@ -82,6 +82,105 @@ namespace storm {
return result ;
return result ;
}
}
template < typename ValueType >
std : : vector < ValueType > analyzeTrivialEpochModel ( OptimizationDirection dir , typename storm : : modelchecker : : multiobjective : : MultiDimensionalRewardUnfolding < ValueType , true > : : EpochModel & epochModel ) {
// Assert that the epoch model is indeed trivial
assert ( epochModel . epochMatrix . getEntryCount ( ) = = 0 ) ;
std : : vector < ValueType > epochResult ;
epochResult . reserve ( epochModel . epochInStates . getNumberOfSetBits ( ) ) ;
auto stepSolutionIt = epochModel . stepSolutions . begin ( ) ;
auto stepChoiceIt = epochModel . stepChoices . begin ( ) ;
for ( auto const & state : epochModel . epochInStates ) {
// Obtain the best choice for this state
ValueType bestValue ;
uint64_t lastChoice = epochModel . epochMatrix . getRowGroupIndices ( ) [ state + 1 ] ;
bool isFirstChoice = true ;
for ( uint64_t choice = epochModel . epochMatrix . getRowGroupIndices ( ) [ state ] ; choice < lastChoice ; + + choice ) {
while ( * stepChoiceIt < choice ) {
+ + stepChoiceIt ;
+ + stepSolutionIt ;
}
ValueType choiceValue = storm : : utility : : zero < ValueType > ( ) ;
if ( epochModel . objectiveRewardFilter . front ( ) . get ( choice ) ) {
choiceValue + = epochModel . objectiveRewards . front ( ) [ choice ] ;
}
if ( * stepChoiceIt = = choice ) {
choiceValue + = * stepSolutionIt ;
}
if ( isFirstChoice ) {
bestValue = std : : move ( choiceValue ) ;
isFirstChoice = false ;
} else {
if ( storm : : solver : : minimize ( dir ) ) {
if ( choiceValue < bestValue ) {
bestValue = std : : move ( choiceValue ) ;
}
} else {
if ( choiceValue > bestValue ) {
bestValue = std : : move ( choiceValue ) ;
}
}
}
}
// Insert the solution w.r.t. this choice
epochResult . push_back ( std : : move ( bestValue ) ) ;
}
return epochResult ;
}
template < typename ValueType >
std : : vector < ValueType > analyzeNonTrivialEpochModel ( OptimizationDirection dir , typename storm : : modelchecker : : multiobjective : : MultiDimensionalRewardUnfolding < ValueType , true > : : EpochModel & epochModel , std : : vector < ValueType > & x , std : : vector < ValueType > & b , std : : unique_ptr < storm : : solver : : MinMaxLinearEquationSolver < ValueType > > & minMaxSolver , storm : : solver : : MinMaxLinearEquationSolverFactory < ValueType > const & minMaxLinearEquationSolverFactory , ValueType const & precision , SolutionType const & type ) {
// Update some data for the case that the Matrix has changed
if ( epochModel . epochMatrixChanged ) {
x . assign ( epochModel . epochMatrix . getRowGroupCount ( ) , storm : : utility : : zero < ValueType > ( ) ) ;
minMaxSolver = minMaxLinearEquationSolverFactory . create ( epochModel . epochMatrix ) ;
minMaxSolver - > setHasUniqueSolution ( ) ;
minMaxSolver - > setPrecision ( precision ) ;
minMaxSolver - > setOptimizationDirection ( dir ) ;
minMaxSolver - > setCachingEnabled ( true ) ;
minMaxSolver - > setTrackScheduler ( true ) ;
auto req = minMaxSolver - > getRequirements ( dir ) ;
minMaxSolver - > setLowerBound ( storm : : utility : : zero < ValueType > ( ) ) ;
req . clearLowerBounds ( ) ;
if ( type = = SolutionType : : UntilProbabilities ) {
minMaxSolver - > setUpperBound ( storm : : utility : : one < ValueType > ( ) ) ;
req . clearUpperBounds ( ) ;
} else if ( type = = SolutionType : : ExpectedRewards ) {
// TODO
STORM_LOG_WARN_COND ( ! req . requiresUpperBounds ( ) , " Upper bounds for expected reward are not specified. " ) ;
}
STORM_LOG_THROW ( req . empty ( ) , storm : : exceptions : : UncheckedRequirementException , " At least one requirement was not checked. " ) ;
minMaxSolver - > setRequirementsChecked ( ) ;
} else {
auto choicesTmp = minMaxSolver - > getSchedulerChoices ( ) ;
minMaxSolver - > setInitialScheduler ( std : : move ( choicesTmp ) ) ;
}
// Prepare the right hand side of the equation system
b . assign ( epochModel . epochMatrix . getRowCount ( ) , storm : : utility : : zero < ValueType > ( ) ) ;
