@ -22,33 +22,49 @@ namespace storm {
}
template < storm : : dd : : DdType Type , typename ValueType >
storm : : dd : : Bdd < Type > pickPivotState ( storm : : dd : : Bdd < Type > const & initialStates , storm : : dd : : Bdd < Type > const & transitions , std : : set < storm : : expressions : : Variable > const & rowVariables , std : : set < storm : : expressions : : Variable > const & columnVariables , storm : : dd : : Bdd < Type > const & pivotStates , boost : : optional < QuantitativeResultMinMax < Type , ValueType > > const & quantitativeResult = boost : : none ) {
storm : : dd : : Bdd < Type > pickPivotState ( storm : : dd : : Bdd < Type > const & initialStates , storm : : dd : : Bdd < Type > const & transitionsMin , storm : : dd : : Bdd < Type > const & transitionsMax , std : : set < storm : : expressions : : Variable > const & rowVariables , std : : set < storm : : expressions : : Variable > const & columnVariables , storm : : dd : : Bdd < Type > const & pivotStates , boost : : optional < QuantitativeResultMinMax < Type , ValueType > > const & quantitativeResult = boost : : none ) {
// Perform a BFS and pick the first pivot state we encounter.
storm : : dd : : Bdd < Type > pivotState ;
storm : : dd : : Bdd < Type > frontier = initialStates ;
storm : : dd : : Bdd < Type > frontierPivotStates = frontier & & pivotStates ;
storm : : dd : : Bdd < Type > frontierMin = initialStates ;
storm : : dd : : Bdd < Type > frontierMax = initialStates ;
storm : : dd : : Bdd < Type > frontierMinPivotStates = frontierMin & & pivotStates ;
storm : : dd : : Bdd < Type > frontierMaxPivotStates = frontierMinPivotStates ;
uint64_t level = 0 ;
bool foundPivotState = ! frontierPivotStates . isZero ( ) ;
bool foundPivotState = ! frontierMin PivotStates . isZero ( ) ;
if ( foundPivotState ) {
pivotState = frontierPivotStates . existsAbstractRepresentative ( rowVariables ) ;
STORM_LOG_TRACE ( " Picked pivot state from " < < frontierPivotStates . getNonZeroCount ( ) < < " candidates on level " < < level < < " , " < < pivotStates . getNonZeroCount ( ) < < " candidates in total. " ) ;
pivotState = frontierMin PivotStates . existsAbstractRepresentative ( rowVariables ) ;
STORM_LOG_TRACE ( " Picked pivot state from " < < frontierMin PivotStates . getNonZeroCount ( ) < < " candidates on level " < < level < < " , " < < pivotStates . getNonZeroCount ( ) < < " candidates in total. " ) ;
} else {
while ( ! foundPivotState ) {
frontier = frontier . relationalProduct ( transitions , rowVariables , columnVariables ) ;
frontierPivotStates = frontier & & pivotStates ;
frontierMin = frontierMin . relationalProduct ( transitionsMin , rowVariables , columnVariables ) ;
frontierMax = frontierMax . relationalProduct ( transitionsMax , rowVariables , columnVariables ) ;
frontierMinPivotStates = frontierMin & & pivotStates ;
frontierMaxPivotStates = frontierMax & & pivotStates ;
if ( ! frontierPivotStates . isZero ( ) ) {
if ( ! frontierMin PivotStates . isZero ( ) ) {
if ( quantitativeResult ) {
storm : : dd : : Add < Type , ValueType > frontierPivotStatesAdd = frontierPivotStates . template toAdd < ValueType > ( ) ;
storm : : dd : : Add < Type , ValueType > frontierPivotStatesAdd = frontierMin PivotStates . template toAdd < ValueType > ( ) ;
storm : : dd : : Add < Type , ValueType > diff = frontierPivotStatesAdd * quantitativeResult . get ( ) . max . values - frontierPivotStatesAdd * quantitativeResult . get ( ) . min . values ;
