Browse Source

Preparation work for the implementation of the refinement procedure

tempestpy_adaptions
Alexander Bork 5 years ago
parent
commit
0facf4a572
  1. 20
      src/storm-pomdp-cli/storm-pomdp.cpp
  2. 169
      src/storm-pomdp/modelchecker/ApproximatePOMDPModelchecker.cpp
  3. 47
      src/storm-pomdp/modelchecker/ApproximatePOMDPModelchecker.h

20
src/storm-pomdp-cli/storm-pomdp.cpp

@ -197,15 +197,15 @@ int main(const int argc, const char** argv) {
STORM_LOG_ASSERT(!targetObservationSet.empty(), "The set of target observations is empty!");
storm::pomdp::modelchecker::ApproximatePOMDPModelchecker<double> checker = storm::pomdp::modelchecker::ApproximatePOMDPModelchecker<double>();
double overRes = storm::utility::one<double>();
double underRes = storm::utility::zero<double>();
auto overRes = storm::utility::one<double>();
auto underRes = storm::utility::zero<double>();
std::unique_ptr<storm::pomdp::modelchecker::POMDPCheckResult<double>> result;
//result = checker.refineReachabilityProbability(*pomdp, targetObservationSet,probFormula.getOptimalityType() == storm::OptimizationDirection::Minimize, pomdpSettings.getGridResolution(),1,10);
result = checker.computeReachabilityProbabilityOTF(*pomdp, targetObservationSet, probFormula.getOptimalityType() == storm::OptimizationDirection::Minimize,
result = checker.refineReachabilityProbability(*pomdp, targetObservationSet, probFormula.getOptimalityType() == storm::OptimizationDirection::Minimize,
pomdpSettings.getGridResolution(), pomdpSettings.getExplorationThreshold());
overRes = result->OverapproximationValue;
underRes = result->UnderapproximationValue;
//result = checker.computeReachabilityProbabilityOTF(*pomdp, targetObservationSet, probFormula.getOptimalityType() == storm::OptimizationDirection::Minimize, pomdpSettings.getGridResolution(), pomdpSettings.getExplorationThreshold());
overRes = result->overApproxValue;
underRes = result->underApproxValue;
if (overRes != underRes) {
STORM_PRINT("Overapproximation Result: " << overRes << std::endl)
STORM_PRINT("Underapproximation Result: " << underRes << std::endl)
@ -264,15 +264,15 @@ int main(const int argc, const char** argv) {
STORM_LOG_ASSERT(!targetObservationSet.empty(), "The set of target observations is empty!");
storm::pomdp::modelchecker::ApproximatePOMDPModelchecker<double> checker = storm::pomdp::modelchecker::ApproximatePOMDPModelchecker<double>();
double overRes = storm::utility::one<double>();
double underRes = storm::utility::zero<double>();
auto overRes = storm::utility::one<double>();
auto underRes = storm::utility::zero<double>();
std::unique_ptr<storm::pomdp::modelchecker::POMDPCheckResult<double>> result;
result = checker.computeReachabilityReward(*pomdp, targetObservationSet,
rewFormula.getOptimalityType() ==
storm::OptimizationDirection::Minimize,
pomdpSettings.getGridResolution());
overRes = result->OverapproximationValue;
underRes = result->UnderapproximationValue;
overRes = result->overApproxValue;
underRes = result->underApproxValue;
}
}

169
src/storm-pomdp/modelchecker/ApproximatePOMDPModelchecker.cpp

@ -30,31 +30,12 @@ namespace storm {
template<typename ValueType, typename RewardModelType>
std::unique_ptr<POMDPCheckResult<ValueType>>
ApproximatePOMDPModelchecker<ValueType, RewardModelType>::refineReachabilityProbability(storm::models::sparse::Pomdp<ValueType, RewardModelType> const &pomdp,
std::set<uint32_t> const &targetObservations, bool min,
uint64_t startingResolution, uint64_t stepSize, uint64_t maxNrOfRefinements) {
uint64_t currentResolution = startingResolution;
uint64_t currentRefinement = 0;
std::unique_ptr<POMDPCheckResult<ValueType>> res = std::make_unique<POMDPCheckResult<ValueType>>(
POMDPCheckResult<ValueType>{storm::utility::one<ValueType>(), storm::utility::zero<ValueType>()});
while (currentRefinement < maxNrOfRefinements && !cc.isEqual(storm::utility::zero<ValueType>(), res->OverapproximationValue - res->UnderapproximationValue)) {
STORM_PRINT("--------------------------------------------------------------" << std::endl)
