diff --git a/src/storm/modelchecker/csl/helper/SparseMarkovAutomatonCslHelper.cpp b/src/storm/modelchecker/csl/helper/SparseMarkovAutomatonCslHelper.cpp index f692944eb..bc83d20f9 100644 --- a/src/storm/modelchecker/csl/helper/SparseMarkovAutomatonCslHelper.cpp +++ b/src/storm/modelchecker/csl/helper/SparseMarkovAutomatonCslHelper.cpp @@ -32,7 +32,7 @@ namespace storm { namespace helper { template ::SupportsExponential, int>::type> - void SparseMarkovAutomatonCslHelper::computeBoundedReachabilityProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, std::vector const& exitRates, storm::storage::BitVector const& goalStates, storm::storage::BitVector const& markovianNonGoalStates, storm::storage::BitVector const& probabilisticNonGoalStates, std::vector& markovianNonGoalValues, std::vector& probabilisticNonGoalValues, ValueType delta, uint_fast64_t numberOfSteps, storm::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory) { + void SparseMarkovAutomatonCslHelper::computeBoundedReachabilityProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, std::vector const& exitRates, storm::storage::BitVector const& goalStates, storm::storage::BitVector const& markovianNonGoalStates, storm::storage::BitVector const& probabilisticNonGoalStates, std::vector& markovianNonGoalValues, std::vector& probabilisticNonGoalValues, ValueType delta, uint64_t numberOfSteps, storm::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory) { // Start by computing four sparse matrices: // * a matrix aMarkovian with all (discretized) transitions from Markovian non-goal states to all Markovian non-goal states. @@ -46,7 +46,7 @@ namespace storm { // The matrices with transitions from Markovian states need to be digitized. // Digitize aMarkovian. Based on whether the transition is a self-loop or not, we apply the two digitization rules. - uint_fast64_t rowIndex = 0; + uint64_t rowIndex = 0; for (auto state : markovianNonGoalStates) { for (auto& element : aMarkovian.getRow(rowIndex)) { ValueType eTerm = std::exp(-exitRates[state] * delta); @@ -96,7 +96,7 @@ namespace storm { // and 1_G being the characteristic vector for all goal states. // * perform one timed-step using v_MS := A_MSwG * v_MS + A_MStoPS * v_PS + (A * 1_G)|MS std::vector markovianNonGoalValuesSwap(markovianNonGoalValues); - for (uint_fast64_t currentStep = 0; currentStep < numberOfSteps; ++currentStep) { + for (uint64_t currentStep = 0; currentStep < numberOfSteps; ++currentStep) { // Start by (re-)computing bProbabilistic = bProbabilisticFixed + aProbabilisticToMarkovian * vMarkovian. aProbabilisticToMarkovian.multiplyWithVector(markovianNonGoalValues, bProbabilistic); storm::utility::vector::addVectors(bProbabilistic, bProbabilisticFixed, bProbabilistic); @@ -119,14 +119,14 @@ namespace storm { } template ::SupportsExponential, int>::type> - void SparseMarkovAutomatonCslHelper::computeBoundedReachabilityProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, std::vector const& exitRates, storm::storage::BitVector const& goalStates, storm::storage::BitVector const& markovianNonGoalStates, storm::storage::BitVector const& probabilisticNonGoalStates, std::vector& markovianNonGoalValues, std::vector& probabilisticNonGoalValues, ValueType delta, uint_fast64_t numberOfSteps, storm::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory) { + void SparseMarkovAutomatonCslHelper::computeBoundedReachabilityProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, std::vector const& exitRates, storm::storage::BitVector const& goalStates, storm::storage::BitVector const& markovianNonGoalStates, storm::storage::BitVector const& probabilisticNonGoalStates, std::vector& markovianNonGoalValues, std::vector& probabilisticNonGoalValues, ValueType delta, uint64_t numberOfSteps, storm::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory) { STORM_LOG_THROW(false, storm::exceptions::InvalidOperationException, "Computing bounded reachability probabilities is unsupported for this value type."); } template ::SupportsExponential, int>::type> std::vector SparseMarkovAutomatonCslHelper::computeBoundedUntilProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, std::vector const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, std::pair const& boundsPair, storm::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory) { - uint_fast64_t numberOfStates = transitionMatrix.getRowGroupCount(); + uint64_t numberOfStates = transitionMatrix.getRowGroupCount(); // 'Unpack' the bounds to make them more easily accessible. double lowerBound = boundsPair.first; @@ -140,7 +140,7 @@ namespace storm { ValueType