Browse Source

Changed statistics output a little. Optimized the case where the transition matrix of the epoch model is empty

main
TimQu 8 years ago
parent
commit
108e8e69e8
  1. 279
      src/storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.cpp
  2. 18
      src/storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.h
  3. 16
      src/storm/modelchecker/multiobjective/rewardbounded/MultiDimensionalRewardUnfolding.cpp
  4. 18
      src/storm/modelchecker/multiobjective/rewardbounded/MultiDimensionalRewardUnfolding.h

279
src/storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.cpp

@ -85,136 +85,200 @@ namespace storm {
template <class SparseMdpModelType>
void SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::computeEpochSolution(typename MultiDimensionalRewardUnfolding<ValueType, false>::Epoch const& epoch, std::vector<ValueType> const& weightVector, EpochCheckingData& cachedData) {
auto& epochModel = rewardUnfolding.setCurrentEpoch(epoch);
updateCachedData(epochModel, cachedData, weightVector);
++numCheckedEpochs;
swEqBuilding.start();
++numCheckedEpochs;
swEpochModelBuild.start();
auto& epochModel = rewardUnfolding.setCurrentEpoch(epoch);
swEpochModelBuild.stop();
swEpochModelAnalysis.start();
std::vector<typename MultiDimensionalRewardUnfolding<ValueType, false>::SolutionType> result;
result.reserve(epochModel.epochInStates.getNumberOfSetBits());
uint64_t solutionSize = this->objectives.size() + 1;
// Formulate a min-max equation system max(A*x+b)=x for the weighted sum of the objectives
swAux1.start();
assert(cachedData.bMinMax.capacity() >= epochModel.epochMatrix.getRowCount());
assert(cachedData.xMinMax.size() == epochModel.epochMatrix.getRowGroupCount());
cachedData.bMinMax.assign(epochModel.epochMatrix.getRowCount(), storm::utility::zero<ValueType>());
for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
ValueType weight = storm::solver::minimize(this->objectives[objIndex].formula->getOptimalityType()) ? -weightVector[objIndex] : weightVector[objIndex];
if (!storm::utility::isZero(weight)) {
std::vector<ValueType> const& objectiveReward = epochModel.objectiveRewards[objIndex];
for (auto const& choice : epochModel.objectiveRewardFilter[objIndex]) {
cachedData.bMinMax[choice] += weight * objectiveReward[choice];
// If the epoch matrix is empty we do not need to solve linear equation systems
if (epochModel.epochMatrix.getEntryCount() == 0) {
std::vector<ValueType> weights = weightVector;
for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
if (storm::solver::minimize(this->objectives[objIndex].formula->getOptimalityType())) {
weights[objIndex] *= -storm::utility::one<ValueType>();
}
}
}
auto stepSolutionIt = epochModel.stepSolutions.begin();
for (auto const& choice : epochModel.stepChoices) {
cachedData.bMinMax[choice] += stepSolutionIt->front();
++stepSolutionIt;
}
swAux1.stop();
// Invoke the min max solver
swEqBuilding.stop();
swMinMaxSolving.start();
cachedData.minMaxSolver->solveEquations(cachedData.xMinMax, cachedData.bMinMax);
swMinMaxSolving.stop();
swEqBuilding.start();
for (auto const& state : epochModel.epochInStates) {
result.emplace_back();
result.back().reserve(solutionSize);
result.back().push_back(cachedData.xMinMax[state]);
}
// Check whether the linear equation solver needs to be updated
auto const& choices = cachedData.minMaxSolver->getSchedulerChoices();
