@ -30,31 +30,12 @@ namespace storm {
template < typename ValueType , typename RewardModelType >
template < typename ValueType , typename RewardModelType >
std : : unique_ptr < POMDPCheckResult < ValueType > >
std : : unique_ptr < POMDPCheckResult < ValueType > >
ApproximatePOMDPModelchecker < ValueType , RewardModelType > : : refineReachabilityProbability ( storm : : models : : sparse : : Pomdp < ValueType , RewardModelType > const & pomdp ,
ApproximatePOMDPModelchecker < ValueType , RewardModelType > : : refineReachabilityProbability ( storm : : models : : sparse : : Pomdp < ValueType , RewardModelType > const & pomdp ,
std : : set < uint32_t > const & targetObservations , bool min ,
uint64_t startingResolution , uint64_t stepSize , uint64_t maxNrOfRefinements ) {
uint64_t currentResolution = startingResolution ;
uint64_t currentRefinement = 0 ;
std : : unique_ptr < POMDPCheckResult < ValueType > > res = std : : make_unique < POMDPCheckResult < ValueType > > (
POMDPCheckResult < ValueType > { storm : : utility : : one < ValueType > ( ) , storm : : utility : : zero < ValueType > ( ) } ) ;
while ( currentRefinement < maxNrOfRefinements & & ! cc . isEqual ( storm : : utility : : zero < ValueType > ( ) , res - > OverapproximationValue - res - > UnderapproximationValue ) ) {
STORM_PRINT ( " -------------------------------------------------------------- " < < std : : endl )
STORM_PRINT ( " Refinement Step " < < currentRefinement + 1 < < " - Resolution " < < currentResolution < < std : : endl )
STORM_PRINT ( " -------------------------------------------------------------- " < < std : : endl )
res = computeReachabilityProbability ( pomdp , targetObservations , min , currentResolution ) ;
currentResolution + = stepSize ;
+ + currentRefinement ;
}
STORM_PRINT ( " Procedure took " < < currentRefinement < < " refinement steps " < < std : : endl )
return res ;
}
template < typename ValueType , typename RewardModelType >
std : : unique_ptr < POMDPCheckResult < ValueType > >
ApproximatePOMDPModelchecker < ValueType , RewardModelType > : : computeReachabilityOTF ( storm : : models : : sparse : : Pomdp < ValueType , RewardModelType > const & pomdp ,
std : : set < uint32_t > const & targetObservations , bool min , uint64_t gridResolution ,
std : : set < uint32_t > const & targetObservations , bool min , uint64_t gridResolution ,
bool computeRewards , double explorationThreshold ) {
//TODO For the prototypical implementation, I put the refinement loop here. I'll change this later on
double explorationThreshold ) {
std : : srand ( time ( NULL ) ) ;
// Compute easy upper and lower bounds
storm : : utility : : Stopwatch underlyingWatch ( true ) ;
storm : : utility : : Stopwatch underlyingWatch ( true ) ;
// Compute the results on the underlying MDP as a basic overapproximation
storm : : models : : sparse : : StateLabeling underlyingMdpLabeling ( pomdp . getStateLabeling ( ) ) ;
storm : : models : : sparse : : StateLabeling underlyingMdpLabeling ( pomdp . getStateLabeling ( ) ) ;
underlyingMdpLabeling . addLabel ( " goal " ) ;
underlyingMdpLabeling . addLabel ( " goal " ) ;
std : : vector < uint64_t > goalStates ;
std : : vector < uint64_t > goalStates ;
@ -66,8 +47,7 @@ namespace storm {
storm : : models : : sparse : : Mdp < ValueType , RewardModelType > underlyingMdp ( pomdp . getTransitionMatrix ( ) , underlyingMdpLabeling , pomdp . getRewardModels ( ) ) ;
storm : : models : : sparse : : Mdp < ValueType , RewardModelType > underlyingMdp ( pomdp . getTransitionMatrix ( ) , underlyingMdpLabeling , pomdp . getRewardModels ( ) ) ;
auto underlyingModel = std : : static_pointer_cast < storm : : models : : sparse : : Model < ValueType , RewardModelType > > (
auto underlyingModel = std : : static_pointer_cast < storm : : models : : sparse : : Model < ValueType , RewardModelType > > (
std : : make_shared < storm : : models : : sparse : : Mdp < ValueType , RewardModelType > > ( underlyingMdp ) ) ;
std : : make_shared < storm : : models : : sparse : : Mdp < ValueType , RewardModelType > > ( underlyingMdp ) ) ;
std : : string initPropString = computeRewards ? " R " : " P " ;
initPropString + = min ? " min " : " max " ;
