (w.array() <= 1).all()); // not easy to test ...
VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Zero());
VERIFY_IS_APPROX_EVALUATOR(w, RowVector2d::Constant(3));
// mix CwiseNullaryOp and transpose
VERIFY_IS_APPROX_EVALUATOR(w, Vector2d::Zero().transpose());
{
// test product expressions
int s = internal::random<int>(1,100);
MatrixXf a(s,s), b(s,s), c(s,s), d(s,s);
a.setRandom();
b.setRandom();
c.setRandom();
d.setRandom();
VERIFY_IS_APPROX_EVALUATOR(d, (a + b));
VERIFY_IS_APPROX_EVALUATOR(d, (a + b).transpose());
VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b), a*b);
VERIFY_IS_APPROX_EVALUATOR2(d.noalias(), prod(a,b), a*b);
VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b) + c, a*b + c);
VERIFY_IS_APPROX_EVALUATOR2(d, s * prod(a,b), s * a*b);
VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b).transpose(), (a*b).transpose());
VERIFY_IS_APPROX_EVALUATOR2(d, prod(a,b) + prod(b,c), a*b + b*c);
// check that prod works even with aliasing present
c = a*a;
copy_using_evaluator(a, prod(a,a));
VERIFY_IS_APPROX(a,c);
}
{
// test product with all possible sizes
int s = internal::random<int>(1,100);
Matrix<float, 1, 1> m11, res11; m11.setRandom(1,1);
Matrix<float, 1, 4> m14, res14; m14.setRandom(1,4);
Matrix<float, 1,Dynamic> m1X, res1X; m1X.setRandom(1,s);
Matrix<float, 4, 1> m41, res41; m41.setRandom(4,1);
Matrix<float, 4, 4> m44, res44; m44.setRandom(4,4);
Matrix<float, 4,Dynamic> m4X, res4X; m4X.setRandom(4,s);
Matrix<float,Dynamic, 1> mX1, resX1; mX1.setRandom(s,1);
Matrix<float,Dynamic, 4> mX4, resX4; mX4.setRandom(s,4);
Matrix<float,Dynamic,Dynamic> mXX, resXX; mXX.setRandom(s,s);
VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m11,m11), m11*m11);
VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m14,m41), m14*m41);
VERIFY_IS_APPROX_EVALUATOR2(res11, prod(m1X,mX1), m1X*mX1);
VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m11,m14), m11*m14);
VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m14,m44), m14*m44);
VERIFY_IS_APPROX_EVALUATOR2(res14, prod(m1X,mX4), m1X*mX4);
VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m11,m1X), m11*m1X);
VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m14,m4X), m14*m4X);
VERIFY_IS_APPROX_EVALUATOR2(res1X, prod(m1X,mXX), m1X*mXX);
VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m41,m11), m41*m11);
VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m44,m41), m44*m41);
VERIFY_IS_APPROX_EVALUATOR2(res41, prod(m4X,mX1), m4X*mX1);
VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m41,m14), m41*m14);
VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m44,m44), m44*m44);
VERIFY_IS_APPROX_EVALUATOR2(res44, prod(m4X,mX4), m4X*mX4);
VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m41,m1X), m41*m1X);
VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m44,m4X), m44*m4X);
VERIFY_IS_APPROX_EVALUATOR2(res4X, prod(m4X,mXX), m4X*mXX);
VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX1,m11), mX1*m11);
VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mX4,m41), mX4*m41);
VERIFY_IS_APPROX_EVALUATOR2(resX1, prod(mXX,mX1), mXX*mX1);
VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX1,m14), mX1*m14);
VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mX4,m44), mX4*m44);
VERIFY_IS_APPROX_EVALUATOR2(resX4, prod(mXX,mX4), mXX*mX4);
VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX1,m1X), mX1*m1X);
VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mX4,m4X), mX4*m4X);
VERIFY_IS_APPROX_EVALUATOR2(resXX, prod(mXX,mXX), mXX*mXX);
}
// this does not work because Random is eval-before-nested:
// copy_using_evaluator(w, Vector2d::Random().transpose());
// test CwiseUnaryOp
VERIFY_IS_APPROX_EVALUATOR(v2, 3 * v);
VERIFY_IS_APPROX_EVALUATOR(w, (3 * v).transpose());
VERIFY_IS_APPROX_EVALUATOR(b, (a + 3).transpose());
VERIFY_IS_APPROX_EVALUATOR(b, (2 * a_const + 3).transpose());
// test CwiseBinaryOp
VERIFY_IS_APPROX_EVALUATOR(v2, v + Vector2d::Ones());
VERIFY_IS_APPROX_EVALUATOR(w, (v + Vector2d::Ones()).transpose().cwiseProduct(RowVector2d::Constant(3)));
// dynamic matrices and arrays
MatrixXd mat1(6,6), mat2(6,6);
VERIFY_IS_APPROX_EVALUATOR(mat1, MatrixXd::Identity(6,6));
VERIFY_IS_APPROX_EVALUATOR(mat2, mat1);
copy_using_evaluator(mat2.transpose(), mat1);
VERIFY_IS_APPROX(mat2.transpose(), mat1);
ArrayXXd arr1(6,6), arr2(6,6);
VERIFY_IS_APPROX_EVALUATOR(arr1, ArrayXXd::Constant(6,6, 3.0));
VERIFY_IS_APPROX_EVALUATOR(arr2, arr1);
// test automatic resizing
mat2.resize(3,3);
VERIFY_IS_APPROX_EVALUATOR(mat2, mat1);
arr2.resize(9,9);
VERIFY_IS_APPROX_EVALUATOR(arr2, arr1);
// test direct traversal
Matrix3f m3;
Array33f a3;
VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity()); // matrix, nullary
// TODO: find a way to test direct traversal with array
VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Identity().transpose()); // transpose
VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Identity()); // unary
VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Identity() + Matrix3f::Zero()); // binary
VERIFY_IS_APPROX_EVALUATOR(m3.block(0,0,2,2), Matrix3f::Identity().block(1,1,2,2)); // block
// test linear traversal
VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero()); // matrix, nullary
VERIFY_IS_APPROX_EVALUATOR(a3, Array33f::Zero()); // array
VERIFY_IS_APPROX_EVALUATOR(m3.transpose(), Matrix3f::Zero().transpose()); // transpose
VERIFY_IS_APPROX_EVALUATOR(m3, 2 * Matrix3f::Zero()); // unary