delta = (2 * storm::settings::getModule().getPrecision()) / (upperBound * maxExitRate * maxExitRate); // (2) Compute the number of steps we need to make for the interval. - uint_fast64_t numberOfSteps = static_cast(std::ceil((upperBound - lowerBound) / delta)); + uint64_t numberOfSteps = static_cast(std::ceil((upperBound - lowerBound) / delta)); STORM_LOG_INFO("Performing " << numberOfSteps << " iterations (delta=" << delta << ") for interval [" << lowerBound << ", " << upperBound << "]." << std::endl); // (3) Compute the non-goal states and initialize two vectors @@ -165,7 +165,7 @@ namespace storm { storm::utility::vector::setVectorValues(vAllMarkovian, ~psiStates % markovianStates, vMarkovian); // Compute the number of steps to reach the target interval. - numberOfSteps = static_cast(std::ceil(lowerBound / delta)); + numberOfSteps = static_cast(std::ceil(lowerBound / delta)); STORM_LOG_INFO("Performing " << numberOfSteps << " iterations (delta=" << delta << ") for interval [0, " << lowerBound << "]." << std::endl); // Compute the bounded reachability for interval [0, b-a]. @@ -215,7 +215,7 @@ namespace storm { template std::vector SparseMarkovAutomatonCslHelper::computeLongRunAverageProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, storm::storage::SparseMatrix const& backwardTransitions, std::vector const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, storm::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory, bool useLpBasedTechnique) { - uint_fast64_t numberOfStates = transitionMatrix.getRowGroupCount(); + uint64_t numberOfStates = transitionMatrix.getRowGroupCount(); // If there are no goal states, we avoid the computation and directly return zero. if (psiStates.empty()) { @@ -240,27 +240,27 @@ namespace storm { template std::vector SparseMarkovAutomatonCslHelper::computeLongRunAverageRewards(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, storm::storage::SparseMatrix const& backwardTransitions, std::vector const& exitRateVector, storm::storage::BitVector const& markovianStates, RewardModelType const& rewardModel, storm::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory, bool useLpBasedTechnique) { - uint_fast64_t numberOfStates = transitionMatrix.getRowGroupCount(); + uint64_t numberOfStates = transitionMatrix.getRowGroupCount(); // Start by decomposing the Markov automaton into its MECs. storm::storage::MaximalEndComponentDecomposition mecDecomposition(transitionMatrix, backwardTransitions); // Get some data members for convenience. - std::vector const& nondeterministicChoiceIndices = transitionMatrix.getRowGroupIndices(); + std::vector const& nondeterministicChoiceIndices = transitionMatrix.getRowGroupIndices(); // Now start with compute the long-run average for all end components in isolation. std::vector lraValuesForEndComponents; // While doing so, we already gather some information for the following steps. - std::vector stateToMecIndexMap(numberOfStates); + std::vector stateToMecIndexMap(numberOfStates); storm::storage::BitVector statesInMecs(numberOfStates); - for (uint_fast64_t currentMecIndex = 0; currentMecIndex < mecDecomposition.size(); ++currentMecIndex) { + for (uint64_t currentMecIndex = 0; currentMecIndex < mecDecomposition.size(); ++currentMecIndex) { storm::storage::MaximalEndComponent const& mec = mecDecomposition[currentMecIndex]; // Gather information for later use. for (auto const& stateChoicesPair : mec) { - uint_fast64_t state = stateChoicesPair.first; + uint64_t state = stateChoicesPair.first; statesInMecs.set(state); stateToMecIndexMap[state] = currentMecIndex; @@ -272,10 +272,10 @@ namespace storm { // For fast transition rewriting, we build some auxiliary data structures. storm::storage::BitVector statesNotContainedInAnyMec = ~statesInMecs; - uint_fast64_t firstAuxiliaryStateIndex = statesNotContainedInAnyMec.getNumberOfSetBits(); - uint_fast64_t lastStateNotInMecs = 0; - uint_fast64_t numberOfStatesNotInMecs = 0; - std::vector statesNotInMecsBeforeIndex; + uint64_t firstAuxiliaryStateIndex = statesNotContainedInAnyMec.getNumberOfSetBits(); + uint64_t lastStateNotInMecs = 0; + uint64_t numberOfStatesNotInMecs = 0; + std::vector statesNotInMecsBeforeIndex; statesNotInMecsBeforeIndex.reserve(numberOfStates); for (auto state : statesNotContainedInAnyMec) { while (lastStateNotInMecs <= state) { @@ -290,11 +290,11 @@ namespace storm { typename storm::storage::SparseMatrixBuilder sspMatrixBuilder(0, 0, 0, false, true, numberOfStatesNotInMecs + mecDecomposition.size()); // If the source state is not contained in any MEC, we copy its choices (and perform the