std : : string initPropString = min ? " Pmin " : " Pmax " ;
initPropString + = " =? [F \" goal \" ] " ;
initPropString + = " =? [F \" goal \" ] " ;
std : : vector < storm : : jani : : Property > propVector = storm : : api : : parseProperties ( initPropString ) ;
std : : vector < storm : : jani : : Property > propVector = storm : : api : : parseProperties ( initPropString ) ;
std : : shared_ptr < storm : : logic : : Formula const > underlyingProperty = storm : : api : : extractFormulasFromProperties ( propVector ) . front ( ) ;
std : : shared_ptr < storm : : logic : : Formula const > underlyingProperty = storm : : api : : extractFormulasFromProperties ( propVector ) . front ( ) ;
@ -76,11 +56,11 @@ namespace storm {
std : : unique_ptr < storm : : modelchecker : : CheckResult > underlyingRes ( storm : : api : : verifyWithSparseEngine < ValueType > ( underlyingModel , storm : : api : : createTask < ValueType > ( underlyingProperty , false ) ) ) ;
std : : unique_ptr < storm : : modelchecker : : CheckResult > underlyingRes ( storm : : api : : verifyWithSparseEngine < ValueType > ( underlyingModel , storm : : api : : createTask < ValueType > ( underlyingProperty , false ) ) ) ;
STORM_LOG_ASSERT ( underlyingRes , " Result not exist. " ) ;
STORM_LOG_ASSERT ( underlyingRes , " Result not exist. " ) ;
underlyingRes - > filter ( storm : : modelchecker : : ExplicitQualitativeCheckResult ( storm : : storage : : BitVector ( underlyingMdp . getNumberOfStates ( ) , true ) ) ) ;
underlyingRes - > filter ( storm : : modelchecker : : ExplicitQualitativeCheckResult ( storm : : storage : : BitVector ( underlyingMdp . getNumberOfStates ( ) , true ) ) ) ;
auto mdpResult Map = underlyingRes - > asExplicitQuantitativeCheckResult < ValueType > ( ) . getValueMap ( ) ;
auto overApprox Map = underlyingRes - > asExplicitQuantitativeCheckResult < ValueType > ( ) . getValueMap ( ) ;
underlyingWatch . stop ( ) ;
underlyingWatch . stop ( ) ;
storm : : utility : : Stopwatch positionalWatch ( true ) ;
storm : : utility : : Stopwatch positionalWatch ( true ) ;
// we define some positional scheduler for the POMDP as an experimental lower bound
// we define some positional scheduler for the POMDP as a basic lower bound
storm : : storage : : Scheduler < ValueType > pomdpScheduler ( pomdp . getNumberOfStates ( ) ) ;
storm : : storage : : Scheduler < ValueType > pomdpScheduler ( pomdp . getNumberOfStates ( ) ) ;
for ( uint32_t obs = 0 ; obs < pomdp . getNrObservations ( ) ; + + obs ) {
for ( uint32_t obs = 0 ; obs < pomdp . getNrObservations ( ) ; + + obs ) {
auto obsStates = pomdp . getStatesWithObservation ( obs ) ;
auto obsStates = pomdp . getStatesWithObservation ( obs ) ;
@ -97,20 +77,62 @@ namespace storm {
storm : : api : : verifyWithSparseEngine < ValueType > ( underApproxModel , storm : : api : : createTask < ValueType > ( underlyingProperty , false ) ) ) ;
storm : : api : : verifyWithSparseEngine < ValueType > ( underApproxModel , storm : : api : : createTask < ValueType > ( underlyingProperty , false ) ) ) ;
STORM_LOG_ASSERT ( underapproxRes , " Result not exist. " ) ;
STORM_LOG_ASSERT ( underapproxRes , " Result not exist. " ) ;
underapproxRes - > filter ( storm : : modelchecker : : ExplicitQualitativeCheckResult ( storm : : storage : : BitVector ( underApproxModel - > getNumberOfStates ( ) , true ) ) ) ;
underapproxRes - > filter ( storm : : modelchecker : : ExplicitQualitativeCheckResult ( storm : : storage : : BitVector ( underApproxModel - > getNumberOfStates ( ) , true ) ) ) ;
auto mdpUnderapproxResult Map = underapproxRes - > asExplicitQuantitativeCheckResult < ValueType > ( ) . getValueMap ( ) ;
auto underApprox Map = underapproxRes - > asExplicitQuantitativeCheckResult < ValueType > ( ) . getValueMap ( ) ;
positionalWatch . stop ( ) ;
positionalWatch . stop ( ) ;
STORM_PRINT ( " Preprocessing Times: " < < underlyingWatch < < " / " < < positionalWatch < < std : : endl )
STORM_PRINT ( " Preprocessing Times: " < < underlyingWatch < < " / " < < positionalWatch < < std : : endl )
// Initialize the resolution mapping. For now, we always give all beliefs with the same observation the same resolution.