VERIFY_IS_APPROX_EVALUATOR(m3, Matrix3f::Zero() + m3); // binary
// test inner vectorization
Matrix4f m4, m4src = Matrix4f::Random();
Array44f a4, a4src = Matrix4f::Random();
VERIFY_IS_APPROX_EVALUATOR(m4, m4src); // matrix
VERIFY_IS_APPROX_EVALUATOR(a4, a4src); // array
VERIFY_IS_APPROX_EVALUATOR(m4.transpose(), m4src.transpose()); // transpose
// TODO: find out why Matrix4f::Zero() does not allow inner vectorization
VERIFY_IS_APPROX_EVALUATOR(m4, 2 * m4src); // unary
VERIFY_IS_APPROX_EVALUATOR(m4, m4src + m4src); // binary
// test linear vectorization
MatrixXf mX(6,6), mXsrc = MatrixXf::Random(6,6);
ArrayXXf aX(6,6), aXsrc = ArrayXXf::Random(6,6);
VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc); // matrix
VERIFY_IS_APPROX_EVALUATOR(aX, aXsrc); // array
VERIFY_IS_APPROX_EVALUATOR(mX.transpose(), mXsrc.transpose()); // transpose
VERIFY_IS_APPROX_EVALUATOR(mX, MatrixXf::Zero(6,6)); // nullary
VERIFY_IS_APPROX_EVALUATOR(mX, 2 * mXsrc); // unary
VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc + mXsrc); // binary
// test blocks and slice vectorization
VERIFY_IS_APPROX_EVALUATOR(m4, (mXsrc.block<4,4>(1,0)));
VERIFY_IS_APPROX_EVALUATOR(aX, ArrayXXf::Constant(10, 10, 3.0).block(2, 3, 6, 6));
Matrix4f m4ref = m4;
copy_using_evaluator(m4.block(1, 1, 2, 3), m3.bottomRows(2));
m4ref.block(1, 1, 2, 3) = m3.bottomRows(2);
VERIFY_IS_APPROX(m4, m4ref);
mX.setIdentity(20,20);
MatrixXf mXref = MatrixXf::Identity(20,20);
mXsrc = MatrixXf::Random(9,12);
copy_using_evaluator(mX.block(4, 4, 9, 12), mXsrc);
mXref.block(4, 4, 9, 12) = mXsrc;
VERIFY_IS_APPROX(mX, mXref);
// test Map
const float raw[3] = {1,2,3};
float buffer[3] = {0,0,0};
Vector3f v3;
Array3f a3f;
VERIFY_IS_APPROX_EVALUATOR(v3, Map<const Vector3f>(raw));
VERIFY_IS_APPROX_EVALUATOR(a3f, Map<const Array3f>(raw));
Vector3f::Map(buffer) = 2*v3;
VERIFY(buffer[0] == 2);
VERIFY(buffer[1] == 4);
VERIFY(buffer[2] == 6);
// test CwiseUnaryView
mat1.setRandom();
mat2.setIdentity();
MatrixXcd matXcd(6,6), matXcd_ref(6,6);
copy_using_evaluator(matXcd.real(), mat1);
copy_using_evaluator(matXcd.imag(), mat2);
matXcd_ref.real() = mat1;
matXcd_ref.imag() = mat2;
VERIFY_IS_APPROX(matXcd, matXcd_ref);
// test Select
VERIFY_IS_APPROX_EVALUATOR(aX, (aXsrc > 0).select(aXsrc, -aXsrc));
// test Replicate
mXsrc = MatrixXf::Random(6, 6);
VectorXf vX = VectorXf::Random(6);
mX.resize(6, 6);
VERIFY_IS_APPROX_EVALUATOR(mX, mXsrc.colwise() + vX);
matXcd.resize(12, 12);
VERIFY_IS_APPROX_EVALUATOR(matXcd, matXcd_ref.replicate(2,2));
VERIFY_IS_APPROX_EVALUATOR(matXcd, (matXcd_ref.replicate<2,2>()));
// test partial reductions
VectorXd vec1(6);
VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.rowwise().sum());
VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.colwise().sum().transpose());
// test MatrixWrapper and ArrayWrapper
mat1.setRandom(6,6);
arr1.setRandom(6,6);
VERIFY_IS_APPROX_EVALUATOR(mat2, arr1.matrix());
VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array());
VERIFY_IS_APPROX_EVALUATOR(mat2, (arr1 + 2).matrix());
VERIFY_IS_APPROX_EVALUATOR(arr2, mat1.array() + 2);
mat2.array() = arr1 * arr1;
VERIFY_IS_APPROX(mat2, (arr1 * arr1).matrix());
arr2.matrix() = MatrixXd::Identity(6,6);
VERIFY_IS_APPROX(arr2, MatrixXd::Identity(6,6).array());
// test Reverse
VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.reverse());
VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.colwise().reverse());
VERIFY_IS_APPROX_EVALUATOR(arr2, arr1.rowwise().reverse());
arr2.reverse() = arr1;
VERIFY_IS_APPROX(arr2, arr1.reverse());
mat2.array() = mat1.array().reverse();
VERIFY_IS_APPROX(mat2.array(), mat1.array().reverse());
// test Diagonal
VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal());
vec1.resize(5);
VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal(1));
VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.diagonal<-1>());
vec1.setRandom();
mat2 = mat1;
copy_using_evaluator(mat1.diagonal(1), vec1);
mat2.diagonal(1) = vec1;
VERIFY_IS_APPROX(mat1, mat2);
copy_using_evaluator(mat1.diagonal<-1>(), mat1.diagonal(1));
mat2.diagonal<-1>() = mat2.diagonal(1);
VERIFY_IS_APPROX(mat1, mat2);
{
// test swapping
MatrixXd mat1, mat2, mat1ref, mat2ref;
mat1ref = mat1 = MatrixXd::Random(6, 6);
mat2ref = mat2 = 2 * mat1 + MatrixXd::Identity(6, 6);
swap_using_evaluator(mat1, mat2);
mat1ref.swap(mat2ref);
VERIFY_IS_APPROX(mat1, mat1ref);
VERIFY_IS_APPROX(mat2, mat2ref);
swap_using_evaluator(mat1.block(0, 0, 3, 3), mat2.block(3, 3, 3, 3));
mat1ref.block(0, 0, 3, 3).swap(mat2ref.block(3, 3, 3, 3));
VERIFY_IS_APPROX(mat1, mat1ref);
VERIFY_IS_APPROX(mat2, mat2ref);
swap_using_evaluator(mat1.row(2), mat2.col(3).transpose());
mat1.row(2).swap(mat2.col(3).transpose());
VERIFY_IS_APPROX(mat1, mat1ref);
VERIFY_IS_APPROX(mat2, mat2ref);
}
{
// test compound assignment
const Matrix4d mat_const = Matrix4d::Random();
Matrix4d mat, mat_ref;
mat = mat_ref = Matrix4d::Identity();
add_assign_using_evaluator(mat, mat_const);
mat_ref += mat_const;
VERIFY_IS_APPROX(mat, mat_ref);
subtract_assign_using_evaluator(mat.row(1), 2*mat.row(2));
mat_ref.row(1) -= 2*mat_ref.row(2);
VERIFY_IS_APPROX(mat, mat_ref);
const ArrayXXf arr_const = ArrayXXf::Random(5,3);
ArrayXXf arr, arr_ref;
arr = arr_ref = ArrayXXf::Constant(5, 3, 0.5);
multiply_assign_using_evaluator(arr, arr_const);
arr_ref *= arr_const;
VERIFY_IS_APPROX(arr, arr_ref);
divide_assign_using_evaluator(arr.row(1), arr.row(2) + 1);
arr_ref.row(1) /= (arr_ref.row(2) + 1);
VERIFY_IS_APPROX(arr, arr_ref);
}
}