STORM_PRINT("Refinement Step " << currentRefinement + 1 << " - Resolution " << currentResolution << std::endl)
STORM_PRINT("--------------------------------------------------------------" << std::endl)
res = computeReachabilityProbability(pomdp, targetObservations, min, currentResolution);
currentResolution += stepSize;
++currentRefinement;
}
STORM_PRINT("Procedure took " << currentRefinement << " refinement steps" << std::endl)
return res;
}
template<typename ValueType, typename RewardModelType>
std::unique_ptr<POMDPCheckResult<ValueType>>
ApproximatePOMDPModelchecker<ValueType, RewardModelType>::computeReachabilityOTF(storm::models::sparse::Pomdp<ValueType, RewardModelType> const &pomdp,
std::set<uint32_t> const &targetObservations, bool min, uint64_t gridResolution,
bool computeRewards, double explorationThreshold) {
//TODO For the prototypical implementation, I put the refinement loop here. I'll change this later on
double explorationThreshold) {
std::srand(time(NULL));
// Compute easy upper and lower bounds
storm::utility::Stopwatch underlyingWatch(true);
// Compute the results on the underlying MDP as a basic overapproximation
storm::models::sparse::StateLabeling underlyingMdpLabeling(pomdp.getStateLabeling());
underlyingMdpLabeling.addLabel("goal");
std::vector<uint64_t> goalStates;
@ -66,8 +47,7 @@ namespace storm {
storm::models::sparse::Mdp<ValueType, RewardModelType> underlyingMdp(pomdp.getTransitionMatrix(), underlyingMdpLabeling, pomdp.getRewardModels());
auto underlyingModel = std::static_pointer_cast<storm::models::sparse::Model<ValueType, RewardModelType>>(
std::make_shared<storm::models::sparse::Mdp<ValueType, RewardModelType>>(underlyingMdp));
std::string initPropString = computeRewards ? "R" : "P";
initPropString += min ? "min" : "max";
std::string initPropString = min ? "Pmin" : "Pmax";
initPropString += "=? [F \"goal\"]";
std::vector<storm::jani::Property> propVector = storm::api::parseProperties(initPropString);
std::shared_ptr<storm::logic::Formula const> underlyingProperty = storm::api::extractFormulasFromProperties(propVector).front();
@ -76,11 +56,11 @@ namespace storm {
std::unique_ptr<storm::modelchecker::CheckResult> underlyingRes(storm::api::verifyWithSparseEngine<ValueType>(underlyingModel, storm::api::createTask<ValueType>(underlyingProperty, false)));
STORM_LOG_ASSERT(underlyingRes, "Result not exist.");
underlyingRes->filter(storm::modelchecker::ExplicitQualitativeCheckResult(storm::storage::BitVector(underlyingMdp.getNumberOfStates(), true)));
auto mdpResultMap = underlyingRes->asExplicitQuantitativeCheckResult<ValueType>().getValueMap();
auto overApproxMap = underlyingRes->asExplicitQuantitativeCheckResult<ValueType>().getValueMap();
underlyingWatch.stop();
storm::utility::Stopwatch positionalWatch(true);
// we define some positional scheduler for the POMDP as an experimental lower bound
// we define some positional scheduler for the POMDP as a basic lower bound
storm::storage::Scheduler<ValueType> pomdpScheduler(pomdp.getNumberOfStates());
for (uint32_t obs = 0; obs < pomdp.getNrObservations(); ++obs) {
auto obsStates = pomdp.getStatesWithObservation(obs);
@ -97,20 +77,62 @@ namespace storm {
storm::api::verifyWithSparseEngine<ValueType>(underApproxModel, storm::api::createTask<ValueType>(underlyingProperty, false)));
STORM_LOG_ASSERT(underapproxRes, "Result not exist.");
underapproxRes->filter(storm::modelchecker::ExplicitQualitativeCheckResult(storm::storage::BitVector(underApproxModel->getNumberOfStates(), true)));
auto mdpUnderapproxResultMap = underapproxRes->asExplicitQuantitativeCheckResult<ValueType>().getValueMap();
auto underApproxMap = underapproxRes->asExplicitQuantitativeCheckResult<ValueType>().getValueMap();
positionalWatch.stop();
STORM_PRINT("Preprocessing Times: " << underlyingWatch << " / " << positionalWatch << std::endl)
// Initialize the resolution mapping. For now, we always give all beliefs with the same observation the same resolution.