// This can probably be improved (i.e. resolutions for single belief states)
STORM_PRINT ( " Initial Resolution: " < < gridResolution < < std : : endl )
std : : vector < uint64_t > observationResolutionVector ( pomdp . getNrObservations ( ) , gridResolution ) ;
auto overRes = storm : : utility : : one < ValueType > ( ) ;
auto underRes = storm : : utility : : zero < ValueType > ( ) ;
uint64_t refinementCounter = 1 ;
std : : unique_ptr < POMDPCheckResult < ValueType > > res = computeReachabilityOTF ( pomdp , targetObservations , min , observationResolutionVector , false , explorationThreshold ,
overApproxMap , underApproxMap ) ;
// TODO the actual refinement
return res ;
}
template < typename ValueType , typename RewardModelType >
std : : unique_ptr < POMDPCheckResult < ValueType > >
ApproximatePOMDPModelchecker < ValueType , RewardModelType > : : computeReachabilityOTF ( storm : : models : : sparse : : Pomdp < ValueType , RewardModelType > const & pomdp ,
std : : set < uint32_t > const & targetObservations , bool min ,
std : : vector < uint64_t > & observationResolutionVector ,
bool computeRewards , double explorationThreshold ,
boost : : optional < std : : map < uint64_t , ValueType > > overApproximationMap ,
boost : : optional < std : : map < uint64_t , ValueType > > underApproximationMap ) {
STORM_PRINT ( " Use On-The-Fly Grid Generation " < < std : : endl )
STORM_PRINT ( " Use On-The-Fly Grid Generation " < < std : : endl )
auto result = computeRefinementFirstStep ( pomdp , targetObservations , min , observationResolutionVector , computeRewards , explorationThreshold , overApproximationMap ,
underApproximationMap ) ;
return std : : make_unique < POMDPCheckResult < ValueType > > ( POMDPCheckResult < ValueType > { result - > overApproxValue , result - > underApproxValue } ) ;
}
template < typename ValueType , typename RewardModelType >
std : : unique_ptr < RefinementComponents < ValueType > >
ApproximatePOMDPModelchecker < ValueType , RewardModelType > : : computeRefinementFirstStep ( storm : : models : : sparse : : Pomdp < ValueType , RewardModelType > const & pomdp ,
std : : set < uint32_t > const & targetObservations , bool min ,
std : : vector < uint64_t > & observationResolutionVector ,
bool computeRewards , double explorationThreshold ,
boost : : optional < std : : map < uint64_t , ValueType > > overApproximationMap ,
boost : : optional < std : : map < uint64_t , ValueType > > underApproximationMap ) {
bool boundMapsSet = overApproximationMap & & underApproximationMap ;
std : : map < uint64_t , ValueType > overMap ;
std : : map < uint64_t , ValueType > underMap ;
if ( boundMapsSet ) {
overMap = overApproximationMap . value ( ) ;
underMap = underApproximationMap . value ( ) ;
}
std : : vector < storm : : pomdp : : Belief < ValueType > > beliefList ;
std : : vector < storm : : pomdp : : Belief < ValueType > > beliefList ;
std : : vector < bool > beliefIsTarget ;
std : : vector < bool > beliefIsTarget ;
std : : vector < storm : : pomdp : : Belief < ValueType > > beliefGrid ;
std : : vector < storm : : pomdp : : Belief < ValueType > > beliefGrid ;
std : : map < uint64_t , ValueType > result ;
//Use caching to avoid multiple computation of the subsimplices and lambdas
//Use caching to avoid multiple computation of the subsimplices and lambdas
std : : map < uint64_t , std : : vector < std : : vector < ValueType > > > subSimplexCache ;
std : : map < uint64_t , std : : vector < std : : vector < ValueType > > > subSimplexCache ;
std : : map < uint64_t , std : : vector < ValueType > > lambdaCache ;
std : : map < uint64_t , std : : vector < ValueType > > lambdaCache ;
std : : map < uint64_t , std : : vector < uint64_t > > chosenActions ;
std : : map < uint64_t , uint64_t > beliefStateMap ;
std : : deque < uint64_t > beliefsToBeExpanded ;
std : : deque < uint64_t > beliefsToBeExpanded ;
@ -128,10 +150,11 @@ namespace storm {
beliefList . push_back ( initialBelief ) ;
beliefList . push_back ( initialBelief ) ;
beliefIsTarget . push_back ( targetObservations . find ( initialBelief . observation ) ! = targetObservations . end ( ) ) ;
beliefIsTarget . push_back ( targetObservations . find ( initialBelief . observation ) ! = targetObservations . end ( ) ) ;
// These are the components to build the MDP from the grid TODO make a better stucture to allow for fast reverse lookups (state-->belief) as it is a bijective function (boost:bimap?)
std : : map < uint64_t , uint64_t > beliefStateMap ;
// These are the components to build the MDP from the grid TODO make a better str ucture to allow for fast reverse lookups (state-->belief) as it is a bijective function (boost:bimap?)