necessary modifications). - uint_fast64_t currentChoice = 0; + uint64_t currentChoice = 0; for (auto state : statesNotContainedInAnyMec) { sspMatrixBuilder.newRowGroup(currentChoice); - for (uint_fast64_t choice = nondeterministicChoiceIndices[state]; choice < nondeterministicChoiceIndices[state + 1]; ++choice, ++currentChoice) { + for (uint64_t choice = nondeterministicChoiceIndices[state]; choice < nondeterministicChoiceIndices[state + 1]; ++choice, ++currentChoice) { std::vector auxiliaryStateToProbabilityMap(mecDecomposition.size()); b.push_back(storm::utility::zero()); @@ -310,7 +310,7 @@ namespace storm { } // Now insert all (cumulative) probability values that target an MEC. - for (uint_fast64_t mecIndex = 0; mecIndex < auxiliaryStateToProbabilityMap.size(); ++mecIndex) { + for (uint64_t mecIndex = 0; mecIndex < auxiliaryStateToProbabilityMap.size(); ++mecIndex) { if (auxiliaryStateToProbabilityMap[mecIndex] != 0) { sspMatrixBuilder.addNextValue(currentChoice, firstAuxiliaryStateIndex + mecIndex, auxiliaryStateToProbabilityMap[mecIndex]); } @@ -319,15 +319,15 @@ namespace storm { } // Now we are ready to construct the choices for the auxiliary states. - for (uint_fast64_t mecIndex = 0; mecIndex < mecDecomposition.size(); ++mecIndex) { + for (uint64_t mecIndex = 0; mecIndex < mecDecomposition.size(); ++mecIndex) { storm::storage::MaximalEndComponent const& mec = mecDecomposition[mecIndex]; sspMatrixBuilder.newRowGroup(currentChoice); for (auto const& stateChoicesPair : mec) { - uint_fast64_t state = stateChoicesPair.first; - boost::container::flat_set const& choicesInMec = stateChoicesPair.second; + uint64_t state = stateChoicesPair.first; + boost::container::flat_set const& choicesInMec = stateChoicesPair.second; - for (uint_fast64_t choice = nondeterministicChoiceIndices[state]; choice < nondeterministicChoiceIndices[state + 1]; ++choice) { + for (uint64_t choice = nondeterministicChoiceIndices[state]; choice < nondeterministicChoiceIndices[state + 1]; ++choice) { std::vector auxiliaryStateToProbabilityMap(mecDecomposition.size()); // If the choice is not contained in the MEC itself, we have to add a similar distribution to the auxiliary state. @@ -346,7 +346,7 @@ namespace storm { } // Now insert all (cumulative) probability values that target an MEC. - for (uint_fast64_t targetMecIndex = 0; targetMecIndex < auxiliaryStateToProbabilityMap.size(); ++targetMecIndex) { + for (uint64_t targetMecIndex = 0; targetMecIndex < auxiliaryStateToProbabilityMap.size(); ++targetMecIndex) { if (auxiliaryStateToProbabilityMap[targetMecIndex] != 0) { sspMatrixBuilder.addNextValue(currentChoice, firstAuxiliaryStateIndex + targetMecIndex, auxiliaryStateToProbabilityMap[targetMecIndex]); } @@ -401,12 +401,12 @@ namespace storm { // If the mec only consists of a single state, we compute the LRA value directly if (++mec.begin() == mec.end()) { - uint_fast64_t state = mec.begin()->first; + uint64_t state = mec.begin()->first; STORM_LOG_THROW(markovianStates.get(state), storm::exceptions::InvalidOperationException, "Markov Automaton has Zeno behavior. Computation of Long Run Average values not supported."); ValueType result = rewardModel.hasStateRewards() ? rewardModel.getStateReward(state) : storm::utility::zero(); if (rewardModel.hasStateActionRewards() || rewardModel.hasTransitionRewards()) { STORM_LOG_ASSERT(mec.begin()->second.size() == 1, "Markovian state has nondeterministic behavior."); - uint_fast64_t choice = *mec.begin()->second.begin(); + uint64_t choice = *mec.begin()->second.begin(); result += exitRateVector[state] * rewardModel.getTotalStateActionReward(state, choice, transitionMatrix, storm::utility::zero()); } return result; @@ -426,7 +426,7 @@ namespace storm { solver->setOptimizationDirection(invert(dir)); // First, we need to create the variables for the problem. - std::map stateToVariableMap; + std::map stateToVariableMap; for (auto const& stateChoicesPair : mec) { std::string variableName = "x" + std::to_string(stateChoicesPair.first); stateToVariableMap[stateChoicesPair.first] = solver->addUnboundedContinuousVariable(variableName); @@ -435,14 +435,14 @@ namespace storm { solver->update(); // Now we encode the problem as constraints. - std::vector const& nondeterministicChoiceIndices = transitionMatrix.getRowGroupIndices(); + std::vector const& nondeterministicChoiceIndices = transitionMatrix.getRowGroupIndices(); for (auto const& stateChoicesPair : mec) { - uint_fast64_t state = stateChoicesPair.first; + uint64_t state = stateChoicesPair.first; // Now, based on the type of the state, create a suitable constraint. if (markovianStates.get(state)) { STORM_LOG_ASSERT(stateChoicesPair.second.size() == 1, "Markovian state " << state << " is not deterministic: It has " << stateChoicesPair.second.size() << " choices."); - uint_fast64_t choice = *stateChoicesPair.second.begin(); + uint64_t choice = *stateChoicesPair.second.begin(); storm::expressions::Expression constraint = stateToVariableMap.at(state); @@ -519,7 +519,7 @@ namespace storm { typename storm::storage::SparseMatrix aProbabilistic = transitionMatrix.getSubmatrix(false, probabilisticMecChoices, probabilisticMecStates); typename storm::storage::SparseMatrix aProbabilisticToMarkovian = transitionMatrix.getSubmatrix(false, probabilisticMecChoices, markovianMecStates); // The matrices with transitions from Markovian states need to be uniformized. - uint_fast64_t subState = 0; + uint64_t subState = 0; for (auto state : markovianMecStates) { ValueType uniformizationFactor = exitRateVector[state] / uniformizationRate; for (auto& entry : aMarkovianToProbabilistic.getRow(subState)) { @@ -543,16 +543,16 @@ namespace storm { ValueType stateRewardScalingFactor = storm::utility::one() / uniformizationRate; ValueType actionRewardScalingFactor = exitRateVector[state] / uniformizationRate; assert(transitionMatrix.getRowGroupSize(state) == 1); - uint_fast64_t choice = transitionMatrix.getRowGroupIndices()[state]; + uint64_t choice = transitionMatrix.getRowGroupIndices()[state]; markovianChoiceRewards.push_back(rewardModel.getTotalStateActionReward(state, choice, transitionMatrix, stateRewardScalingFactor, actionRewardScalingFactor)); } std::vector probabilisticChoiceRewards; probabilisticChoiceRewards.reserve(aProbabilistic.getRowCount()); for (auto const& state : probabilisticMecStates) { - uint_fast64_t groupStart = transitionMatrix.getRowGroupIndices()[state]; - uint_fast64_t groupEnd = transitionMatrix.getRowGroupIndices()[state + 1]; - for (uint_fast64_t choice = probabilisticMecChoices.getNextSetIndex(groupStart); choice < groupEnd; choice = probabilisticMecChoices.getNextSetIndex(choice + 1)) { + uint64_t groupStart = transitionMatrix.getRowGroupIndices()[state]; + uint64_t groupEnd = transitionMatrix.getRowGroupIndices()[state + 1]; + for (uint64_t choice = probabilisticMecChoices.getNextSetIndex(groupStart); choice < groupEnd; choice = probabilisticMecChoices.getNextSetIndex(choice + 1)) { probabilisticChoiceRewards.push_back(rewardModel.getTotalStateActionReward(state, choice, transitionMatrix, storm::utility::zero())); } } @@ -574,7 +574,7 @@ namespace storm { // now compute the values for the markovian states. We also keep track of the maximal and minimal difference between two values (for convergence checking) auto vIt = v.begin(); - uint_fast64_t row = 0; + uint64_t row = 0; ValueType newValue = markovianChoiceRewards[row] + aMarkovianToProbabilistic.multiplyRowWithVector(row, x) + aMarkovian.multiplyRowWithVector(row, w); ValueType maxDiff = newValue - *vIt; ValueType minDiff = maxDiff; @@ -615,7 +615,7 @@ namespace storm { template std::vector SparseMarkovAutomatonCslHelper::computeReachabilityTimes(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, storm::storage::SparseMatrix const& backwardTransitions, std::vector const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, storm::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory); - template void SparseMarkovAutomatonCslHelper::computeBoundedReachabilityProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, std::vector const& exitRates, storm::storage::BitVector const& goalStates, storm::storage::BitVector const& markovianNonGoalStates, storm::storage::BitVector const& probabilisticNonGoalStates, std::vector& markovianNonGoalValues, std::vector& probabilisticNonGoalValues, double delta, uint_fast64_t numberOfSteps, storm::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory); + template void SparseMarkovAutomatonCslHelper::computeBoundedReachabilityProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, std::vector const& exitRates, storm::storage::BitVector const& goalStates, storm::storage::BitVector const& markovianNonGoalStates, storm::storage::BitVector const& probabilisticNonGoalStates, std::vector& markovianNonGoalValues, std::vector& probabilisticNonGoalValues, double delta, uint64_t numberOfSteps, storm::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory); template double SparseMarkovAutomatonCslHelper::computeLraForMaximalEndComponent(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, std::vector const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::models::sparse::StandardRewardModel