// This can probably be improved (i.e. resolutions for single belief states)
STORM_PRINT("Initial Resolution: " << gridResolution << std::endl)
std::vector<uint64_t> observationResolutionVector(pomdp.getNrObservations(), gridResolution);
auto overRes = storm::utility::one<ValueType>();
auto underRes = storm::utility::zero<ValueType>();
uint64_t refinementCounter = 1;
std::unique_ptr<POMDPCheckResult<ValueType>> res = computeReachabilityOTF(pomdp, targetObservations, min, observationResolutionVector, false, explorationThreshold,
overApproxMap, underApproxMap);
// TODO the actual refinement
return res;
}
template<typename ValueType, typename RewardModelType>
std::unique_ptr<POMDPCheckResult<ValueType>>
ApproximatePOMDPModelchecker<ValueType, RewardModelType>::computeReachabilityOTF(storm::models::sparse::Pomdp<ValueType, RewardModelType> const &pomdp,
std::set<uint32_t> const &targetObservations, bool min,
std::vector<uint64_t> &observationResolutionVector,
bool computeRewards, double explorationThreshold,
boost::optional<std::map<uint64_t, ValueType>> overApproximationMap,
boost::optional<std::map<uint64_t, ValueType>> underApproximationMap) {
STORM_PRINT("Use On-The-Fly Grid Generation" << std::endl)
auto result = computeRefinementFirstStep(pomdp, targetObservations, min, observationResolutionVector, computeRewards, explorationThreshold, overApproximationMap,
underApproximationMap);
return std::make_unique<POMDPCheckResult<ValueType>>(POMDPCheckResult<ValueType>{result->overApproxValue, result->underApproxValue});
}
template<typename ValueType, typename RewardModelType>
std::unique_ptr<RefinementComponents<ValueType>>
ApproximatePOMDPModelchecker<ValueType, RewardModelType>::computeRefinementFirstStep(storm::models::sparse::Pomdp<ValueType, RewardModelType> const &pomdp,
std::set<uint32_t> const &targetObservations, bool min,
std::vector<uint64_t> &observationResolutionVector,
bool computeRewards, double explorationThreshold,
boost::optional<std::map<uint64_t, ValueType>> overApproximationMap,
boost::optional<std::map<uint64_t, ValueType>> underApproximationMap) {
bool boundMapsSet = overApproximationMap && underApproximationMap;
std::map<uint64_t, ValueType> overMap;
std::map<uint64_t, ValueType> underMap;
if (boundMapsSet) {
overMap = overApproximationMap.value();
underMap = underApproximationMap.value();
}
std::vector<storm::pomdp::Belief<ValueType>> beliefList;
std::vector<bool> beliefIsTarget;
std::vector<storm::pomdp::Belief<ValueType>> beliefGrid;
std::map<uint64_t, ValueType> result;
//Use caching to avoid multiple computation of the subsimplices and lambdas
std::map<uint64_t, std::vector<std::vector<ValueType>>> subSimplexCache;
std::map<uint64_t, std::vector<ValueType>> lambdaCache;
std::map<uint64_t, std::vector<uint64_t>> chosenActions;
std::map<uint64_t, uint64_t> beliefStateMap;
std::deque<uint64_t> beliefsToBeExpanded;
@ -128,10 +150,11 @@ namespace storm {
beliefList.push_back(initialBelief);
beliefIsTarget.push_back(targetObservations.find(initialBelief.observation) != targetObservations.end());
// These are the components to build the MDP from the grid TODO make a better stucture to allow for fast reverse lookups (state-->belief) as it is a bijective function (boost:bimap?)
std::map<uint64_t, uint64_t> beliefStateMap;
// These are the components to build the MDP from the grid TODO make a better structure to allow for fast reverse lookups (state-->belief) as it is a bijective function (boost:bimap?)