if (cachedData.schedulerChoices != choices) {
std::vector<uint64_t> choicesTmp = choices;
cachedData.minMaxSolver->setInitialScheduler(std::move(choicesTmp));
swAux2.start();
++numSchedChanges;
cachedData.schedulerChoices = choices;
storm::solver::GeneralLinearEquationSolverFactory<ValueType> linEqSolverFactory;
bool needEquationSystem = linEqSolverFactory.getEquationProblemFormat() == storm::solver::LinearEquationSolverProblemFormat::EquationSystem;
storm::storage::SparseMatrix<ValueType> subMatrix = epochModel.epochMatrix.selectRowsFromRowGroups(choices, needEquationSystem);
if (needEquationSystem) {
subMatrix.convertToEquationSystem();
}
cachedData.linEqSolver = linEqSolverFactory.create(std::move(subMatrix));
cachedData.linEqSolver->setCachingEnabled(true);
swAux2.stop();
}
// Formulate for each objective the linear equation system induced by the performed choices
swAux3.start();
assert(cachedData.bLinEq.size() == choices.size());
for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
auto const& obj = this->objectives[objIndex];
std::vector<ValueType> const& objectiveReward = epochModel.objectiveRewards[objIndex];
auto rowGroupIndexIt = epochModel.epochMatrix.getRowGroupIndices().begin();
auto choiceIt = choices.begin();
auto stepChoiceIt = epochModel.stepChoices.begin();
auto stepSolutionIt = epochModel.stepSolutions.begin();
std::vector<ValueType>& x = cachedData.xLinEq[objIndex];
auto xIt = x.begin();
for (auto& b_i : cachedData.bLinEq) {
uint64_t i = *rowGroupIndexIt + *choiceIt;
if (epochModel.objectiveRewardFilter[objIndex].get(i)) {
b_i = objectiveReward[i];
} else {
b_i = storm::utility::zero<ValueType>();
}
while (*stepChoiceIt < i) {
++stepChoiceIt;
++stepSolutionIt;
}
if (i == *stepChoiceIt) {
b_i += (*stepSolutionIt)[objIndex + 1];
++stepChoiceIt;
++stepSolutionIt;
auto stepChoiceIt = epochModel.stepChoices.begin();
for (auto const& state : epochModel.epochInStates) {
// Obtain the best choice for this state according to the weighted combination of objectives
ValueType bestValue;
uint64_t bestChoice = std::numeric_limits<uint64_t>::max();
auto bestChoiceStepSolutionIt = epochModel.stepSolutions.end();
uint64_t lastChoice = epochModel.epochMatrix.getRowGroupIndices()[state + 1];
bool firstChoice = true;
for (uint64_t choice = epochModel.epochMatrix.getRowGroupIndices()[state]; choice < lastChoice; ++choice) {
ValueType choiceValue = storm::utility::zero<ValueType>();
// Obtain the (weighted) objective rewards
for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
if (epochModel.objectiveRewardFilter[objIndex].get(choice)) {
choiceValue += weights[objIndex] * epochModel.objectiveRewards[objIndex][choice];
}
}
// Obtain the step solution if this is a step choice
while (*stepChoiceIt < choice) {
++stepChoiceIt;
++stepSolutionIt;
}
if (*stepChoiceIt == choice) {
choiceValue += stepSolutionIt->front();
// Check if this choice is better
if (firstChoice || choiceValue > bestValue) {
bestValue = std::move(choiceValue);
bestChoice = choice;
bestChoiceStepSolutionIt = stepSolutionIt;
}
} else if (firstChoice || choiceValue > bestValue) {
bestValue = std::move(choiceValue);
bestChoice = choice;
bestChoiceStepSolutionIt = epochModel.stepSolutions.end();
}
firstChoice = false;
}
// We can already set x_i correctly if row i is empty.