69
resources/3rdparty/eigen/test/real_qz.cpp

@ -1,69 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Alexey Korepanov <kaikaikai@yandex.ru>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <limits>
#include <Eigen/Eigenvalues>
template<typename MatrixType> void real_qz(const MatrixType& m)
{
/* this test covers the following files:
RealQZ.h
*/
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
Index dim = m.cols();
MatrixType A = MatrixType::Random(dim,dim),
B = MatrixType::Random(dim,dim);
RealQZ<MatrixType> qz(A,B);
VERIFY_IS_EQUAL(qz.info(), Success);
// check for zeros
bool all_zeros = true;
for (Index i=0; i<A.cols(); i++)
for (Index j=0; j<i; j++) {
if (internal::abs(qz.matrixT()(i,j))!=Scalar(0.0))
all_zeros = false;
if (j<i-1 && internal::abs(qz.matrixS()(i,j))!=Scalar(0.0))
all_zeros = false;
if (j==i-1 && j>0 && internal::abs(qz.matrixS()(i,j))!=Scalar(0.0) && internal::abs(qz.matrixS()(i-1,j-1))!=Scalar(0.0))
all_zeros = false;
}
VERIFY_IS_EQUAL(all_zeros, true);
VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixS()*qz.matrixZ(), A);
VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixT()*qz.matrixZ(), B);
VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixQ().adjoint(), MatrixType::Identity(dim,dim));
VERIFY_IS_APPROX(qz.matrixZ()*qz.matrixZ().adjoint(), MatrixType::Identity(dim,dim));
}
void test_real_qz()
{
int s;
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( real_qz(Matrix4f()) );
s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
CALL_SUBTEST_2( real_qz(MatrixXd(s,s)) );
// some trivial but implementation-wise tricky cases
CALL_SUBTEST_2( real_qz(MatrixXd(1,1)) );
CALL_SUBTEST_2( real_qz(MatrixXd(2,2)) );
CALL_SUBTEST_3( real_qz(Matrix<double,1,1>()) );
CALL_SUBTEST_4( real_qz(Matrix2d()) );
}
EIGEN_UNUSED_VARIABLE(s)
}

43
resources/3rdparty/eigen/test/sparselu.cpp

@ -1,43 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "sparse_solver.h"
#include <Eigen/SparseLU>
#include <unsupported/Eigen/SparseExtra>
template<typename T> void test_sparselu_T()
{
SparseLU<SparseMatrix<T, ColMajor>, COLAMDOrdering<int> > sparselu_colamd;
SparseLU<SparseMatrix<T, ColMajor>, AMDOrdering<int> > sparselu_amd;
check_sparse_square_solving(sparselu_colamd);
check_sparse_square_solving(sparselu_amd);
}
void test_sparselu()
{
CALL_SUBTEST_1(test_sparselu_T<float>());
CALL_SUBTEST_2(test_sparselu_T<double>());
CALL_SUBTEST_3(test_sparselu_T<std::complex<float> >());
CALL_SUBTEST_4(test_sparselu_T<std::complex<double> >());
}

221
resources/3rdparty/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h

@ -1,221 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_INCOMPLETE_CHOlESKY_H
#define EIGEN_INCOMPLETE_CHOlESKY_H
#include "Eigen/src/IterativeLinearSolvers/IncompleteLUT.h"
#include <Eigen/OrderingMethods>
#include <list>
namespace Eigen {
/**
* \brief Modified Incomplete Cholesky with dual threshold
*
* References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
* Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999
*
* \tparam _MatrixType The type of the sparse matrix. It should be a symmetric
* matrix. It is advised to give a row-oriented sparse matrix
* \tparam _UpLo The triangular part of the matrix to reference.
* \tparam _OrderingType
*/
template <typename Scalar, int _UpLo = Lower, typename _OrderingType = NaturalOrdering<int> >
class IncompleteCholesky : internal::noncopyable
{
public:
typedef SparseMatrix<Scalar,ColMajor> MatrixType;
typedef _OrderingType OrderingType;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
typedef Matrix<Scalar,Dynamic,1> VectorType;
typedef Matrix<Index,Dynamic, 1> IndexType;
public:
IncompleteCholesky() {}
IncompleteCholesky(const MatrixType& matrix)
{
compute(matrix);
}
Index rows() const { return m_L.rows(); }
Index cols() const { return m_L.cols(); }
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the matrix appears to be negative.
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
return m_info;
}
/**
* \brief Computes the fill reducing permutation vector.
*/
template<typename MatrixType>
void analyzePattern(const MatrixType& mat)
{
OrderingType ord;
ord(mat, m_perm);
m_analysisIsOk = true;
}
template<typename MatrixType>
void factorize(const MatrixType& amat);
template<typename MatrixType>
void compute (const MatrixType& matrix)
{
analyzePattern(matrix);
factorize(matrix);
}
template<typename Rhs, typename Dest>
void _solve(const Rhs& b, Dest& x) const
{
eigen_assert(m_factorizationIsOk && "factorize() should be called first");
if (m_perm.rows() == b.rows())
x = m_perm.inverse() * b;
else
x = b;
x = m_L.template triangularView<UnitLower>().solve(x);
x = m_L.adjoint().template triangularView<Upper>().solve(x);
if (m_perm.rows() == b.rows())
x = m_perm * x;
}
template<typename Rhs> inline const internal::solve_retval<IncompleteCholesky, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
eigen_assert(cols()==b.rows()
&& "IncompleteLLT::solve(): invalid number of rows of the right hand side matrix b");
return internal::solve_retval<IncompleteCholesky, Rhs>(*this, b.derived());
}
protected:
SparseMatrix<Scalar,ColMajor> m_L; // The lower part stored in CSC
bool m_analysisIsOk;
bool m_factorizationIsOk;
bool m_isInitialized;
ComputationInfo m_info;
PermutationType m_perm;
};
template<typename Scalar, int _UpLo, typename OrderingType>
template<typename _MatrixType>
void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat)
{
eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
// FIXME Stability: We should probably compute the scaling factors and the shifts that are needed to ensure a succesful LLT factorization and an efficient preconditioner.
// Dropping strategies : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added
// Apply the fill-reducing permutation computed in analyzePattern()
if (m_perm.rows() == mat.rows() )
m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
else
m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
int n = mat.cols();
Scalar *vals = m_L.valuePtr(); //Values
Index *rowIdx = m_L.innerIndexPtr(); //Row indices
Index *colPtr = m_L.outerIndexPtr(); // Pointer to the beginning of each row
VectorType firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization
// Initialize firstElt;
for (int j = 0; j < n-1; j++) firstElt(j) = colPtr[j]+1;
std::vector<std::list<Index> > listCol(n); // listCol(j) is a linked list of columns to update column j
VectorType curCol(n); // Store a nonzero values in each column
VectorType irow(n); // Row indices of nonzero elements in each column
// jki version of the Cholesky factorization
for (int j=0; j < n; j++)
{
//Left-looking factorize the column j
// First, load the jth column into curCol
Scalar diag = vals[colPtr[j]]; // Lower diagonal matrix with
curCol.setZero();
irow.setLinSpaced(n,0,n-1);
for (int i = colPtr[j] + 1; i < colPtr[j+1]; i++)
{
curCol(rowIdx[i]) = vals[i];
irow(rowIdx[i]) = rowIdx[i];
}
std::list<int>::iterator k;
// Browse all previous columns that will update column j
for(k = listCol[j].begin(); k != listCol[j].end(); k++)
{
int jk = firstElt(*k); // First element to use in the column
Scalar a_jk = vals[jk];
diag -= a_jk * a_jk;
jk += 1;
for (int i = jk; i < colPtr[*k]; i++)
{
curCol(rowIdx[i]) -= vals[i] * a_jk ;
}
firstElt(*k) = jk;
if (jk < colPtr[*k+1])
{
// Add this column to the updating columns list for column *k+1
listCol[rowIdx[jk]].push_back(*k);
}
}
// Select the largest p elements
// p is the original number of elements in the column (without the diagonal)
int p = colPtr[j+1] - colPtr[j] - 2 ;
internal::QuickSplit(curCol, irow, p);
if(RealScalar(diag) <= 0)
{ //FIXME We can use heuristics (Kershaw, 1978 or above reference ) to get a dynamic shift
m_info = NumericalIssue;
return;
}
RealScalar rdiag = internal::sqrt(RealScalar(diag));
Scalar scal = Scalar(1)/rdiag;
vals[colPtr[j]] = rdiag;
// Insert the largest p elements in the matrix and scale them meanwhile
int cpt = 0;
for (int i = colPtr[j]+1; i < colPtr[j+1]; i++)
{
vals[i] = curCol(cpt) * scal;
rowIdx[i] = irow(cpt);
cpt ++;
}
}
m_factorizationIsOk = true;
m_isInitialized = true;
m_info = Success;
}
namespace internal {
template<typename _MatrixType, typename Rhs>
struct solve_retval<IncompleteCholesky<_MatrixType>, Rhs>
: solve_retval_base<IncompleteCholesky<_MatrixType>, Rhs>
{
typedef IncompleteCholesky<_MatrixType> Dec;
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
dec()._solve(rhs(),dst);
}
};
} // end namespace internal
} // end namespace Eigen
#endif