// Reserve states 0 and 1 as always sink/goal states
std::vector<std::vector<std::map<uint64_t, ValueType>>> mdpTransitions = {{{{0, storm::utility::one<ValueType>()}}},{{{1, storm::utility::one<ValueType>()}}}};
std::vector<std::vector<std::map<uint64_t, ValueType>>> mdpTransitions = {{{{0, storm::utility::one<ValueType>()}}},
{{{1, storm::utility::one<ValueType>()}}}};
// Hint vector for the MDP modelchecker (initialize with constant sink/goal values)
std::vector<ValueType> hintVector = {storm::utility::zero<ValueType>(), storm::utility::one<ValueType>()};
std::vector<uint64_t> targetStates = {1};
@ -145,7 +168,8 @@ namespace storm {
std::map<uint64_t, ValueType> weightedSumUnderMap;
// for the initial belief, add the triangulated initial states
std::pair<std::vector<std::vector<ValueType>>, std::vector<ValueType>> initTemp = computeSubSimplexAndLambdas(initialBelief.probabilities, gridResolution);
std::pair<std::vector<std::vector<ValueType>>, std::vector<ValueType>> initTemp = computeSubSimplexAndLambdas(initialBelief.probabilities,
observationResolutionVector[initialBelief.observation]);
std::vector<std::vector<ValueType>> initSubSimplex = initTemp.first;
std::vector<ValueType> initLambdas = initTemp.second;
if(cacheSubsimplices){
@ -161,15 +185,16 @@ namespace storm {
if (searchResult == uint64_t(-1) || (searchResult == 0 && !initInserted)) {
if (searchResult == 0) {
// the initial belief is on the grid itself
if (boundMapsSet) {
auto tempWeightedSumOver = storm::utility::zero<ValueType>();
auto tempWeightedSumUnder = storm::utility::zero<ValueType>();
for (uint64_t i = 0; i < initSubSimplex[j].size(); ++i) {
tempWeightedSumOver += initSubSimplex[j][i] * storm::utility::convertNumber<ValueType>(mdpResultMap[i]);
tempWeightedSumUnder += initSubSimplex[j][i] * storm::utility::convertNumber<ValueType>(mdpUnderapproxResultMap[i]);
tempWeightedSumOver += initSubSimplex[j][i] * storm::utility::convertNumber<ValueType>(overMap[i]);
tempWeightedSumUnder += initSubSimplex[j][i] * storm::utility::convertNumber<ValueType>(underMap[i]);
}
weightedSumOverMap[initialBelief.id] = tempWeightedSumOver;
weightedSumUnderMap[initialBelief.id] = tempWeightedSumUnder;
}
initInserted = true;
beliefGrid.push_back(initialBelief);
beliefsToBeExpanded.push_back(0);
@ -177,16 +202,17 @@ namespace storm {
: storm::utility::zero<ValueType>());
} else {
// if the triangulated belief was not found in the list, we place it in the grid and add it to the work list
if (boundMapsSet) {
auto tempWeightedSumOver = storm::utility::zero<ValueType>();
auto tempWeightedSumUnder = storm::utility::zero<ValueType>();
for (uint64_t i = 0; i < initSubSimplex[j].size(); ++i) {
tempWeightedSumOver += initSubSimplex[j][i] * storm::utility::convertNumber<ValueType>(mdpResultMap[i]);
tempWeightedSumUnder += initSubSimplex[j][i] * storm::utility::convertNumber<ValueType>(mdpUnderapproxResultMap[i]);
tempWeightedSumOver += initSubSimplex[j][i] * storm::utility::convertNumber<ValueType>(overMap[i]);
tempWeightedSumUnder += initSubSimplex[j][i] * storm::utility::convertNumber<ValueType>(underMap[i]);
}
weightedSumOverMap[nextId] = tempWeightedSumOver;
weightedSumUnderMap[nextId] = tempWeightedSumUnder;
}
storm::pomdp::Belief<ValueType> gridBelief = {nextId, initialBelief.observation, initSubSimplex[j]};
beliefList.push_back(gridBelief);
@ -225,16 +251,13 @@ namespace storm {
beliefsToBeExpanded.pop_front();
bool isTarget = beliefIsTarget[currId];
if(cc.isLess(weightedSumOverMap[currId] - weightedSumUnderMap[currId], storm::utility::convertNumber<ValueType>(explorationThreshold))){
result.emplace(std::make_pair(currId, computeRewards ? storm::utility::zero<ValueType>() : weightedSumOverMap[currId]));