// Appearingly, some linear equation solvers struggle to converge otherwise.
if (epochModel.epochMatrix.getRow(i).getNumberOfEntries() == 0) {
*xIt = b_i;
// Insert the solution w.r.t. this choice
result.emplace_back();
result.back().reserve(solutionSize);
result.back().push_back(std::move(bestValue));
if (bestChoiceStepSolutionIt != epochModel.stepSolutions.end()) {
for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
if (epochModel.objectiveRewardFilter[objIndex].get(bestChoice)) {
result.back().push_back((epochModel.objectiveRewards[objIndex][bestChoice] + (*bestChoiceStepSolutionIt)[objIndex + 1]));
} else {
result.back().push_back((*bestChoiceStepSolutionIt)[objIndex + 1]);
}
}
} else {
for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
if (epochModel.objectiveRewardFilter[objIndex].get(bestChoice)) {
result.back().push_back((epochModel.objectiveRewards[objIndex][bestChoice]));
} else {
result.back().push_back(storm::utility::zero<ValueType>());
}
}
}
++xIt;
++rowGroupIndexIt;
++choiceIt;
}
assert(x.size() == choices.size());
auto req = cachedData.linEqSolver->getRequirements();
cachedData.linEqSolver->clearBounds();
if (obj.lowerResultBound) {
req.clearLowerBounds();
cachedData.linEqSolver->setLowerBound(*obj.lowerResultBound);
} else {
updateCachedData(epochModel, cachedData, weightVector);
// Formulate a min-max equation system max(A*x+b)=x for the weighted sum of the objectives
assert(cachedData.bMinMax.capacity() >= epochModel.epochMatrix.getRowCount());
assert(cachedData.xMinMax.size() == epochModel.epochMatrix.getRowGroupCount());
cachedData.bMinMax.assign(epochModel.epochMatrix.getRowCount(), storm::utility::zero<ValueType>());
for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
ValueType weight = storm::solver::minimize(this->objectives[objIndex].formula->getOptimalityType()) ? -weightVector[objIndex] : weightVector[objIndex];
if (!storm::utility::isZero(weight)) {
std::vector<ValueType> const& objectiveReward = epochModel.objectiveRewards[objIndex];
for (auto const& choice : epochModel.objectiveRewardFilter[objIndex]) {
cachedData.bMinMax[choice] += weight * objectiveReward[choice];
}
}
}
if (obj.upperResultBound) {
cachedData.linEqSolver->setUpperBound(*obj.upperResultBound);
req.clearUpperBounds();
auto stepSolutionIt = epochModel.stepSolutions.begin();
for (auto const& choice : epochModel.stepChoices) {
cachedData.bMinMax[choice] += stepSolutionIt->front();
++stepSolutionIt;
}
STORM_LOG_THROW(req.empty(), storm::exceptions::UncheckedRequirementException, "At least one requirement of the LinearEquationSolver was not met.");
swEqBuilding.stop();
swLinEqSolving.start();
cachedData.linEqSolver->solveEquations(x, cachedData.bLinEq);
swLinEqSolving.stop();
swEqBuilding.start();
auto resultIt = result.begin();
// Invoke the min max solver
cachedData.minMaxSolver->solveEquations(cachedData.xMinMax, cachedData.bMinMax);
for (auto const& state : epochModel.epochInStates) {
resultIt->push_back(x[state]);
++resultIt;
result.emplace_back();
result.back().reserve(solutionSize);
result.back().push_back(cachedData.xMinMax[state]);
}
// Check whether the linear equation solver needs to be updated
auto const& choices = cachedData.minMaxSolver->getSchedulerChoices();
if (cachedData.schedulerChoices != choices) {
std::vector<uint64_t> choicesTmp = choices;
cachedData.minMaxSolver->setInitialScheduler(std::move(choicesTmp));