386
resources/3rdparty/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h

@ -1,386 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATRIX_POWER
#define EIGEN_MATRIX_POWER
namespace Eigen {
template<typename MatrixType> class MatrixPowerEvaluator;
/**
* \ingroup MatrixFunctions_Module
*
* \brief Class for computing matrix powers.
*
* \tparam MatrixType type of the base, expected to be an instantiation
* of the Matrix class template.
*
* This class is capable of computing real/complex matrices raised to
* an arbitrary real power. Meanwhile, it saves the result of Schur
* decomposition if an non-integral power has even been calculated.
* Therefore, if you want to compute multiple (>= 2) matrix powers
* for the same matrix, using the class directly is more efficient than
* calling MatrixBase::pow().
*
* Example:
* \include MatrixPower_optimal.cpp
* Output: \verbinclude MatrixPower_optimal.out
*/
template<typename MatrixType>
class MatrixPower : public MatrixPowerBase<MatrixPower<MatrixType>,MatrixType>
{
public:
EIGEN_MATRIX_POWER_PUBLIC_INTERFACE(MatrixPower)
/**
* \brief Constructor.
*
* \param[in] A the base of the matrix power.
*
* \warning Construct with a matrix, not a matrix expression!
*/
explicit MatrixPower(const MatrixType& A) : Base(A,0)
{ }
/**
* \brief Return the expression \f$ A^p \f$.
*
* \param[in] p exponent, a real scalar.
*/
const MatrixPowerEvaluator<MatrixType> operator()(RealScalar p)
{ return MatrixPowerEvaluator<MatrixType>(*this, p); }
/**
* \brief Compute the matrix power.
*
* \param[in] p exponent, a real scalar.
* \param[out] res \f$ A^p \f$ where A is specified in the
* constructor.
*/
void compute(MatrixType& res, RealScalar p);
/**
* \brief Compute the matrix power multiplied by another matrix.
*
* \param[in] b a matrix with the same rows as A.
* \param[in] p exponent, a real scalar.
* \param[out] res \f$ A^p b \f$, where A is specified in the
* constructor.
*/
template<typename Derived, typename ResultType>
void compute(const Derived& b, ResultType& res, RealScalar p);
private:
EIGEN_MATRIX_POWER_PROTECTED_MEMBERS(MatrixPower)
typedef Matrix<std::complex<RealScalar>, RowsAtCompileTime, ColsAtCompileTime,
Options,MaxRowsAtCompileTime,MaxColsAtCompileTime> ComplexMatrix;
ComplexMatrix m_T, m_U, m_fT;
RealScalar modfAndInit(RealScalar, RealScalar*);
template<typename Derived, typename ResultType>
void apply(const Derived&, ResultType&, bool&);
template<typename ResultType>
void computeIntPower(ResultType&, RealScalar);
template<typename Derived, typename ResultType>
void computeIntPower(const Derived&, ResultType&, RealScalar);
template<typename ResultType>
void computeFracPower(ResultType&, RealScalar);
};
template<typename MatrixType>
void MatrixPower<MatrixType>::compute(MatrixType& res, RealScalar p)
{
switch (m_A.cols()) {
case 0:
break;
case 1:
res(0,0) = std::pow(m_A.coeff(0,0), p);
break;
default:
RealScalar intpart, x = modfAndInit(p, &intpart);
res = m_Id;
computeIntPower(res, intpart);
computeFracPower(res, x);
}
}
template<typename MatrixType>
template<typename Derived, typename ResultType>
void MatrixPower<MatrixType>::compute(const Derived& b, ResultType& res, RealScalar p)
{
switch (m_A.cols()) {
case 0:
break;
case 1:
res = std::pow(m_A.coeff(0,0), p) * b;
break;
default:
RealScalar intpart, x = modfAndInit(p, &intpart);
computeIntPower(b, res, intpart);
computeFracPower(res, x);
}
}
template<typename MatrixType>
typename MatrixPower<MatrixType>::Base::RealScalar MatrixPower<MatrixType>::modfAndInit(RealScalar x, RealScalar* intpart)
{
*intpart = std::floor(x);
RealScalar res = x - *intpart;
if (!m_conditionNumber && res) {
const ComplexSchur<MatrixType> schurOfA(m_A);
m_T = schurOfA.matrixT();
m_U = schurOfA.matrixU();
const RealArray absTdiag = m_T.diagonal().array().abs();
m_conditionNumber = absTdiag.maxCoeff() / absTdiag.minCoeff();
}
if (res>RealScalar(0.5) && res>(1-res)*std::pow(m_conditionNumber, res)) {
--res;
++*intpart;
}
return res;
}
template<typename MatrixType>
template<typename Derived, typename ResultType>
void MatrixPower<MatrixType>::apply(const Derived& b, ResultType& res, bool& init)
{
if (init)
res = m_tmp1 * res;
else {
init = true;
res.noalias() = m_tmp1 * b;
}
}
template<typename MatrixType>
template<typename ResultType>
void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p)
{
RealScalar pp = std::abs(p);
if (p<0) m_tmp1 = m_A.inverse();
else m_tmp1 = m_A;
while (pp >= 1) {
if (std::fmod(pp, 2) >= 1)
res = m_tmp1 * res;
m_tmp1 *= m_tmp1;
pp /= 2;
}
}
template<typename MatrixType>
template<typename Derived, typename ResultType>
void MatrixPower<MatrixType>::computeIntPower(const Derived& b, ResultType& res, RealScalar p)
{
if (b.cols() >= m_A.cols()) {
m_tmp2 = m_Id;
computeIntPower(m_tmp2, p);
res.noalias() = m_tmp2 * b;
}
else {
RealScalar pp = std::abs(p);
int squarings, applyings = internal::binary_powering_cost(pp, &squarings);
bool init = false;
if (p==0) {
res = b;
return;
}
else if (p>0) {
m_tmp1 = m_A;
}
else if (m_A.cols() > 2 && b.cols()*(pp-applyings) <= m_A.cols()*squarings) {
PartialPivLU<MatrixType> A(m_A);
res = A.solve(b);
for (--pp; pp >= 1; --pp)
res = A.solve(res);
return;
}
else {
m_tmp1 = m_A.inverse();
}
while (b.cols()*(pp-applyings) > m_A.cols()*squarings) {
if (std::fmod(pp, 2) >= 1) {
apply(b, res, init);
--applyings;
}
m_tmp1 *= m_tmp1;
--squarings;
pp /= 2;
}
for (; pp >= 1; --pp)
apply(b, res, init);
}
}
template<typename MatrixType>
template<typename ResultType>
void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p)
{
if (p) {
eigen_assert(m_conditionNumber);
MatrixPowerTriangularAtomic<ComplexMatrix>(m_T).compute(m_fT, p);
internal::recompose_complex_schur<NumTraits<Scalar>::IsComplex>::run(m_tmp1, m_fT, m_U);
res = m_tmp1 * res;
}
}
template<typename Lhs, typename Rhs>
class MatrixPowerMatrixProduct : public MatrixPowerProductBase<MatrixPowerMatrixProduct<Lhs,Rhs>,Lhs,Rhs>
{
public:
EIGEN_MATRIX_POWER_PRODUCT_PUBLIC_INTERFACE(MatrixPowerMatrixProduct)
MatrixPowerMatrixProduct(MatrixPower<Lhs>& pow, const Rhs& b, RealScalar p) :
m_pow(pow),
m_b(b),
m_p(p)
{ }
template<typename ResultType>
inline void evalTo(ResultType& res) const
{ m_pow.compute(m_b, res, m_p); }
Index rows() const { return m_pow.rows(); }
Index cols() const { return m_b.cols(); }
private:
MatrixPower<Lhs>& m_pow;
const Rhs& m_b;
const RealScalar m_p;
MatrixPowerMatrixProduct& operator=(const MatrixPowerMatrixProduct&);
};
/**
* \ingroup MatrixFunctions_Module
*
* \brief Proxy for the matrix power of some matrix (expression).
*
* \tparam Derived type of the base, a matrix (expression).
*
* This class holds the arguments to the matrix power until it is
* assigned or evaluated for some other reason (so the argument
* should not be changed in the meantime). It is the return type of
* MatrixBase::pow() and related functions and most of the
* time this is the only way it is used.
*/
template<typename Derived>
class MatrixPowerReturnValue : public ReturnByValue<MatrixPowerReturnValue<Derived> >
{
public:
typedef typename Derived::PlainObject PlainObject;
typedef typename Derived::RealScalar RealScalar;
typedef typename Derived::Index Index;
/**
* \brief Constructor.
*
* \param[in] A %Matrix (expression), the base of the matrix power.
* \param[in] p scalar, the exponent of the matrix power.
*/
MatrixPowerReturnValue(const Derived& A, RealScalar p) : m_A(A), m_p(p)
{ }
/**
* \brief Compute the matrix power.
*
* \param[out] result \f$ A^p \f$ where \p A and \p p are as in the
* constructor.
*/
template<typename ResultType>
inline void evalTo(ResultType& res) const
{ MatrixPower<PlainObject>(m_A.eval()).compute(res, m_p); }
/**
* \brief Return the expression \f$ A^p b \f$.
*
* \p A and \p p are specified in the constructor.
*
* \param[in] b the matrix (expression) to be applied.
*/
template<typename OtherDerived>
const MatrixPowerMatrixProduct<PlainObject,OtherDerived> operator*(const MatrixBase<OtherDerived>& b) const
{
MatrixPower<PlainObject> Apow(m_A.eval());
return MatrixPowerMatrixProduct<PlainObject,OtherDerived>(Apow, b.derived(), m_p);
}
Index rows() const { return m_A.rows(); }
Index cols() const { return m_A.cols(); }
private:
const Derived& m_A;
const RealScalar m_p;
MatrixPowerReturnValue& operator=(const MatrixPowerReturnValue&);
};
template<typename MatrixType>
class MatrixPowerEvaluator : public ReturnByValue<MatrixPowerEvaluator<MatrixType> >
{
public:
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
MatrixPowerEvaluator(MatrixPower<MatrixType>& pow, RealScalar p) : m_pow(pow), m_p(p)
{ }
template<typename ResultType>
inline void evalTo(ResultType& res) const
{ m_pow.compute(res, m_p); }
template<typename Derived>
const MatrixPowerMatrixProduct<MatrixType,Derived> operator*(const MatrixBase<Derived>& b) const
{ return MatrixPowerMatrixProduct<MatrixType,Derived>(m_pow, b.derived(), m_p); }
Index rows() const { return m_pow.rows(); }
Index cols() const { return m_pow.cols(); }
private:
MatrixPower<MatrixType>& m_pow;
const RealScalar m_p;
MatrixPowerEvaluator& operator=(const MatrixPowerEvaluator&);
};
namespace internal {
template<typename Lhs, typename Rhs>
struct nested<MatrixPowerMatrixProduct<Lhs,Rhs> >
{ typedef typename MatrixPowerMatrixProduct<Lhs,Rhs>::PlainObject const& type; };
template<typename Derived>
struct traits<MatrixPowerReturnValue<Derived> >
{ typedef typename Derived::PlainObject ReturnType; };
template<typename MatrixType>
struct traits<MatrixPowerEvaluator<MatrixType> >
{ typedef MatrixType ReturnType; };
template<typename Lhs, typename Rhs>
struct traits<MatrixPowerMatrixProduct<Lhs,Rhs> >
: traits<MatrixPowerProductBase<MatrixPowerMatrixProduct<Lhs,Rhs>,Lhs,Rhs> >
{ };
} // namespace internal
template<typename Derived>
const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(RealScalar p) const
{ return MatrixPowerReturnValue<Derived>(derived(), p); }
} // namespace Eigen
#endif // EIGEN_MATRIX_POWER

359
resources/3rdparty/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPowerBase.h