// Reserve states 0 and 1 as always sink/goal states
// Reserve states 0 and 1 as always sink/goal states
std : : vector < std : : vector < std : : map < uint64_t , ValueType > > > mdpTransitions = { { { { 0 , storm : : utility : : one < ValueType > ( ) } } } , { { { 1 , storm : : utility : : one < ValueType > ( ) } } } } ;
std : : vector < std : : vector < std : : map < uint64_t , ValueType > > > mdpTransitions = { { { { 0 , storm : : utility : : one < ValueType > ( ) } } } ,
{ { { 1 , storm : : utility : : one < ValueType > ( ) } } } } ;
// Hint vector for the MDP modelchecker (initialize with constant sink/goal values)
// Hint vector for the MDP modelchecker (initialize with constant sink/goal values)
std : : vector < ValueType > hintVector = { storm : : utility : : zero < ValueType > ( ) , storm : : utility : : one < ValueType > ( ) } ;
std : : vector < ValueType > hintVector = { storm : : utility : : zero < ValueType > ( ) , storm : : utility : : one < ValueType > ( ) } ;
std : : vector < uint64_t > targetStates = { 1 } ;
std : : vector < uint64_t > targetStates = { 1 } ;
@ -145,7 +168,8 @@ namespace storm {
std : : map < uint64_t , ValueType > weightedSumUnderMap ;
std : : map < uint64_t , ValueType > weightedSumUnderMap ;
// for the initial belief, add the triangulated initial states
// for the initial belief, add the triangulated initial states
std : : pair < std : : vector < std : : vector < ValueType > > , std : : vector < ValueType > > initTemp = computeSubSimplexAndLambdas ( initialBelief . probabilities , gridResolution ) ;
std : : pair < std : : vector < std : : vector < ValueType > > , std : : vector < ValueType > > initTemp = computeSubSimplexAndLambdas ( initialBelief . probabilities ,
observationResolutionVector [ initialBelief . observation ] ) ;
std : : vector < std : : vector < ValueType > > initSubSimplex = initTemp . first ;
std : : vector < std : : vector < ValueType > > initSubSimplex = initTemp . first ;
std : : vector < ValueType > initLambdas = initTemp . second ;
std : : vector < ValueType > initLambdas = initTemp . second ;
if ( cacheSubsimplices ) {
if ( cacheSubsimplices ) {
@ -161,15 +185,16 @@ namespace storm {
if ( searchResult = = uint64_t ( - 1 ) | | ( searchResult = = 0 & & ! initInserted ) ) {
if ( searchResult = = uint64_t ( - 1 ) | | ( searchResult = = 0 & & ! initInserted ) ) {
if ( searchResult = = 0 ) {
if ( searchResult = = 0 ) {
// the initial belief is on the grid itself
// the initial belief is on the grid itself
if ( boundMapsSet ) {
auto tempWeightedSumOver = storm : : utility : : zero < ValueType > ( ) ;
auto tempWeightedSumOver = storm : : utility : : zero < ValueType > ( ) ;
auto tempWeightedSumUnder = storm : : utility : : zero < ValueType > ( ) ;
auto tempWeightedSumUnder = storm : : utility : : zero < ValueType > ( ) ;
for ( uint64_t i = 0 ; i < initSubSimplex [ j ] . size ( ) ; + + i ) {
for ( uint64_t i = 0 ; i < initSubSimplex [ j ] . size ( ) ; + + i ) {
tempWeightedSumOver + = initSubSimplex [ j ] [ i ] * storm : : utility : : convertNumber < ValueType > ( mdpResult Map[ i ] ) ;
tempWeightedSumUnder + = initSubSimplex [ j ] [ i ] * storm : : utility : : convertNumber < ValueType > ( mdpUnderapproxResult Map[ i ] ) ;
tempWeightedSumOver + = initSubSimplex [ j ] [ i ] * storm : : utility : : convertNumber < ValueType > ( over Map[ i ] ) ;
tempWeightedSumUnder + = initSubSimplex [ j ] [ i ] * storm : : utility : : convertNumber < ValueType > ( under Map[ i ] ) ;
}
}
weightedSumOverMap [ initialBelief . id ] = tempWeightedSumOver ;
weightedSumOverMap [ initialBelief . id ] = tempWeightedSumOver ;
weightedSumUnderMap [ initialBelief . id ] = tempWeightedSumUnder ;
weightedSumUnderMap [ initialBelief . id ] = tempWeightedSumUnder ;
}
initInserted = true ;
initInserted = true ;
beliefGrid . push_back ( initialBelief ) ;
beliefGrid . push_back ( initialBelief ) ;