mdpTransitions.push_back({{{1, weightedSumOverMap[currId]},{0, storm::utility::one<ValueType>() - weightedSumOverMap[currId]}}});
if (boundMapsSet && cc.isLess(weightedSumOverMap[currId] - weightedSumUnderMap[currId], storm::utility::convertNumber<ValueType>(explorationThreshold))) {
mdpTransitions.push_back({{{1, weightedSumOverMap[currId]}, {0, storm::utility::one<ValueType>() - weightedSumOverMap[currId]}}});
continue;
}
if (isTarget) {
// Depending on whether we compute rewards, we select the right initial result
result.emplace(std::make_pair(currId, computeRewards ? storm::utility::zero<ValueType>() : storm::utility::one<ValueType>()));
// MDP stuff
std::vector<std::map<uint64_t, ValueType>> transitionsInBelief;
targetStates.push_back(beliefStateMap[currId]);
@ -243,8 +266,6 @@ namespace storm {
transitionsInBelief.push_back(transitionInActionBelief);
mdpTransitions.push_back(transitionsInBelief);
} else {
result.emplace(std::make_pair(currId, storm::utility::zero<ValueType>()));
uint64_t representativeState = pomdp.getStatesWithObservation(beliefList[currId].observation).front();
uint64_t numChoices = pomdp.getNumberOfChoices(representativeState);
std::vector<std::map<uint32_t, ValueType>> observationProbabilitiesInAction(numChoices);
@ -271,7 +292,8 @@ namespace storm {
subSimplex = subSimplexCache[idNextBelief];
lambdas = lambdaCache[idNextBelief];
} else {
std::pair<std::vector<std::vector<ValueType>>, std::vector<ValueType>> temp = computeSubSimplexAndLambdas(beliefList[idNextBelief].probabilities, gridResolution);
std::pair<std::vector<std::vector<ValueType>>, std::vector<ValueType>> temp = computeSubSimplexAndLambdas(
beliefList[idNextBelief].probabilities, observationResolutionVector[beliefList[idNextBelief].observation]);
subSimplex = temp.first;
lambdas = temp.second;
if(cacheSubsimplices){
@ -287,25 +309,28 @@ namespace storm {
storm::pomdp::Belief<ValueType> gridBelief = {nextId, observation, subSimplex[j]};
beliefList.push_back(gridBelief);
beliefGrid.push_back(gridBelief);
beliefIsTarget.push_back(targetObservations.find(observation) != targetObservations.end());
// compute overapproximate value using MDP result map
if (boundMapsSet) {
auto tempWeightedSumOver = storm::utility::zero<ValueType>();
auto tempWeightedSumUnder = storm::utility::zero<ValueType>();
for (uint64_t i = 0; i < subSimplex[j].size(); ++i) {
tempWeightedSumOver += subSimplex[j][i] * storm::utility::convertNumber<ValueType>(mdpResultMap[i]);
tempWeightedSumUnder += subSimplex[j][i] * storm::utility::convertNumber<ValueType>(mdpUnderapproxResultMap[i]);
tempWeightedSumOver += subSimplex[j][i] * storm::utility::convertNumber<ValueType>(overMap[i]);
tempWeightedSumUnder += subSimplex[j][i] * storm::utility::convertNumber<ValueType>(underMap[i]);
}
beliefIsTarget.push_back(targetObservations.find(observation) != targetObservations.end());
if (cc.isEqual(tempWeightedSumOver, tempWeightedSumUnder)) {
hintVector.push_back(tempWeightedSumOver);
} else {
hintVector.push_back(storm::utility::zero<ValueType>());
hintVector.push_back(targetObservations.find(observation) != targetObservations.end() ? storm::utility::one<ValueType>()
: storm::utility::zero<ValueType>());
}
beliefsToBeExpanded.push_back(nextId);
weightedSumOverMap[nextId] = tempWeightedSumOver;
weightedSumUnderMap[nextId] = tempWeightedSumUnder;
} else {
hintVector.push_back(targetObservations.find(observation) != targetObservations.end() ? storm::utility::one<ValueType>()
: storm::utility::zero<ValueType>());
}
beliefsToBeExpanded.push_back(nextId);
beliefStateMap[nextId] = mdpStateId;
transitionInActionBelief[mdpStateId] = iter->second * lambdas[j];
++nextId;
@ -343,11 +368,8 @@ namespace storm {
}
expansionTimer.stop();
STORM_PRINT("Grid size: " << beliefGrid.size() << std::endl)