@ -1,359 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATRIX_POWER_BASE
#define EIGEN_MATRIX_POWER_BASE
namespace Eigen {
namespace internal {
template<int IsComplex>
struct recompose_complex_schur
{
template<typename ResultType, typename MatrixType>
static inline void run(ResultType& res, const MatrixType& T, const MatrixType& U)
{ res.noalias() = U * (T.template triangularView<Upper>() * U.adjoint()); }
};
template<>
struct recompose_complex_schur<0>
{
template<typename ResultType, typename MatrixType>
static inline void run(ResultType& res, const MatrixType& T, const MatrixType& U)
{ res.noalias() = (U * (T.template triangularView<Upper>() * U.adjoint())).real(); }
};
template<typename Scalar, int IsComplex=NumTraits<Scalar>::IsComplex>
struct matrix_power_unwinder
{
static inline Scalar run(const Scalar& eival, const Scalar& eival0, int unwindingNumber)
{ return internal::atanh2(eival-eival0, eival+eival0) + Scalar(0, M_PI*unwindingNumber); }
};
template<typename Scalar>
struct matrix_power_unwinder<Scalar,0>
{
static inline Scalar run(Scalar eival, Scalar eival0, int)
{ return internal::atanh2(eival-eival0, eival+eival0); }
};
template<typename T>
inline int binary_powering_cost(T p, int* squarings)
{
int applyings=0, tmp;
frexp(p, squarings);
--*squarings;
while (std::frexp(p, &tmp), tmp > 0) {
p -= std::ldexp(static_cast<T>(0.5), tmp);
++applyings;
}
return applyings;
}
inline int matrix_power_get_pade_degree(float normIminusT)
{
const float maxNormForPade[] = { 2.8064004e-1f /* degree = 3 */ , 4.3386528e-1f };
int degree = 3;
for (; degree <= 4; ++degree)
if (normIminusT <= maxNormForPade[degree - 3])
break;
return degree;
}
inline int matrix_power_get_pade_degree(double normIminusT)
{
const double maxNormForPade[] = { 1.884160592658218e-2 /* degree = 3 */ , 6.038881904059573e-2, 1.239917516308172e-1,
1.999045567181744e-1, 2.789358995219730e-1 };
int degree = 3;
for (; degree <= 7; ++degree)
if (normIminusT <= maxNormForPade[degree - 3])
break;
return degree;
}
inline int matrix_power_get_pade_degree(long double normIminusT)
{
#if LDBL_MANT_DIG == 53
const int maxPadeDegree = 7;
const double maxNormForPade[] = { 1.884160592658218e-2L /* degree = 3 */ , 6.038881904059573e-2L, 1.239917516308172e-1L,
1.999045567181744e-1L, 2.789358995219730e-1L };
#elif LDBL_MANT_DIG <= 64
const int maxPadeDegree = 8;
const double maxNormForPade[] = { 6.3854693117491799460e-3L /* degree = 3 */ , 2.6394893435456973676e-2L,
6.4216043030404063729e-2L, 1.1701165502926694307e-1L, 1.7904284231268670284e-1L, 2.4471944416607995472e-1L };
#elif LDBL_MANT_DIG <= 106
const int maxPadeDegree = 10;
const double maxNormForPade[] = { 1.0007161601787493236741409687186e-4L /* degree = 3 */ ,
1.0007161601787493236741409687186e-3L, 4.7069769360887572939882574746264e-3L, 1.3220386624169159689406653101695e-2L,
2.8063482381631737920612944054906e-2L, 4.9625993951953473052385361085058e-2L, 7.7367040706027886224557538328171e-2L,
1.1016843812851143391275867258512e-1L };
#else
const int maxPadeDegree = 10;
const double maxNormForPade[] = { 5.524506147036624377378713555116378e-5L /* degree = 3 */ ,
6.640600568157479679823602193345995e-4L, 3.227716520106894279249709728084626e-3L,
9.619593944683432960546978734646284e-3L, 2.134595382433742403911124458161147e-2L,
3.908166513900489428442993794761185e-2L, 6.266780814639442865832535460550138e-2L,
9.134603732914548552537150753385375e-2L };
#endif
int degree = 3;
for (; degree <= maxPadeDegree; ++degree)
if (normIminusT <= maxNormForPade[degree - 3])
break;
return degree;
}
} // namespace internal
template<typename MatrixType>
class MatrixPowerTriangularAtomic
{
private:
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef Array<Scalar,RowsAtCompileTime,1,ColMajor,MaxRowsAtCompileTime> ArrayType;
const MatrixType& m_T;
const MatrixType m_Id;
void computePade(int degree, const MatrixType& IminusT, MatrixType& res, RealScalar p) const;
void compute2x2(MatrixType& res, RealScalar p) const;
void computeBig(MatrixType& res, RealScalar p) const;
public:
explicit MatrixPowerTriangularAtomic(const MatrixType& T);
void compute(MatrixType& res, RealScalar p) const;
};
template<typename MatrixType>
MatrixPowerTriangularAtomic<MatrixType>::MatrixPowerTriangularAtomic(const MatrixType& T) :
m_T(T),
m_Id(MatrixType::Identity(T.rows(), T.cols()))
{ eigen_assert(T.rows() == T.cols()); }
template<typename MatrixType>
void MatrixPowerTriangularAtomic<MatrixType>::compute(MatrixType& res, RealScalar p) const
{
switch (m_T.rows()) {
case 0:
break;
case 1:
res(0,0) = std::pow(m_T(0,0), p);
break;
case 2:
compute2x2(res, p);
break;
default:
computeBig(res, p);
}
}
template<typename MatrixType>
void MatrixPowerTriangularAtomic<MatrixType>::computePade(int degree, const MatrixType& IminusT, MatrixType& res,
RealScalar p) const
{
int i = degree<<1;
res = (p-degree) / ((i-1)<<1) * IminusT;
for (--i; i; --i) {
res = (m_Id + res).template triangularView<Upper>().solve((i==1 ? -p : i&1 ? (-p-(i>>1))/(i<<1) :
(p-(i>>1))/((i-1)<<1)) * IminusT).eval();
}
res += m_Id;
}
template<typename MatrixType>
void MatrixPowerTriangularAtomic<MatrixType>::compute2x2(MatrixType& res, RealScalar p) const
{
using std::abs;
using std::pow;
ArrayType logTdiag = m_T.diagonal().array().log();
res.coeffRef(0,0) = pow(m_T.coeff(0,0), p);
for (int i=1; i < m_T.cols(); ++i) {
res.coeffRef(i,i) = pow(m_T.coeff(i,i), p);
if (m_T.coeff(i-1,i-1) == m_T.coeff(i,i)) {
res.coeffRef(i-1,i) = p * pow(m_T.coeff(i-1,i), p-1);
}
else if (2*abs(m_T.coeff(i-1,i-1)) < abs(m_T.coeff(i,i)) || 2*abs(m_T.coeff(i,i)) < abs(m_T.coeff(i-1,i-1))) {