std : : vector < ValueType > const & objectiveValues = epochModel . objectiveRewards . front ( ) ;
for ( auto const & choice : epochModel . objectiveRewardFilter . front ( ) ) {
b [ choice ] = objectiveValues [ choice ] ;
}
auto stepSolutionIt = epochModel . stepSolutions . begin ( ) ;
for ( auto const & choice : epochModel . stepChoices ) {
b [ choice ] + = * stepSolutionIt ;
+ + stepSolutionIt ;
}
assert ( stepSolutionIt = = epochModel . stepSolutions . end ( ) ) ;
// Solve the minMax equation system
minMaxSolver - > solveEquations ( x , b ) ;
return storm : : utility : : vector : : filterVector ( x , epochModel . epochInStates ) ;
}
template < typename ValueType >
template < typename ValueType >
std : : map < storm : : storage : : sparse : : state_type , ValueType > SparseMdpPrctlHelper < ValueType > : : computeRewardBoundedValues ( SolutionType const & type , OptimizationDirection dir , storm : : modelchecker : : multiobjective : : MultiDimensionalRewardUnfolding < ValueType , true > & rewardUnfolding , storm : : storage : : BitVector const & initialStates , storm : : solver : : MinMaxLinearEquationSolverFactory < ValueType > const & minMaxLinearEquationSolverFactory ) {
std : : map < storm : : storage : : sparse : : state_type , ValueType > SparseMdpPrctlHelper < ValueType > : : computeRewardBoundedValues ( SolutionType const & type , OptimizationDirection dir , storm : : modelchecker : : multiobjective : : MultiDimensionalRewardUnfolding < ValueType , true > & rewardUnfolding , storm : : storage : : BitVector const & initialStates , storm : : solver : : MinMaxLinearEquationSolverFactory < ValueType > const & minMaxLinearEquationSolverFactory ) {
storm : : utility : : Stopwatch swAll ( true ) , swBuild , swCheck ;
storm : : utility : : Stopwatch swAll ( true ) , swBuild , swCheck ;
@ -92,14 +191,8 @@ namespace storm {
std : : vector < ValueType > x , b ;
std : : vector < ValueType > x , b ;
std : : unique_ptr < storm : : solver : : MinMaxLinearEquationSolver < ValueType > > minMaxSolver ;
std : : unique_ptr < storm : : solver : : MinMaxLinearEquationSolver < ValueType > > minMaxSolver ;
ValueType precision = storm : : utility : : convertNumber < ValueType > ( storm : : settings : : getModule < storm : : settings : : modules : : GeneralSettings > ( ) . getPrecision ( ) ) ;
uint64_t epochCount = 0 ;
for ( uint64_t dim = 0 ; dim < rewardUnfolding . getEpochManager ( ) . getDimensionCount ( ) ; + + dim ) {
epochCount + = rewardUnfolding . getEpochManager ( ) . getDimensionOfEpoch ( initEpoch , dim ) + 1 ;
}
if ( storm : : settings : : getModule < storm : : settings : : modules : : GeneralSettings > ( ) . isSoundSet ( ) ) {
precision = precision / storm : : utility : : convertNumber < ValueType > ( epochCount ) ;
}
ValueType precision = rewardUnfolding . getRequiredEpochModelPrecision ( initEpoch , storm : : utility : : convertNumber < ValueType > ( storm : : settings : : getModule < storm : : settings : : modules : : GeneralSettings > ( ) . getPrecision ( ) ) ) ;
storm : : utility : : ProgressMeasurement progress ( " epochs " ) ;
storm : : utility : : ProgressMeasurement progress ( " epochs " ) ;
progress . setMaxCount ( epochOrder . size ( ) ) ;
progress . setMaxCount ( epochOrder . size ( ) ) ;
progress . startNewMeasurement ( 0 ) ;
progress . startNewMeasurement ( 0 ) ;
@ -110,95 +203,9 @@ namespace storm {
swBuild . stop ( ) ; swCheck . start ( ) ;
swBuild . stop ( ) ; swCheck . start ( ) ;
// If the epoch matrix is empty we do not need to solve a linear equation system
// If the epoch matrix is empty we do not need to solve a linear equation system
if ( epochModel . epochMatrix . getEntryCount ( ) = = 0 ) {
if ( epochModel . epochMatrix . getEntryCount ( ) = = 0 ) {
std : : vector < ValueType > epochResult ;
epochResult . reserve ( epochModel . epochInStates . getNumberOfSetBits ( ) ) ;
auto stepSolutionIt = epochModel . stepSolutions . begin ( ) ;