const& rewardModel, storm::storage::MaximalEndComponent const& mec, storm::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory, bool useLpBasedTechnique); @@ -635,7 +635,7 @@ namespace storm { template std::vector SparseMarkovAutomatonCslHelper::computeReachabilityTimes(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, storm::storage::SparseMatrix const& backwardTransitions, std::vector const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::storage::BitVector const& psiStates, storm::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory); - template void SparseMarkovAutomatonCslHelper::computeBoundedReachabilityProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, std::vector const& exitRates, storm::storage::BitVector const& goalStates, storm::storage::BitVector const& markovianNonGoalStates, storm::storage::BitVector const& probabilisticNonGoalStates, std::vector& markovianNonGoalValues, std::vector& probabilisticNonGoalValues, storm::RationalNumber delta, uint_fast64_t numberOfSteps, storm::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory); + template void SparseMarkovAutomatonCslHelper::computeBoundedReachabilityProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, std::vector const& exitRates, storm::storage::BitVector const& goalStates, storm::storage::BitVector const& markovianNonGoalStates, storm::storage::BitVector const& probabilisticNonGoalStates, std::vector& markovianNonGoalValues, std::vector& probabilisticNonGoalValues, storm::RationalNumber delta, uint64_t numberOfSteps, storm::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory); template storm::RationalNumber SparseMarkovAutomatonCslHelper::computeLraForMaximalEndComponent(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, std::vector const& exitRateVector, storm::storage::BitVector const& markovianStates, storm::models::sparse::StandardRewardModel const& rewardModel, storm::storage::MaximalEndComponent const& mec, storm::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory, bool useLpBasedTechnique); diff --git a/src/storm/modelchecker/csl/helper/SparseMarkovAutomatonCslHelper.h b/src/storm/modelchecker/csl/helper/SparseMarkovAutomatonCslHelper.h index 8faddede5..f41c8e287 100644 --- a/src/storm/modelchecker/csl/helper/SparseMarkovAutomatonCslHelper.h +++ b/src/storm/modelchecker/csl/helper/SparseMarkovAutomatonCslHelper.h @@ -39,10 +39,10 @@ namespace storm { private: template ::SupportsExponential, int>::type = 0> - static void computeBoundedReachabilityProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, std::vector const& exitRates, storm::storage::BitVector const& goalStates, storm::storage::BitVector const& markovianNonGoalStates, storm::storage::BitVector const& probabilisticNonGoalStates, std::vector& markovianNonGoalValues, std::vector& probabilisticNonGoalValues, ValueType delta, uint_fast64_t numberOfSteps, storm::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory); + static void computeBoundedReachabilityProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, std::vector const& exitRates, storm::storage::BitVector const& goalStates, storm::storage::BitVector const& markovianNonGoalStates, storm::storage::BitVector const& probabilisticNonGoalStates, std::vector& markovianNonGoalValues, std::vector& probabilisticNonGoalValues, ValueType delta, uint64_t numberOfSteps, storm::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory); template ::SupportsExponential, int>::type = 0> - static void computeBoundedReachabilityProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, std::vector const& exitRates, storm::storage::BitVector const& goalStates, storm::storage::BitVector const& markovianNonGoalStates, storm::storage::BitVector const& probabilisticNonGoalStates, std::vector& markovianNonGoalValues, std::vector& probabilisticNonGoalValues, ValueType delta, uint_fast64_t numberOfSteps, storm::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory); + static void computeBoundedReachabilityProbabilities(OptimizationDirection dir, storm::storage::SparseMatrix const& transitionMatrix, std::vector const& exitRates, storm::storage::BitVector const& goalStates, storm::storage::BitVector const& markovianNonGoalStates, storm::storage::BitVector const& probabilisticNonGoalStates, std::vector& markovianNonGoalValues, std::vector& probabilisticNonGoalValues, ValueType delta, uint64_t numberOfSteps, storm::solver::MinMaxLinearEquationSolverFactory const& minMaxLinearEquationSolverFactory); /*! * Computes the long-run average value for the given maximal end component of a Markov automaton.