res.coeffRef(i-1,i) = m_T.coeff(i-1,i) * (res.coeff(i,i)-res.coeff(i-1,i-1)) / (m_T.coeff(i,i)-m_T.coeff(i-1,i-1));
}
else {
int unwindingNumber = std::ceil((internal::imag(logTdiag[i]-logTdiag[i-1]) - M_PI) / (2*M_PI));
Scalar w = internal::matrix_power_unwinder<Scalar>::run(m_T.coeff(i,i), m_T.coeff(i-1,i-1), unwindingNumber);
res.coeffRef(i-1,i) = m_T.coeff(i-1,i) * RealScalar(2) * std::exp(RealScalar(0.5)*p*(logTdiag[i]+logTdiag[i-1])) *
std::sinh(p * w) / (m_T.coeff(i,i) - m_T.coeff(i-1,i-1));
}
}
}
template<typename MatrixType>
void MatrixPowerTriangularAtomic<MatrixType>::computeBig(MatrixType& res, RealScalar p) const
{
const int digits = std::numeric_limits<RealScalar>::digits;
const RealScalar maxNormForPade = digits <= 24? 4.3386528e-1f: // sigle precision
digits <= 53? 2.789358995219730e-1: // double precision
digits <= 64? 2.4471944416607995472e-1L: // extended precision
digits <= 106? 1.1016843812851143391275867258512e-1L: // double-double
9.134603732914548552537150753385375e-2L; // quadruple precision
MatrixType IminusT, sqrtT, T=m_T;
RealScalar normIminusT;
int degree, degree2, numberOfSquareRoots=0;
bool hasExtraSquareRoot=false;
while (true) {
IminusT = MatrixType::Identity(m_T.rows(), m_T.cols()) - T;
normIminusT = IminusT.cwiseAbs().colwise().sum().maxCoeff();
if (normIminusT < maxNormForPade) {
degree = internal::matrix_power_get_pade_degree(normIminusT);
degree2 = internal::matrix_power_get_pade_degree(normIminusT/2);
if (degree - degree2 <= 1 || hasExtraSquareRoot)
break;
hasExtraSquareRoot = true;
}
MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
T = sqrtT;
++numberOfSquareRoots;
}
computePade(degree, IminusT, res, p);
for (; numberOfSquareRoots; --numberOfSquareRoots) {
compute2x2(res, std::ldexp(p,-numberOfSquareRoots));
res *= res;
}
compute2x2(res, p);
}
#define EIGEN_MATRIX_POWER_PUBLIC_INTERFACE(Derived) \
typedef MatrixPowerBase<Derived, MatrixType> Base; \
using Base::RowsAtCompileTime; \
using Base::ColsAtCompileTime; \
using Base::Options; \
using Base::MaxRowsAtCompileTime; \
using Base::MaxColsAtCompileTime; \
typedef typename Base::Scalar Scalar; \
typedef typename Base::RealScalar RealScalar; \
typedef typename Base::RealArray RealArray;
#define EIGEN_MATRIX_POWER_PROTECTED_MEMBERS(Derived) \
using Base::m_A; \
using Base::m_Id; \
using Base::m_tmp1; \
using Base::m_tmp2; \
using Base::m_conditionNumber;
#define EIGEN_MATRIX_POWER_PRODUCT_PUBLIC_INTERFACE(Derived) \
typedef MatrixPowerProductBase<Derived, Lhs, Rhs> Base; \
EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
namespace internal {
template<typename Derived, typename _Lhs, typename _Rhs>
struct traits<MatrixPowerProductBase<Derived,_Lhs,_Rhs> >
{
typedef MatrixXpr XprKind;
typedef typename remove_all<_Lhs>::type Lhs;
typedef typename remove_all<_Rhs>::type Rhs;
typedef typename remove_all<Derived>::type PlainObject;
typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
typedef typename promote_storage_type<typename traits<Lhs>::StorageKind,
typename traits<Rhs>::StorageKind>::ret StorageKind;
typedef typename promote_index_type<typename traits<Lhs>::Index,
typename traits<Rhs>::Index>::type Index;
enum {
RowsAtCompileTime = traits<Lhs>::RowsAtCompileTime,
ColsAtCompileTime = traits<Rhs>::ColsAtCompileTime,
MaxRowsAtCompileTime = traits<Lhs>::MaxRowsAtCompileTime,
MaxColsAtCompileTime = traits<Rhs>::MaxColsAtCompileTime,
Flags = (MaxRowsAtCompileTime==1 ? RowMajorBit : 0)
| EvalBeforeNestingBit | EvalBeforeAssigningBit | NestByRefBit,
CoeffReadCost = 0
};
};
} // namespace internal
template<typename Derived, typename MatrixType>
class MatrixPowerBase
{
public:
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
explicit MatrixPowerBase(const MatrixType& A, RealScalar cond);
void compute(MatrixType& res, RealScalar p);
template<typename OtherDerived, typename ResultType>
void compute(const OtherDerived& b, ResultType& res, RealScalar p);
Index rows() const { return m_A.rows(); }
Index cols() const { return m_A.cols(); }
protected:
typedef Array<RealScalar,RowsAtCompileTime,1,ColMajor,MaxRowsAtCompileTime> RealArray;
const MatrixType& m_A;
const MatrixType m_Id;
MatrixType m_tmp1, m_tmp2;
RealScalar m_conditionNumber;
};
template<typename Derived, typename MatrixType>
MatrixPowerBase<Derived,MatrixType>::MatrixPowerBase(const MatrixType& A, RealScalar cond) :
m_A(A),
m_Id(MatrixType::Identity(A.rows(),A.cols())),
m_conditionNumber(cond)
{ eigen_assert(A.rows() == A.cols()); }
template<typename Derived, typename MatrixType>
void MatrixPowerBase<Derived,MatrixType>::compute(MatrixType& res, RealScalar p)
{ static_cast<Derived*>(this)->compute(res,p); }
template<typename Derived, typename MatrixType>
template<typename OtherDerived, typename ResultType>
void MatrixPowerBase<Derived,MatrixType>::compute(const OtherDerived& b, ResultType& res, RealScalar p)
{ static_cast<Derived*>(this)->compute(b,res,p); }
template<typename Derived, typename Lhs, typename Rhs>
class MatrixPowerProductBase : public MatrixBase<Derived>
{
public:
typedef MatrixBase<Derived> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(MatrixPowerProductBase)
inline Index rows() const { return derived().rows(); }
inline Index cols() const { return derived().cols(); }
template<typename ResultType>
inline void evalTo(ResultType& res) const { derived().evalTo(res); }
};
template<typename Derived>
template<typename ProductDerived, typename Lhs, typename Rhs>
Derived& MatrixBase<Derived>::lazyAssign(const MatrixPowerProductBase<ProductDerived,Lhs,Rhs>& other)
{
other.derived().evalTo(derived());
return derived();
}
} // namespace Eigen
#endif // EIGEN_MATRIX_POWER