auto stepChoiceIt = epochModel . stepChoices . begin ( ) ;
for ( auto const & state : epochModel . epochInStates ) {
// Obtain the best choice for this state
ValueType bestValue ;
uint64_t lastChoice = epochModel . epochMatrix . getRowGroupIndices ( ) [ state + 1 ] ;
bool isFirstChoice = true ;
for ( uint64_t choice = epochModel . epochMatrix . getRowGroupIndices ( ) [ state ] ; choice < lastChoice ; + + choice ) {
while ( * stepChoiceIt < choice ) {
+ + stepChoiceIt ;
+ + stepSolutionIt ;
}
ValueType choiceValue = storm : : utility : : zero < ValueType > ( ) ;
if ( epochModel . objectiveRewardFilter . front ( ) . get ( choice ) ) {
choiceValue + = epochModel . objectiveRewards . front ( ) [ choice ] ;
}
if ( * stepChoiceIt = = choice ) {
choiceValue + = * stepSolutionIt ;
}
if ( isFirstChoice ) {
bestValue = std : : move ( choiceValue ) ;
isFirstChoice = false ;
} else {
if ( storm : : solver : : minimize ( dir ) ) {
if ( choiceValue < bestValue ) {
bestValue = std : : move ( choiceValue ) ;
}
} else {
if ( choiceValue > bestValue ) {
bestValue = std : : move ( choiceValue ) ;
}
}
}
}
// Insert the solution w.r.t. this choice
epochResult . push_back ( std : : move ( bestValue ) ) ;
}
rewardUnfolding . setSolutionForCurrentEpoch ( std : : move ( epochResult ) ) ;
rewardUnfolding . setSolutionForCurrentEpoch ( analyzeTrivialEpochModel < ValueType > ( dir , epochModel ) ) ;
} else {
} else {
// Update some data for the case that the Matrix has changed
if ( epochModel . epochMatrixChanged ) {
x . assign ( epochModel . epochMatrix . getRowGroupCount ( ) , storm : : utility : : zero < ValueType > ( ) ) ;
minMaxSolver = minMaxLinearEquationSolverFactory . create ( epochModel . epochMatrix ) ;
minMaxSolver - > setHasUniqueSolution ( ) ;
minMaxSolver - > setPrecision ( precision ) ;
minMaxSolver - > setOptimizationDirection ( dir ) ;
minMaxSolver - > setCachingEnabled ( true ) ;
minMaxSolver - > setTrackScheduler ( true ) ;
auto req = minMaxSolver - > getRequirements ( dir ) ;
minMaxSolver - > setLowerBound ( storm : : utility : : zero < ValueType > ( ) ) ;
req . clearLowerBounds ( ) ;
if ( type = = SolutionType : : UntilProbabilities ) {
minMaxSolver - > setUpperBound ( storm : : utility : : one < ValueType > ( ) ) ;
req . clearUpperBounds ( ) ;
} else if ( type = = SolutionType : : ExpectedRewards ) {
// TODO
STORM_LOG_WARN_COND ( ! req . requiresUpperBounds ( ) , " Upper bounds for expected reward are not specified. " ) ;
}
STORM_LOG_THROW ( req . empty ( ) , storm : : exceptions : : UncheckedRequirementException , " At least one requirement was not checked. " ) ;
minMaxSolver - > setRequirementsChecked ( ) ;
} else {
auto choicesTmp = minMaxSolver - > getSchedulerChoices ( ) ;
minMaxSolver - > setInitialScheduler ( std : : move ( choicesTmp ) ) ;
}
// Prepare the right hand side of the equation system
b . assign ( epochModel . epochMatrix . getRowCount ( ) , storm : : utility : : zero < ValueType > ( ) ) ;
std : : vector < ValueType > const & objectiveValues = epochModel . objectiveRewards . front ( ) ;
for ( auto const & choice : epochModel . objectiveRewardFilter . front ( ) ) {
b [ choice ] = objectiveValues [ choice ] ;
}
auto stepSolutionIt = epochModel . stepSolutions . begin ( ) ;
for ( auto const & choice : epochModel . stepChoices ) {
b [ choice ] + = * stepSolutionIt ;
+ + stepSolutionIt ;
}
assert ( stepSolutionIt = = epochModel . stepSolutions . end ( ) ) ;
// Solve the minMax equation system
minMaxSolver - > solveEquations ( x , b ) ;
// Plug in the result into the reward unfolding
rewardUnfolding . setSolutionForCurrentEpoch ( storm : : utility : : vector : : filterVector ( x , epochModel . epochInStates ) ) ;
rewardUnfolding . setSolutionForCurrentEpoch ( analyzeNonTrivialEpochModel < ValueType > ( dir , epochModel , x , b , minMaxSolver , minMaxLinearEquationSolverFactory , precision , type ) ) ;
}
}
swCheck . stop ( ) ;
swCheck . stop ( ) ;
+ + numCheckedEpochs ;
+ + numCheckedEpochs ;