STORM_PRINT("#Believes in List: " << beliefList.size() << std::endl)
STORM_PRINT("Belief space expansion took " << expansionTimer << std::endl)
//auto overApprox = overApproximationValueIteration(pomdp, beliefList, beliefGrid, beliefIsTarget, observationProbabilities, nextBelieves, beliefActionRewards, subSimplexCache, lambdaCache,result, chosenActions, gridResolution, min, computeRewards);
storm::models::sparse::StateLabeling mdpLabeling(mdpTransitions.size());
mdpLabeling.addLabel("init");
mdpLabeling.addLabel("target");
@ -376,9 +398,6 @@ namespace storm {
auto model = std::make_shared<storm::models::sparse::Mdp<ValueType, RewardModelType>>(overApproxMdp);
auto modelPtr = std::static_pointer_cast<storm::models::sparse::Model<ValueType, RewardModelType>>(model);
std::vector<std::string> parameterNames;
storm::api::exportSparseModelAsDrn(modelPtr, "rewardTest", parameterNames);
std::string propertyString = computeRewards ? "R" : "P";
propertyString += min ? "min" : "max";
propertyString += "=? [F \"target\"]";
@ -394,24 +413,22 @@ namespace storm {
overApproxTimer.stop();
STORM_LOG_ASSERT(res, "Result not exist.");
res->filter(storm::modelchecker::ExplicitQualitativeCheckResult(storm::storage::BitVector(overApproxMdp.getNumberOfStates(), true)));
auto resultMap = res->asExplicitQuantitativeCheckResult<ValueType>().getValueMap();
auto overApprox = resultMap[beliefStateMap[initialBelief.id]];
/* storm::utility::Stopwatch underApproxTimer(true);
ValueType underApprox = computeUnderapproximationWithMDP(pomdp, beliefList, beliefIsTarget, targetObservations, observationProbabilities, nextBelieves,
result, chosenActions, gridResolution, initialBelief.id, min, computeRewards);
underApproxTimer.stop();*/
auto overApproxResultMap = res->asExplicitQuantitativeCheckResult<ValueType>().getValueMap();
auto overApprox = overApproxResultMap[beliefStateMap[initialBelief.id]];
STORM_PRINT("Time Overapproximation: " << overApproxTimer << std::endl)
auto underApprox = storm::utility::zero<ValueType>();
auto underApprox = weightedSumUnderMap[initialBelief.id];
STORM_PRINT("Over-Approximation Result: " << overApprox << std::endl);
STORM_PRINT("Under-Approximation Result: " << underApprox << std::endl);
std::map<uint64_t, ValueType> differences;
for(auto const &entry : weightedSumUnderMap){
differences[beliefStateMap[entry.first]] = resultMap[beliefStateMap[entry.first]] - weightedSumUnderMap[entry.first];
// Transfer the underapproximation results from the belief id space to the MDP id space
std::map<uint64_t, ValueType> underApproxResultMap;
for (auto const &belief : beliefGrid) {
underApproxResultMap[beliefStateMap[belief.id]] = weightedSumUnderMap[belief.id];
}
return std::make_unique<POMDPCheckResult<ValueType>>(POMDPCheckResult<ValueType>{overApprox, underApprox});
return std::make_unique<RefinementComponents<ValueType>>(
RefinementComponents<ValueType>{modelPtr, overApprox, underApprox, overApproxResultMap, underApproxResultMap, beliefList, beliefIsTarget, beliefStateMap});
}
template<typename ValueType, typename RewardModelType>
@ -536,7 +553,8 @@ namespace storm {
ApproximatePOMDPModelchecker<ValueType, RewardModelType>::computeReachabilityRewardOTF(storm::models::sparse::Pomdp<ValueType, RewardModelType> const &pomdp,
std::set<uint32_t> const &targetObservations, bool min,
uint64_t gridResolution) {
return computeReachabilityOTF(pomdp, targetObservations, min, gridResolution, true, 0);
std::vector<uint64_t> observationResolutionVector(pomdp.getNrObservations(), gridResolution);
return computeReachabilityOTF(pomdp, targetObservations, min, observationResolutionVector, true, 0);
}
template<typename ValueType, typename RewardModelType>
@ -544,7 +562,8 @@ namespace storm {