16
resources/3rdparty/eigen/unsupported/doc/examples/MatrixPower.cpp

@ -1,16 +0,0 @@
#include <unsupported/Eigen/MatrixFunctions>
#include <iostream>
using namespace Eigen;
int main()
{
const double pi = std::acos(-1.0);
Matrix3d A;
A << cos(1), -sin(1), 0,
sin(1), cos(1), 0,
0 , 0 , 1;
std::cout << "The matrix A is:\n" << A << "\n\n"
"The matrix power A^(pi/4) is:\n" << A.pow(pi/4) << std::endl;
return 0;
}

17
resources/3rdparty/eigen/unsupported/doc/examples/MatrixPower_optimal.cpp

@ -1,17 +0,0 @@
#include <unsupported/Eigen/MatrixFunctions>
#include <iostream>
using namespace Eigen;
int main()
{
Matrix4cd A = Matrix4cd::Random();
MatrixPower<Matrix4cd> Apow(A);
std::cout << "The matrix A is:\n" << A << "\n\n"
"A^3.1 is:\n" << Apow(3.1) << "\n\n"
"A^3.3 is:\n" << Apow(3.3) << "\n\n"
"A^3.7 is:\n" << Apow(3.7) << "\n\n"
"A^3.9 is:\n" << Apow(3.9) << std::endl;
return 0;
}