beliefsToBeExpanded . push_back ( 0 ) ;
beliefsToBeExpanded . push_back ( 0 ) ;
@ -177,16 +202,17 @@ namespace storm {
: storm : : utility : : zero < ValueType > ( ) ) ;
: storm : : utility : : zero < ValueType > ( ) ) ;
} else {
} else {
// if the triangulated belief was not found in the list, we place it in the grid and add it to the work list
// if the triangulated belief was not found in the list, we place it in the grid and add it to the work list
if ( boundMapsSet ) {
auto tempWeightedSumOver = storm : : utility : : zero < ValueType > ( ) ;
auto tempWeightedSumOver = storm : : utility : : zero < ValueType > ( ) ;
auto tempWeightedSumUnder = storm : : utility : : zero < ValueType > ( ) ;
auto tempWeightedSumUnder = storm : : utility : : zero < ValueType > ( ) ;
for ( uint64_t i = 0 ; i < initSubSimplex [ j ] . size ( ) ; + + i ) {
for ( uint64_t i = 0 ; i < initSubSimplex [ j ] . size ( ) ; + + i ) {
tempWeightedSumOver + = initSubSimplex [ j ] [ i ] * storm : : utility : : convertNumber < ValueType > ( mdpResult Map[ i ] ) ;
tempWeightedSumUnder + = initSubSimplex [ j ] [ i ] * storm : : utility : : convertNumber < ValueType > ( mdpUnderapproxResult Map[ i ] ) ;
tempWeightedSumOver + = initSubSimplex [ j ] [ i ] * storm : : utility : : convertNumber < ValueType > ( over Map[ i ] ) ;
tempWeightedSumUnder + = initSubSimplex [ j ] [ i ] * storm : : utility : : convertNumber < ValueType > ( under Map[ i ] ) ;
}
}
weightedSumOverMap [ nextId ] = tempWeightedSumOver ;
weightedSumOverMap [ nextId ] = tempWeightedSumOver ;
weightedSumUnderMap [ nextId ] = tempWeightedSumUnder ;
weightedSumUnderMap [ nextId ] = tempWeightedSumUnder ;
}
storm : : pomdp : : Belief < ValueType > gridBelief = { nextId , initialBelief . observation , initSubSimplex [ j ] } ;
storm : : pomdp : : Belief < ValueType > gridBelief = { nextId , initialBelief . observation , initSubSimplex [ j ] } ;
beliefList . push_back ( gridBelief ) ;
beliefList . push_back ( gridBelief ) ;
@ -225,16 +251,13 @@ namespace storm {
beliefsToBeExpanded . pop_front ( ) ;
beliefsToBeExpanded . pop_front ( ) ;
bool isTarget = beliefIsTarget [ currId ] ;
bool isTarget = beliefIsTarget [ currId ] ;
if ( cc . isLess ( weightedSumOverMap [ currId ] - weightedSumUnderMap [ currId ] , storm : : utility : : convertNumber < ValueType > ( explorationThreshold ) ) ) {
result . emplace ( std : : make_pair ( currId , computeRewards ? storm : : utility : : zero < ValueType > ( ) : weightedSumOverMap [ currId ] ) ) ;
mdpTransitions . push_back ( { { { 1 , weightedSumOverMap [ currId ] } , { 0 , storm : : utility : : one < ValueType > ( ) - weightedSumOverMap [ currId ] } } } ) ;
if ( boundMapsSet & & cc . isLess ( weightedSumOverMap [ currId ] - weightedSumUnderMap [ currId ] , storm : : utility : : convertNumber < ValueType > ( explorationThreshold ) ) ) {
mdpTransitions . push_back ( { { { 1 , weightedSumOverMap [ currId ] } , { 0 , storm : : utility : : one < ValueType > ( ) - weightedSumOverMap [ currId ] } } } ) ;
continue ;
continue ;
}
}
if ( isTarget ) {
if ( isTarget ) {
// Depending on whether we compute rewards, we select the right initial result
// Depending on whether we compute rewards, we select the right initial result
result . emplace ( std : : make_pair ( currId , computeRewards ? storm : : utility : : zero < ValueType > ( ) : storm : : utility : : one < ValueType > ( ) ) ) ;
// MDP stuff
// MDP stuff
std : : vector < std : : map < uint64_t , ValueType > > transitionsInBelief ;
std : : vector < std : : map < uint64_t , ValueType > > transitionsInBelief ;
targetStates . push_back ( beliefStateMap [ currId ] ) ;
targetStates . push_back ( beliefStateMap [ currId ] ) ;
@ -243,8 +266,6 @@ namespace storm {
transitionsInBelief . push_back ( transitionInActionBelief ) ;
transitionsInBelief . push_back ( transitionInActionBelief ) ;
mdpTransitions . push_back ( transitionsInBelief ) ;