pivotState = diff . maxAbstractRepresentative ( rowVariables ) ;
STORM_LOG_TRACE ( " Picked pivot state with difference " < < diff . getMax ( ) < < " from " < < frontierPivotStates . getNonZeroCount ( ) < < " candidates on level " < < level < < " , " < < pivotStates . getNonZeroCount ( ) < < " candidates in total. " ) ;
STORM_LOG_TRACE ( " Picked pivot state with difference " < < diff . getMax ( ) < < " from " < < ( frontierMin PivotStates . getNonZeroCount ( ) + frontierMaxPivotStates . getNonZeroCount ( ) ) < < " candidates on level " < < level < < " , " < < pivotStates . getNonZeroCount ( ) < < " candidates in total. " ) ;
foundPivotState = true ;
} else {
pivotState = frontierPivotStates . existsAbstractRepresentative ( rowVariables ) ;
STORM_LOG_TRACE ( " Picked pivot state from " < < frontierPivotStates . getNonZeroCount ( ) < < " candidates on level " < < level < < " , " < < pivotStates . getNonZeroCount ( ) < < " candidates in total. " ) ;
pivotState = frontierMinPivotStates . existsAbstractRepresentative ( rowVariables ) ;
STORM_LOG_TRACE ( " Picked pivot state from " < < ( frontierMinPivotStates . getNonZeroCount ( ) + frontierMaxPivotStates . getNonZeroCount ( ) ) < < " candidates on level " < < level < < " , " < < pivotStates . getNonZeroCount ( ) < < " candidates in total. " ) ;
foundPivotState = true ;
}
} else if ( ! frontierMaxPivotStates . isZero ( ) ) {
if ( quantitativeResult ) {
storm : : dd : : Add < Type , ValueType > frontierPivotStatesAdd = frontierMaxPivotStates . template toAdd < ValueType > ( ) ;
storm : : dd : : Add < Type , ValueType > diff = frontierPivotStatesAdd * quantitativeResult . get ( ) . max . values - frontierPivotStatesAdd * quantitativeResult . get ( ) . min . values ;
pivotState = diff . maxAbstractRepresentative ( rowVariables ) ;
STORM_LOG_TRACE ( " Picked pivot state with difference " < < diff . getMax ( ) < < " from " < < ( frontierMinPivotStates . getNonZeroCount ( ) + frontierMaxPivotStates . getNonZeroCount ( ) ) < < " candidates on level " < < level < < " , " < < pivotStates . getNonZeroCount ( ) < < " candidates in total. " ) ;
foundPivotState = true ;
} else {
pivotState = frontierMinPivotStates . existsAbstractRepresentative ( rowVariables ) ;
STORM_LOG_TRACE ( " Picked pivot state from " < < ( frontierMinPivotStates . getNonZeroCount ( ) + frontierMaxPivotStates . getNonZeroCount ( ) ) < < " candidates on level " < < level < < " , " < < pivotStates . getNonZeroCount ( ) < < " candidates in total. " ) ;
foundPivotState = true ;
}
}
@ -58,7 +74,7 @@ namespace storm {
return pivotState ;
}
template < storm : : dd : : DdType Type , typename ValueType >
void MenuGameRefiner < Type , ValueType > : : refine ( storm : : dd : : Bdd < Type > const & pivotState , storm : : dd : : Bdd < Type > const & player1Choice , storm : : dd : : Bdd < Type > const & lowerChoice , storm : : dd : : Bdd < Type > const & upperChoice ) const {
AbstractionInformation < Type > const & abstractionInformation = abstractor . get ( ) . getAbstractionInformation ( ) ;
@ -131,15 +147,19 @@ namespace storm {
// state that is also a prob 0 state.
minPlayer1Strategy = ( maxPlayer1Strategy & & qualitativeResult . prob0Min . getPlayer2States ( ) ) . existsAbstract ( game . getPlayer1Variables ( ) ) . ite ( maxPlayer1Strategy , minPlayer1Strategy ) ;
// Build the fragment of transitions that is reachable by both the min and the max strategies.