47
resources/3rdparty/eigen/unsupported/test/matrix_functions.h

@ -1,47 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <unsupported/Eigen/MatrixFunctions>
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
struct generateTestMatrix;
// for real matrices, make sure none of the eigenvalues are negative
template <typename MatrixType>
struct generateTestMatrix<MatrixType,0>
{
static void run(MatrixType& result, typename MatrixType::Index size)
{
MatrixType mat = MatrixType::Random(size, size);
EigenSolver<MatrixType> es(mat);
typename EigenSolver<MatrixType>::EigenvalueType eivals = es.eigenvalues();
for (typename MatrixType::Index i = 0; i < size; ++i) {
if (eivals(i).imag() == 0 && eivals(i).real() < 0)
eivals(i) = -eivals(i);
}
result = (es.eigenvectors() * eivals.asDiagonal() * es.eigenvectors().inverse()).real();
}
};
// for complex matrices, any matrix is fine
template <typename MatrixType>
struct generateTestMatrix<MatrixType,1>
{
static void run(MatrixType& result, typename MatrixType::Index size)
{
result = MatrixType::Random(size, size);
}
};
template <typename Derived, typename OtherDerived>
double relerr(const MatrixBase<Derived>& A, const MatrixBase<OtherDerived>& B)
{
return std::sqrt((A - B).cwiseAbs2().sum() / (std::min)(A.cwiseAbs2().sum(), B.cwiseAbs2().sum()));
}

136
resources/3rdparty/eigen/unsupported/test/matrix_power.cpp

@ -1,136 +0,0 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "matrix_functions.h"
template<typename T>
void test2dRotation(double tol)
{
Matrix<T,2,2> A, B, C;
T angle, c, s;
A << 0, 1, -1, 0;
MatrixPower<Matrix<T,2,2> > Apow(A);
for (int i=0; i<=20; ++i) {
angle = pow(10, (i-10) / 5.);
c = std::cos(angle);
s = std::sin(angle);
B << c, s, -s, c;
C = Apow(std::ldexp(angle,1) / M_PI);
std::cout << "test2dRotation: i = " << i << " error powerm = " << relerr(C,B) << '\n';
VERIFY(C.isApprox(B, static_cast<T>(tol)));
}
}
template<typename T>
void test2dHyperbolicRotation(double tol)
{
Matrix<std::complex<T>,2,2> A, B, C;
T angle, ch = std::cosh((T)1);
std::complex<T> ish(0, std::sinh((T)1));
A << ch, ish, -ish, ch;
MatrixPower<Matrix<std::complex<T>,2,2> > Apow(A);
for (int i=0; i<=20; ++i) {
angle = std::ldexp(static_cast<T>(i-10), -1);
ch = std::cosh(angle);
ish = std::complex<T>(0, std::sinh(angle));
B << ch, ish, -ish, ch;
C = Apow(angle);
std::cout << "test2dHyperbolicRotation: i = " << i << " error powerm = " << relerr(C,B) << '\n';
VERIFY(C.isApprox(B, static_cast<T>(tol)));
}
}
template<typename MatrixType>
void testExponentLaws(const MatrixType& m, double tol)
{
typedef typename MatrixType::RealScalar RealScalar;
MatrixType m1, m2, m3, m4, m5;
RealScalar x, y;
for (int i=0; i<g_repeat; ++i) {
generateTestMatrix<MatrixType>::run(m1, m.rows());
MatrixPower<MatrixType> mpow(m1);
x = internal::random<RealScalar>();
y = internal::random<RealScalar>();
m2 = mpow(x);
m3 = mpow(y);
m4 = mpow(x+y);
m5.noalias() = m2 * m3;
VERIFY(m4.isApprox(m5, static_cast<RealScalar>(tol)));
m4 = mpow(x*y);
m5 = m2.pow(y);
VERIFY(m4.isApprox(m5, static_cast<RealScalar>(tol)));
m4 = (std::abs(x) * m1).pow(y);
m5 = std::pow(std::abs(x), y) * m3;
VERIFY(m4.isApprox(m5, static_cast<RealScalar>(tol)));
}
}
template<typename MatrixType, typename VectorType>
void testProduct(const MatrixType& m, const VectorType& v, double tol)
{
typedef typename MatrixType::RealScalar RealScalar;
MatrixType m1;
VectorType v1, v2, v3;
RealScalar p;
for (int i=0; i<g_repeat; ++i) {
generateTestMatrix<MatrixType>::run(m1, m.rows());
MatrixPower<MatrixType> mpow(m1);
v1 = VectorType::Random(v.rows(), v.cols());
p = internal::random<RealScalar>();
v2.noalias() = mpow(p) * v1;
v3.noalias() = mpow(p).eval() * v1;
std::cout << "testMatrixVectorProduct: error powerm = " << relerr(v2, v3) << '\n';
VERIFY(v2.isApprox(v3, static_cast<RealScalar>(tol)));
}
}
template<typename MatrixType, typename VectorType>
void testMatrixVector(const MatrixType& m, const VectorType& v, double tol)
{
testExponentLaws(m,tol);
testProduct(m,v,tol);
}
void test_matrix_power()
{
typedef Matrix<double,3,3,RowMajor> Matrix3dRowMajor;
typedef Matrix<long double,Dynamic,Dynamic> MatrixXe;
typedef Matrix<long double,Dynamic,1> VectorXe;
CALL_SUBTEST_2(test2dRotation<double>(1e-13));
CALL_SUBTEST_1(test2dRotation<float>(2e-5)); // was 1e-5, relaxed for clang 2.8 / linux / x86-64
CALL_SUBTEST_9(test2dRotation<long double>(1e-13));
CALL_SUBTEST_2(test2dHyperbolicRotation<double>(1e-14));
CALL_SUBTEST_1(test2dHyperbolicRotation<float>(1e-5));
CALL_SUBTEST_9(test2dHyperbolicRotation<long double>(1e-14));
CALL_SUBTEST_2(testMatrixVector(Matrix2d(), Vector2d(), 1e-13));
CALL_SUBTEST_7(testMatrixVector(Matrix3dRowMajor(), MatrixXd(3,5), 1e-13));
CALL_SUBTEST_3(testMatrixVector(Matrix4cd(), Vector4cd(), 1e-13));
CALL_SUBTEST_4(testMatrixVector(MatrixXd(8,8), VectorXd(8), 1e-13));
CALL_SUBTEST_1(testMatrixVector(Matrix2f(), Vector2f(), 1e-4));
CALL_SUBTEST_5(testMatrixVector(Matrix3cf(), Vector3cf(), 1e-4));
CALL_SUBTEST_8(testMatrixVector(Matrix4f(), Vector4f(), 1e-4));
CALL_SUBTEST_6(testMatrixVector(MatrixXf(8,8), VectorXf(8), 1e-4));
CALL_SUBTEST_9(testMatrixVector(MatrixXe(7,7), VectorXe(7), 1e-13));
}
Loading…
Cancel
Save