mdpTransitions . push_back ( transitionsInBelief ) ;
} else {
} else {
result . emplace ( std : : make_pair ( currId , storm : : utility : : zero < ValueType > ( ) ) ) ;
uint64_t representativeState = pomdp . getStatesWithObservation ( beliefList [ currId ] . observation ) . front ( ) ;
uint64_t representativeState = pomdp . getStatesWithObservation ( beliefList [ currId ] . observation ) . front ( ) ;
uint64_t numChoices = pomdp . getNumberOfChoices ( representativeState ) ;
uint64_t numChoices = pomdp . getNumberOfChoices ( representativeState ) ;
std : : vector < std : : map < uint32_t , ValueType > > observationProbabilitiesInAction ( numChoices ) ;
std : : vector < std : : map < uint32_t , ValueType > > observationProbabilitiesInAction ( numChoices ) ;
@ -271,7 +292,8 @@ namespace storm {
subSimplex = subSimplexCache [ idNextBelief ] ;
subSimplex = subSimplexCache [ idNextBelief ] ;
lambdas = lambdaCache [ idNextBelief ] ;
lambdas = lambdaCache [ idNextBelief ] ;
} else {
} else {
std : : pair < std : : vector < std : : vector < ValueType > > , std : : vector < ValueType > > temp = computeSubSimplexAndLambdas ( beliefList [ idNextBelief ] . probabilities , gridResolution ) ;
std : : pair < std : : vector < std : : vector < ValueType > > , std : : vector < ValueType > > temp = computeSubSimplexAndLambdas (
beliefList [ idNextBelief ] . probabilities , observationResolutionVector [ beliefList [ idNextBelief ] . observation ] ) ;
subSimplex = temp . first ;
subSimplex = temp . first ;
lambdas = temp . second ;
lambdas = temp . second ;
if ( cacheSubsimplices ) {
if ( cacheSubsimplices ) {
@ -287,25 +309,28 @@ namespace storm {
storm : : pomdp : : Belief < ValueType > gridBelief = { nextId , observation , subSimplex [ j ] } ;
storm : : pomdp : : Belief < ValueType > gridBelief = { nextId , observation , subSimplex [ j ] } ;
beliefList . push_back ( gridBelief ) ;
beliefList . push_back ( gridBelief ) ;
beliefGrid . push_back ( gridBelief ) ;
beliefGrid . push_back ( gridBelief ) ;
beliefIsTarget . push_back ( targetObservations . find ( observation ) ! = targetObservations . end ( ) ) ;
// compute overapproximate value using MDP result map
// compute overapproximate value using MDP result map
if ( boundMapsSet ) {
auto tempWeightedSumOver = storm : : utility : : zero < ValueType > ( ) ;
auto tempWeightedSumOver = storm : : utility : : zero < ValueType > ( ) ;
auto tempWeightedSumUnder = storm : : utility : : zero < ValueType > ( ) ;
auto tempWeightedSumUnder = storm : : utility : : zero < ValueType > ( ) ;
for ( uint64_t i = 0 ; i < subSimplex [ j ] . size ( ) ; + + i ) {
for ( uint64_t i = 0 ; i < subSimplex [ j ] . size ( ) ; + + i ) {
tempWeightedSumOver + = subSimplex [ j ] [ i ] * storm : : utility : : convertNumber < ValueType > ( mdpResult Map[ i ] ) ;
tempWeightedSumUnder + = subSimplex [ j ] [ i ] * storm : : utility : : convertNumber < ValueType > ( mdpUnderapproxResult Map[ i ] ) ;
tempWeightedSumOver + = subSimplex [ j ] [ i ] * storm : : utility : : convertNumber < ValueType > ( over Map[ i ] ) ;
tempWeightedSumUnder + = subSimplex [ j ] [ i ] * storm : : utility : : convertNumber < ValueType > ( under Map[ i ] ) ;
}
}
beliefIsTarget . push_back ( targetObservations . find ( observation ) ! = targetObservations . end ( ) ) ;
if ( cc . isEqual ( tempWeightedSumOver , tempWeightedSumUnder ) ) {
if ( cc . isEqual ( tempWeightedSumOver , tempWeightedSumUnder ) ) {
hintVector . push_back ( tempWeightedSumOver ) ;
hintVector . push_back ( tempWeightedSumOver ) ;
} else {
} else {
hintVector . push_back ( storm : : utility : : zero < ValueType > ( ) ) ;
hintVector . push_back ( targetObservations . find ( observation ) ! = targetObservations . end ( ) ? storm : : utility : : one < ValueType > ( )
: storm : : utility : : zero < ValueType > ( ) ) ;
}
}
beliefsToBeExpanded . push_back ( nextId ) ;
weightedSumOverMap [ nextId ] = tempWeightedSumOver ;