ApproximatePOMDPModelchecker<ValueType, RewardModelType>::computeReachabilityProbabilityOTF(storm::models::sparse::Pomdp<ValueType, RewardModelType> const &pomdp,
std::set<uint32_t> const &targetObservations, bool min,
uint64_t gridResolution, double explorationThreshold) {
return computeReachabilityOTF(pomdp, targetObservations, min, gridResolution, false, explorationThreshold);
std::vector<uint64_t> observationResolutionVector(pomdp.getNrObservations(), gridResolution);
return computeReachabilityOTF(pomdp, targetObservations, min, observationResolutionVector, false, explorationThreshold);
}
template<typename ValueType, typename RewardModelType>

47
src/storm-pomdp/modelchecker/ApproximatePOMDPModelchecker.h

@ -11,8 +11,24 @@ namespace storm {
namespace modelchecker {
template<class ValueType>
struct POMDPCheckResult {
ValueType OverapproximationValue;
ValueType UnderapproximationValue;
ValueType overApproxValue;
ValueType underApproxValue;
};
/**
* Struct containing information which is supposed to be persistent over multiple refinement steps
*
*/
template<class ValueType, typename RewardModelType = models::sparse::StandardRewardModel<ValueType>>
struct RefinementComponents {
std::shared_ptr<storm::models::sparse::Model<ValueType, RewardModelType>> overApproxModelPtr;
ValueType overApproxValue;
ValueType underApproxValue;
std::map<uint64_t, ValueType> &overApproxMap;
std::map<uint64_t, ValueType> &underApproxMap;
std::vector<storm::pomdp::Belief<ValueType>> &beliefList;
std::vector<bool> &beliefIsTarget;
std::map<uint64_t, uint64_t> &beliefStateMap;
};
template<class ValueType, typename RewardModelType = models::sparse::StandardRewardModel<ValueType>>
@ -21,9 +37,8 @@ namespace storm {
explicit ApproximatePOMDPModelchecker();
std::unique_ptr<POMDPCheckResult<ValueType>>
refineReachabilityProbability(storm::models::sparse::Pomdp<ValueType, RewardModelType> const &pomdp,
std::set<uint32_t> const &targetObservations, bool min,
uint64_t startingResolution, uint64_t stepSize, uint64_t maxNrOfRefinements);
refineReachabilityProbability(storm::models::sparse::Pomdp<ValueType, RewardModelType> const &pomdp, std::set<uint32_t> const &targetObservations, bool min,
uint64_t gridResolution, double explorationThreshold);
std::unique_ptr<POMDPCheckResult<ValueType>>
computeReachabilityProbabilityOTF(storm::models::sparse::Pomdp<ValueType, RewardModelType> const &pomdp,
@ -45,6 +60,24 @@ namespace storm {
uint64_t gridResolution);
private:
/**
*
* @param pomdp
* @param targetObservations
* @param min
* @param observationResolutionVector
* @param computeRewards
* @param explorationThreshold
* @param overApproximationMap
* @param underApproximationMap
* @return
*/
std::unique_ptr<RefinementComponents<ValueType>>
computeRefinementFirstStep(storm::models::sparse::Pomdp<ValueType, RewardModelType> const &pomdp,
std::set<uint32_t> const &targetObservations, bool min, std::vector<uint64_t> &observationResolutionVector,
bool computeRewards, double explorationThreshold, boost::optional<std::map<uint64_t, ValueType>> overApproximationMap = boost::none,
boost::optional<std::map<uint64_t, ValueType>> underApproximationMap = boost::none);
/**
*
* @param pomdp
@ -57,7 +90,9 @@ namespace storm {
std::unique_ptr<POMDPCheckResult<ValueType>>
computeReachabilityOTF(storm::models::sparse::Pomdp<ValueType, RewardModelType> const &pomdp,
std::set<uint32_t> const &targetObservations, bool min,
uint64_t gridResolution, bool computeRewards, double explorationThreshold);
std::vector<uint64_t> &observationResolutionVector, bool computeRewards, double explorationThreshold,
boost::optional<std::map<uint64_t, ValueType>> overApproximationMap = boost::none,
boost::optional<std::map<uint64_t, ValueType>> underApproximationMap = boost::none);
/**
*

Loading…
Cancel
Save