storm : : dd : : Bdd < Type > reachableTransitions = transitionMatrixBdd & & ( minPlayer1Strategy | | minPlayer2 Strategy ) & & maxPlayer1 Strategy & & maxPlayer2Strategy ;
// Build the fragment of transitions that is reachable by either the min or the max strategies.
storm : : dd : : Bdd < Type > reachableTransitions = transitionMatrixBdd & & ( minPlayer1Strategy | | maxPlayer1 Strategy ) & & minPlayer2 Strategy & & maxPlayer2Strategy ;
reachableTransitions = reachableTransitions . existsAbstract ( game . getNondeterminismVariables ( ) ) ;
storm : : dd : : Bdd < Type > pivotStates = storm : : utility : : dd : : computeReachableStates ( game . getInitialStates ( ) , reachableTransitions , game . getRowVariables ( ) , game . getColumnVariables ( ) ) ;
// Require the pivot state to be a [0, 1] state.
// TODO: is this restriction necessary or is it already implied?
// pivotStates &= prob01.min.first.getPlayer1States() && prob01.max.second.getPlayer1States();
storm : : dd : : Bdd < Type > reachableTransitionsMin = ( transitionMatrixBdd & & minPlayer1Strategy & & minPlayer2Strategy ) . existsAbstract ( game . getNondeterminismVariables ( ) ) ;
storm : : dd : : Bdd < Type > reachableTransitionsMax = ( transitionMatrixBdd & & maxPlayer1Strategy & & maxPlayer2Strategy ) . existsAbstract ( game . getNondeterminismVariables ( ) ) ;
// Start with all reachable states as potential pivot states.
storm : : dd : : Bdd < Type > pivotStates = storm : : utility : : dd : : computeReachableStates ( game . getInitialStates ( ) , reachableTransitionsMin , game . getRowVariables ( ) , game . getColumnVariables ( ) ) | |
storm : : utility : : dd : : computeReachableStates ( game . getInitialStates ( ) , reachableTransitionsMax , game . getRowVariables ( ) , game . getColumnVariables ( ) ) ;
//storm::dd::Bdd<Type> pivotStates = storm::utility::dd::computeReachableStates(game.getInitialStates(), reachableTransitions, game.getRowVariables(), game.getColumnVariables());
// Then constrain these states by the requirement that for either the lower or upper player 1 choice the player 2 choices must be different and
// that the difference is not because of a missing strategy in either case.
@ -150,10 +170,11 @@ namespace storm {
constraint & = minPlayer2Strategy . exclusiveOr ( maxPlayer2Strategy ) ;
// Then restrict the pivot states by requiring existing and different player 2 choices.
pivotStates & = ( ( minPlayer1Strategy | | maxPlayer1Strategy ) & & constraint ) . existsAbstract ( game . getNondeterminismVariables ( ) ) ;
// pivotStates &= ((minPlayer1Strategy || maxPlayer1Strategy) && constraint).existsAbstract(game.getNondeterminismVariables());
pivotStates & = ( ( minPlayer1Strategy & & maxPlayer1Strategy ) & & constraint ) . existsAbstract ( game . getNondeterminismVariables ( ) ) ;
// We can only refine in case we have a reachable player 1 state with a player 2 successor (under either
// player 1's min or max strategy) such that from this player 2 state, both prob0 min and prob0 max define
// player 1's min or max strategy) such that from this player 2 state, both prob0 min and prob1 max define
// strategies and they differ. Hence, it is possible that we arrive at a point where no suitable pivot state
// is found. In this case, we abort the qualitative refinement here.
if ( pivotStates . isZero ( ) ) {
@ -163,7 +184,7 @@ namespace storm {
STORM_LOG_ASSERT ( ! pivotStates . isZero ( ) , " Unable to proceed without pivot state candidates. " ) ;
// Now that we have the pivot state candidates, we need to pick one.
storm : : dd : : Bdd < Type > pivotState = pickPivotState < Type , ValueType > ( game . getInitialStates ( ) , reachableTransitions , game . getRowVariables ( ) , game . getColumnVariables ( ) , pivotStates ) ;
storm : : dd : : Bdd < Type > pivotState = pickPivotState < Type , ValueType > ( game . getInitialStates ( ) , reachableTransitionsMin , reachableTransitionsMax , game . getRowVariables ( ) , game . getColumnVariables ( ) , pivotStates ) ;
// Compute the lower and the upper choice for the pivot state.