weightedSumOverMap [ nextId ] = tempWeightedSumOver ;
weightedSumUnderMap [ nextId ] = tempWeightedSumUnder ;
weightedSumUnderMap [ nextId ] = tempWeightedSumUnder ;
} else {
hintVector . push_back ( targetObservations . find ( observation ) ! = targetObservations . end ( ) ? storm : : utility : : one < ValueType > ( )
: storm : : utility : : zero < ValueType > ( ) ) ;
}
beliefsToBeExpanded . push_back ( nextId ) ;
beliefStateMap [ nextId ] = mdpStateId ;
beliefStateMap [ nextId ] = mdpStateId ;
transitionInActionBelief [ mdpStateId ] = iter - > second * lambdas [ j ] ;
transitionInActionBelief [ mdpStateId ] = iter - > second * lambdas [ j ] ;
+ + nextId ;
+ + nextId ;
@ -343,11 +368,8 @@ namespace storm {
}
}
expansionTimer . stop ( ) ;
expansionTimer . stop ( ) ;
STORM_PRINT ( " Grid size: " < < beliefGrid . size ( ) < < std : : endl )
STORM_PRINT ( " Grid size: " < < beliefGrid . size ( ) < < std : : endl )
STORM_PRINT ( " #Believes in List: " < < beliefList . size ( ) < < std : : endl )
STORM_PRINT ( " Belief space expansion took " < < expansionTimer < < std : : endl )
STORM_PRINT ( " Belief space expansion took " < < expansionTimer < < std : : endl )
//auto overApprox = overApproximationValueIteration(pomdp, beliefList, beliefGrid, beliefIsTarget, observationProbabilities, nextBelieves, beliefActionRewards, subSimplexCache, lambdaCache,result, chosenActions, gridResolution, min, computeRewards);
storm : : models : : sparse : : StateLabeling mdpLabeling ( mdpTransitions . size ( ) ) ;
storm : : models : : sparse : : StateLabeling mdpLabeling ( mdpTransitions . size ( ) ) ;
mdpLabeling . addLabel ( " init " ) ;
mdpLabeling . addLabel ( " init " ) ;
mdpLabeling . addLabel ( " target " ) ;
mdpLabeling . addLabel ( " target " ) ;
@ -376,9 +398,6 @@ namespace storm {
auto model = std : : make_shared < storm : : models : : sparse : : Mdp < ValueType , RewardModelType > > ( overApproxMdp ) ;
auto model = std : : make_shared < storm : : models : : sparse : : Mdp < ValueType , RewardModelType > > ( overApproxMdp ) ;
auto modelPtr = std : : static_pointer_cast < storm : : models : : sparse : : Model < ValueType , RewardModelType > > ( model ) ;
auto modelPtr = std : : static_pointer_cast < storm : : models : : sparse : : Model < ValueType , RewardModelType > > ( model ) ;
std : : vector < std : : string > parameterNames ;
storm : : api : : exportSparseModelAsDrn ( modelPtr , " rewardTest " , parameterNames ) ;
std : : string propertyString = computeRewards ? " R " : " P " ;
std : : string propertyString = computeRewards ? " R " : " P " ;
propertyString + = min ? " min " : " max " ;
propertyString + = min ? " min " : " max " ;
propertyString + = " =? [F \" target \" ] " ;
propertyString + = " =? [F \" target \" ] " ;
@ -394,24 +413,22 @@ namespace storm {
overApproxTimer . stop ( ) ;
overApproxTimer . stop ( ) ;
STORM_LOG_ASSERT ( res , " Result not exist. " ) ;
STORM_LOG_ASSERT ( res , " Result not exist. " ) ;
res - > filter ( storm : : modelchecker : : ExplicitQualitativeCheckResult ( storm : : storage : : BitVector ( overApproxMdp . getNumberOfStates ( ) , true ) ) ) ;
res - > filter ( storm : : modelchecker : : ExplicitQualitativeCheckResult ( storm : : storage : : BitVector ( overApproxMdp . getNumberOfStates ( ) , true ) ) ) ;
auto resultMap = res - > asExplicitQuantitativeCheckResult < ValueType > ( ) . getValueMap ( ) ;
auto overApprox = resultMap [ beliefStateMap [ initialBelief . id ] ] ;
/* storm::utility::Stopwatch underApproxTimer(true);
ValueType underApprox = computeUnderapproximationWithMDP ( pomdp , beliefList , beliefIsTarget , targetObservations , observationProbabilities , nextBelieves ,
result , chosenActions , gridResolution , initialBelief . id , min , computeRewards ) ;
underApproxTimer . stop ( ) ; */
auto overApproxResultMap = res - > asExplicitQuantitativeCheckResult < ValueType > ( ) . getValueMap ( ) ;