++numSchedChanges;
cachedData.schedulerChoices = choices;
storm::solver::GeneralLinearEquationSolverFactory<ValueType> linEqSolverFactory;
bool needEquationSystem = linEqSolverFactory.getEquationProblemFormat() == storm::solver::LinearEquationSolverProblemFormat::EquationSystem;
storm::storage::SparseMatrix<ValueType> subMatrix = epochModel.epochMatrix.selectRowsFromRowGroups(choices, needEquationSystem);
if (needEquationSystem) {
subMatrix.convertToEquationSystem();
}
cachedData.linEqSolver = linEqSolverFactory.create(std::move(subMatrix));
cachedData.linEqSolver->setCachingEnabled(true);
}
// Formulate for each objective the linear equation system induced by the performed choices
assert(cachedData.bLinEq.size() == choices.size());
for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
auto const& obj = this->objectives[objIndex];
std::vector<ValueType> const& objectiveReward = epochModel.objectiveRewards[objIndex];
auto rowGroupIndexIt = epochModel.epochMatrix.getRowGroupIndices().begin();
auto choiceIt = choices.begin();
auto stepChoiceIt = epochModel.stepChoices.begin();
auto stepSolutionIt = epochModel.stepSolutions.begin();
std::vector<ValueType>& x = cachedData.xLinEq[objIndex];
auto xIt = x.begin();
for (auto& b_i : cachedData.bLinEq) {
uint64_t i = *rowGroupIndexIt + *choiceIt;
if (epochModel.objectiveRewardFilter[objIndex].get(i)) {
b_i = objectiveReward[i];
} else {
b_i = storm::utility::zero<ValueType>();
}
while (*stepChoiceIt < i) {
++stepChoiceIt;
++stepSolutionIt;
}
if (i == *stepChoiceIt) {
b_i += (*stepSolutionIt)[objIndex + 1];
++stepChoiceIt;
++stepSolutionIt;
}
// We can already set x_i correctly if row i is empty.
// Appearingly, some linear equation solvers struggle to converge otherwise.
if (epochModel.epochMatrix.getRow(i).getNumberOfEntries() == 0) {
*xIt = b_i;
}
++xIt;
++rowGroupIndexIt;
++choiceIt;
}
assert(x.size() == choices.size());
auto req = cachedData.linEqSolver->getRequirements();
cachedData.linEqSolver->clearBounds();
if (obj.lowerResultBound) {
req.clearLowerBounds();
cachedData.linEqSolver->setLowerBound(*obj.lowerResultBound);
}
if (obj.upperResultBound) {
cachedData.linEqSolver->setUpperBound(*obj.upperResultBound);
req.clearUpperBounds();
}
STORM_LOG_THROW(req.empty(), storm::exceptions::UncheckedRequirementException, "At least one requirement of the LinearEquationSolver was not met.");
cachedData.linEqSolver->solveEquations(x, cachedData.bLinEq);
auto resultIt = result.begin();
for (auto const& state : epochModel.epochInStates) {
resultIt->push_back(x[state]);
++resultIt;
}
}
}
swEqBuilding.stop();
swAux3.stop();
rewardUnfolding.setSolutionForCurrentEpoch(std::move(result));
swEpochModelAnalysis.stop();
}
template <class SparseMdpModelType>
void SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::updateCachedData(typename MultiDimensionalRewardUnfolding<ValueType, false>::EpochModel const& epochModel, EpochCheckingData& cachedData, std::vector<ValueType> const& weightVector) {
if (epochModel.epochMatrixChanged) {
swDataUpdate.start();
// Update the cached MinMaxSolver data
cachedData.bMinMax.resize(epochModel.epochMatrix.getRowCount());
@ -249,7 +313,6 @@ namespace storm {
for (auto& x_o : cachedData.xLinEq) {
x_o.assign(epochModel.epochMatrix.getRowGroupCount(), storm::utility::zero<ValueType>());
}
swDataUpdate.stop();
}
}