std : : set < storm : : expressions : : Variable > variablesToAbstract = game . getNondeterminismVariables ( ) ;
@ -215,7 +236,15 @@ namespace storm {
// Build the fragment of transitions that is reachable by both the min and the max strategies.
storm : : dd : : Bdd < Type > reachableTransitions = transitionMatrixBdd & & ( minPlayer1Strategy | | maxPlayer1Strategy ) & & minPlayer2Strategy & & maxPlayer2Strategy ;
reachableTransitions = reachableTransitions . existsAbstract ( game . getNondeterminismVariables ( ) ) ;
storm : : dd : : Bdd < Type > pivotStates = storm : : utility : : dd : : computeReachableStates ( game . getInitialStates ( ) , reachableTransitions , game . getRowVariables ( ) , game . getColumnVariables ( ) ) ;
storm : : dd : : Bdd < Type > reachableTransitionsMin = ( transitionMatrixBdd & & minPlayer1Strategy & & minPlayer2Strategy ) . existsAbstract ( game . getNondeterminismVariables ( ) ) ;
storm : : dd : : Bdd < Type > reachableTransitionsMax = ( transitionMatrixBdd & & maxPlayer1Strategy & & maxPlayer2Strategy ) . existsAbstract ( game . getNondeterminismVariables ( ) ) ;
// Start with all reachable states as potential pivot states.
// storm::dd::Bdd<Type> pivotStates = storm::utility::dd::computeReachableStates(game.getInitialStates(), reachableTransitions, game.getRowVariables(), game.getColumnVariables());
storm : : dd : : Bdd < Type > pivotStates = storm : : utility : : dd : : computeReachableStates ( game . getInitialStates ( ) , reachableTransitionsMin , game . getRowVariables ( ) , game . getColumnVariables ( ) ) | |
storm : : utility : : dd : : computeReachableStates ( game . getInitialStates ( ) , reachableTransitionsMax , game . getRowVariables ( ) , game . getColumnVariables ( ) ) ;
// Require the pivot state to be a state with a lower bound strictly smaller than the upper bound.
pivotStates & = quantitativeResult . min . values . less ( quantitativeResult . max . values ) ;
@ -233,12 +262,13 @@ namespace storm {
constraint & = minPlayer2Strategy . exclusiveOr ( maxPlayer2Strategy ) ;
// Then restrict the pivot states by requiring existing and different player 2 choices.
pivotStates & = ( ( minPlayer1Strategy | | maxPlayer1Strategy ) & & constraint ) . existsAbstract ( game . getNondeterminismVariables ( ) ) ;
// pivotStates &= ((minPlayer1Strategy || maxPlayer1Strategy) && constraint).existsAbstract(game.getNondeterminismVariables());
pivotStates & = ( ( minPlayer1Strategy & & maxPlayer1Strategy ) & & constraint ) . existsAbstract ( game . getNondeterminismVariables ( ) ) ;
STORM_LOG_ASSERT ( ! pivotStates . isZero ( ) , " Unable to refine without pivot state candidates. " ) ;
// Now that we have the pivot state candidates, we need to pick one.
storm : : dd : : Bdd < Type > pivotState = pickPivotState < Type , ValueType > ( game . getInitialStates ( ) , reachableTransitions , game . getRowVariables ( ) , game . getColumnVariables ( ) , pivotStates , quantitativeResult ) ;
storm : : dd : : Bdd < Type > pivotState = pickPivotState < Type , ValueType > ( game . getInitialStates ( ) , reachableTransitionsMin , reachableTransitionsMax , game . getRowVariables ( ) , game . getColumnVariables ( ) , pivotStates , quantitativeResult ) ;
// Compute the lower and the upper choice for the pivot state.
std : : set < storm : : expressions : : Variable > variablesToAbstract = game . getNondeterminismVariables ( ) ;