auto overApprox = overApproxResultMap [ beliefStateMap [ initialBelief . id ] ] ;
STORM_PRINT ( " Time Overapproximation: " < < overApproxTimer < < std : : endl )
STORM_PRINT ( " Time Overapproximation: " < < overApproxTimer < < std : : endl )
auto underApprox = storm : : utility : : zero < ValueType > ( ) ;
auto underApprox = weightedSumUnderMap [ initialBelief . id ] ;
STORM_PRINT ( " Over-Approximation Result: " < < overApprox < < std : : endl ) ;
STORM_PRINT ( " Over-Approximation Result: " < < overApprox < < std : : endl ) ;
STORM_PRINT ( " Under-Approximation Result: " < < underApprox < < std : : endl ) ;
STORM_PRINT ( " Under-Approximation Result: " < < underApprox < < std : : endl ) ;
std : : map < uint64_t , ValueType > differences ;
for ( auto const & entry : weightedSumUnderMap ) {
differences [ beliefStateMap [ entry . first ] ] = resultMap [ beliefStateMap [ entry . first ] ] - weightedSumUnderMap [ entry . first ] ;
// Transfer the underapproximation results from the belief id space to the MDP id space
std : : map < uint64_t , ValueType > underApproxResultMap ;
for ( auto const & belief : beliefGrid ) {
underApproxResultMap [ beliefStateMap [ belief . id ] ] = weightedSumUnderMap [ belief . id ] ;
}
}
return std : : make_unique < POMDPCheckResult < ValueType > > ( POMDPCheckResult < ValueType > { overApprox , underApprox } ) ;
return std : : make_unique < RefinementComponents < ValueType > > (
RefinementComponents < ValueType > { modelPtr , overApprox , underApprox , overApproxResultMap , underApproxResultMap , beliefList , beliefIsTarget , beliefStateMap } ) ;
}
}
template < typename ValueType , typename RewardModelType >
template < typename ValueType , typename RewardModelType >
@ -536,7 +553,8 @@ namespace storm {
ApproximatePOMDPModelchecker < ValueType , RewardModelType > : : computeReachabilityRewardOTF ( storm : : models : : sparse : : Pomdp < ValueType , RewardModelType > const & pomdp ,
ApproximatePOMDPModelchecker < ValueType , RewardModelType > : : computeReachabilityRewardOTF ( storm : : models : : sparse : : Pomdp < ValueType , RewardModelType > const & pomdp ,
std : : set < uint32_t > const & targetObservations , bool min ,
std : : set < uint32_t > const & targetObservations , bool min ,
uint64_t gridResolution ) {
uint64_t gridResolution ) {
return computeReachabilityOTF ( pomdp , targetObservations , min , gridResolution , true , 0 ) ;
std : : vector < uint64_t > observationResolutionVector ( pomdp . getNrObservations ( ) , gridResolution ) ;
return computeReachabilityOTF ( pomdp , targetObservations , min , observationResolutionVector , true , 0 ) ;
}
}
template < typename ValueType , typename RewardModelType >
template < typename ValueType , typename RewardModelType >
@ -544,7 +562,8 @@ namespace storm {
ApproximatePOMDPModelchecker < ValueType , RewardModelType > : : computeReachabilityProbabilityOTF ( storm : : models : : sparse : : Pomdp < ValueType , RewardModelType > const & pomdp ,
ApproximatePOMDPModelchecker < ValueType , RewardModelType > : : computeReachabilityProbabilityOTF ( storm : : models : : sparse : : Pomdp < ValueType , RewardModelType > const & pomdp ,
std : : set < uint32_t > const & targetObservations , bool min ,
std : : set < uint32_t > const & targetObservations , bool min ,
uint64_t gridResolution , double explorationThreshold ) {
uint64_t gridResolution , double explorationThreshold ) {
return computeReachabilityOTF ( pomdp , targetObservations , min , gridResolution , false , explorationThreshold ) ;
std : : vector < uint64_t > observationResolutionVector ( pomdp . getNrObservations ( ) , gridResolution ) ;
return computeReachabilityOTF ( pomdp , targetObservations , min , observationResolutionVector , false , explorationThreshold ) ;
}
}
template < typename ValueType , typename RewardModelType >
template < typename ValueType , typename RewardModelType >