18
src/storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.h

@ -30,17 +30,13 @@ namespace storm {
virtual ~SparseMdpRewardBoundedPcaaWeightVectorChecker() {
swAll.stop();
std::cout << "WVC statistics: " << std::endl;
std::cout << " overall: " << swAll << " seconds." << std::endl;
std::cout << " overall Time: " << swAll << " seconds." << std::endl;
std::cout << "---------------------------------------------" << std::endl;
std::cout << " Sched changed " << numSchedChanges << "/" << numCheckedEpochs << " times." << std::endl;
std::cout << " dataUpdate: " << swDataUpdate << " seconds." << std::endl;
std::cout << " eqSysBuilding: " << swEqBuilding << " seconds." << std::endl;
std::cout << " MinMaxSolving: " << swMinMaxSolving << " seconds." << std::endl;
std::cout << " LinEqSolving: " << swLinEqSolving << " seconds." << std::endl;
std::cout << " Aux1StopWatch: " << swAux1 << " seconds." << std::endl;
std::cout << " Aux2StopWatch: " << swAux2 << " seconds." << std::endl;
std::cout << " Aux3StopWatch: " << swAux3 << " seconds." << std::endl;
std::cout << " #checked weight vectors:" << numChecks << "." << std::endl;
std::cout << " #checked epochs:" << numCheckedEpochs << "." << std::endl;
std::cout << "#Sched reused from prev. ep.: " << (numCheckedEpochs - numSchedChanges) << "." << std::endl;
std::cout << " Epoch Model building time: " << swEpochModelBuild << " seconds." << std::endl;
std::cout << " Epoch Model checking time: " << swEpochModelAnalysis << " seconds." << std::endl;
}
@ -81,7 +77,7 @@ namespace storm {
void updateCachedData(typename MultiDimensionalRewardUnfolding<ValueType, false>::EpochModel const& epochModel, EpochCheckingData& cachedData, std::vector<ValueType> const& weightVector);
storm::utility::Stopwatch swAll, swDataUpdate, swEqBuilding, swLinEqSolving, swMinMaxSolving, swAux1, swAux2, swAux3;
storm::utility::Stopwatch swAll, swEpochModelBuild, swEpochModelAnalysis;
uint64_t numSchedChanges, numCheckedEpochs, numChecks;
MultiDimensionalRewardUnfolding<ValueType, false> rewardUnfolding;

16
src/storm/modelchecker/multiobjective/rewardbounded/MultiDimensionalRewardUnfolding.cpp

@ -58,12 +58,10 @@ namespace storm {
maxSolutionsStored = 0;
swInit.start();
STORM_LOG_ASSERT(!SingleObjectiveMode || (this->objectives.size() == 1), "Enabled single objective mode but there are multiple objectives.");
std::vector<Epoch> epochSteps;
initializeObjectives(epochSteps);
initializeMemoryProduct(epochSteps);
swInit.stop();
}
template<typename ValueType, bool SingleObjectiveMode>
@ -291,7 +289,6 @@ namespace storm {
epochModel.epochMatrixChanged = false;
}
swSetEpoch.start();
bool containsLowerBoundedObjective = false;
for (auto const& dimension : dimensions) {
if (!dimension.isUpperBounded) {
@ -364,7 +361,6 @@ namespace storm {
assert(epochModel.stepChoices.getNumberOfSetBits() == epochModel.stepSolutions.size());
currentEpoch = epoch;
swSetEpoch.stop();
/*
std::cout << "Epoch model for epoch " << storm::utility::vector::toString(epoch) << std::endl;
std::cout << "Matrix: " << std::endl << epochModel.epochMatrix << std::endl;
@ -384,7 +380,6 @@ namespace storm {
void MultiDimensionalRewardUnfolding<ValueType, SingleObjectiveMode>::setCurrentEpochClass(Epoch const& epoch) {
EpochClass epochClass = epochManager.getEpochClass(epoch);
// std::cout << "Setting epoch class for epoch " << epochManager.toString(epoch) << std::endl;
swSetEpochClass.start();
auto productObjectiveRewards = productModel->computeObjectiveRewards(epochClass, objectives);
storm::storage::BitVector stepChoices(productModel->getProduct().getNumberOfChoices(), false);
@ -455,34 +450,25 @@ namespace storm {
epochModel.objectiveRewards.push_back(std::move(reducedModelObjRewards));
}
swAux4.start();
swAux1.start();
epochModel.epochInStates = storm::storage::BitVector(epochModel.epochMatrix.getRowGroupCount(), false);
for (auto const& productState : productInStates) {
STORM_LOG_ASSERT(ecElimResult.oldToNewStateMapping[productState] < epochModel.epochMatrix.getRowGroupCount(), "Selected product state does not exist in the epoch model.");
epochModel.epochInStates.set(ecElimResult.oldToNewStateMapping[productState], true);
}
swAux1.stop();
swAux2.start();
std::vector<uint64_t> toEpochModelInStatesMap(productModel->getProduct().getNumberOfStates(), std::numeric_limits<uint64_t>::max());
std::vector<uint64_t> epochModelStateToInStateMap = epochModel.epochInStates.getNumberOfSetBitsBeforeIndices();
for (auto const& productState : productInStates) {
toEpochModelInStatesMap[productState] = epochModelStateToInStateMap[ecElimResult.oldToNewStateMapping[productState]];
}
productStateToEpochModelInStateMap = std::make_shared<std::vector<uint64_t> const>(std::move(toEpochModelInStatesMap));
swAux2.stop();
swAux3.start();
epochModel.objectiveRewardFilter.clear();
for (auto const& objRewards : epochModel.objectiveRewards) {
epochModel.objectiveRewardFilter.push_back(storm::utility::vector::filterZero(objRewards));
epochModel.objectiveRewardFilter.back().complement();
}
swAux3.stop();
swAux4.stop();
swSetEpochClass.stop();
epochModelSizes.push_back(epochModel.epochMatrix.getRowGroupCount());
}
@ -544,7 +530,6 @@ namespace storm {
template<typename ValueType, bool SingleObjectiveMode>
void MultiDimensionalRewardUnfolding<ValueType, SingleObjectiveMode>::setSolutionForCurrentEpoch(std::vector<SolutionType>&& inStateSolutions) {
swInsertSol.start();
STORM_LOG_ASSERT(currentEpoch, "Tried to set a solution for the current epoch, but no epoch was specified before.");
STORM_LOG_ASSERT(inStateSolutions.size() == epochModel.epochInStates.getNumberOfSetBits(), "Invalid number of solutions.");
@ -575,7 +560,6 @@ namespace storm {
epochSolutions[currentEpoch.get()] = std::move(solution);
maxSolutionsStored = std::max((uint64_t) epochSolutions.size(), maxSolutionsStored);
swInsertSol.stop();
}

