Browse Source

Computing upper reward bounds in hybrid dtmc checker

tempestpy_adaptions
TimQu 7 years ago
parent
commit
1174454ffb
  1. 39
      src/storm/modelchecker/prctl/helper/HybridDtmcPrctlHelper.cpp

39
src/storm/modelchecker/prctl/helper/HybridDtmcPrctlHelper.cpp

@ -14,11 +14,15 @@
#include "storm/models/symbolic/StandardRewardModel.h"
#include "storm/modelchecker/prctl/helper/DsMpiUpperRewardBoundsComputer.h"
#include "storm/modelchecker/results/SymbolicQualitativeCheckResult.h"
#include "storm/modelchecker/results/SymbolicQuantitativeCheckResult.h"
#include "storm/modelchecker/results/HybridQuantitativeCheckResult.h"
#include "storm/exceptions/InvalidPropertyException.h"
#include "storm/exceptions/NotSupportedException.h"
#include "storm/exceptions/UncheckedRequirementException.h"
namespace storm {
namespace modelchecker {
@ -194,6 +198,19 @@ namespace storm {
return std::unique_ptr<CheckResult>(new HybridQuantitativeCheckResult<DdType, ValueType>(model.getReachableStates(), model.getManager().getBddZero(), model.getManager().template getAddZero<ValueType>(), model.getReachableStates(), odd, x));
}
// This function computes an upper bound on the reachability rewards (see Baier et al, CAV'17).
template<typename ValueType>
inline std::vector<ValueType> computeUpperRewardBounds(storm::storage::SparseMatrix<ValueType> const& transitionMatrix, std::vector<ValueType> const& rewards, std::vector<ValueType> const& oneStepTargetProbabilities) {
DsMpiDtmcUpperRewardBoundsComputer<ValueType> dsmpi(transitionMatrix, rewards, oneStepTargetProbabilities);
std::vector<ValueType> bounds = dsmpi.computeUpperBounds();
return bounds;
}
template<>
inline std::vector<storm::RationalFunction> computeUpperRewardBounds(storm::storage::SparseMatrix<storm::RationalFunction> const& transitionMatrix, std::vector<storm::RationalFunction> const& rewards, std::vector<storm::RationalFunction> const& oneStepTargetProbabilities) {
STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "Computing upper reward bounds is not supported for rational functions.");
}
template<storm::dd::DdType DdType, typename ValueType>
std::unique_ptr<CheckResult> HybridDtmcPrctlHelper<DdType, ValueType>::computeReachabilityRewards(Environment const& env, storm::models::symbolic::Model<DdType, ValueType> const& model, storm::dd::Add<DdType, ValueType> const& transitionMatrix, RewardModelType const& rewardModel, storm::dd::Bdd<DdType> const& targetStates, bool qualitative, storm::solver::LinearEquationSolverFactory<ValueType> const& linearEquationSolverFactory) {
@ -228,6 +245,19 @@ namespace storm {
// Then compute the state reward vector to use in the computation.
storm::dd::Add<DdType, ValueType> subvector = rewardModel.getTotalRewardVector(maybeStatesAdd, submatrix, model.getColumnVariables());
// Check the requirements of a linear equation solver
auto req = linearEquationSolverFactory.getRequirements(env);
req.clearLowerBounds();
boost::optional<storm::dd::Add<DdType, ValueType>> oneStepTargetProbs;
if (req.requiresUpperBounds()) {
storm::dd::Add<DdType, ValueType> targetStatesAsColumn = targetStates.template toAdd<ValueType>();
targetStatesAsColumn = targetStatesAsColumn.swapVariables(model.getRowColumnMetaVariablePairs());
oneStepTargetProbs = submatrix * targetStatesAsColumn;
oneStepTargetProbs = oneStepTargetProbs->sumAbstract(model.getColumnVariables());
req.clearUpperBounds();
}
STORM_LOG_THROW(req.empty(), storm::exceptions::UncheckedRequirementException, "At least one requirement of the linear equation solver could not be matched.");
// Check whether we need to create an equation system.
bool convertToEquationSystem = linearEquationSolverFactory.getEquationProblemFormat(env) == storm::solver::LinearEquationSolverProblemFormat::EquationSystem;
@ -245,9 +275,18 @@ namespace storm {
storm::storage::SparseMatrix<ValueType> explicitSubmatrix = submatrix.toMatrix(odd, odd);
std::vector<ValueType> b = subvector.toVector(odd);
// Create the upper bounds vector if one was requested
boost::optional<std::vector<ValueType>> upperBounds;
if (oneStepTargetProbs) {
upperBounds = computeUpperRewardBounds(explicitSubmatrix, b, oneStepTargetProbs->toVector(odd));
}
// Now solve the resulting equation system.
std::unique_ptr<storm::solver::LinearEquationSolver<ValueType>> solver = linearEquationSolverFactory.create(env, std::move(explicitSubmatrix));
solver->setLowerBound(storm::utility::zero<ValueType>());
if (upperBounds) {
solver->setUpperBounds(std::move(upperBounds.get()));
}
solver->solveEquations(env, x, b);
// Return a hybrid check result that stores the numerical values explicitly.

Loading…
Cancel
Save