18
src/storm/modelchecker/multiobjective/rewardbounded/MultiDimensionalRewardUnfolding.h

@ -47,20 +47,10 @@ namespace storm {
MultiDimensionalRewardUnfolding(storm::models::sparse::Mdp<ValueType> const& model, std::shared_ptr<storm::logic::OperatorFormula const> objectiveFormula);
~MultiDimensionalRewardUnfolding() {
std::cout << "Unfolding statistics: " << std::endl;
std::cout << " init: " << swInit << " seconds." << std::endl;
std::cout << " setEpoch: " << swSetEpoch << " seconds." << std::endl;
std::cout << " setEpochClass: " << swSetEpochClass << " seconds." << std::endl;
std::cout << " findSolutions: " << swFindSol << " seconds." << std::endl;
std::cout << " insertSolutions: " << swInsertSol << " seconds." << std::endl;
std::cout << " aux1StopWatch: " << swAux1 << " seconds." << std::endl;
std::cout << " aux2StopWatch: " << swAux2 << " seconds." << std::endl;
std::cout << " aux3StopWatch: " << swAux3 << " seconds." << std::endl;
std::cout << " aux4StopWatch: " << swAux4 << " seconds." << std::endl;
std::cout << "---------------------------------------------" << std::endl;
std::cout << " Product size: " << productModel->getProduct().getNumberOfStates() << std::endl;
std::cout << "maxSolutionsStored: " << maxSolutionsStored << std::endl;
std::cout << " Epoch model sizes: ";
std::cout << "Implicit unfolding statistics: " << std::endl;
std::cout << " Memory Product size: " << productModel->getProduct().getNumberOfStates() << std::endl;
std::cout << " maxSolutionsStored: " << maxSolutionsStored << std::endl;
std::cout << "Occurring Epoch model sizes: ";
for (auto const& i : epochModelSizes) {
std::cout << i << " ";
}

Loading…
Cancel
Save