Browse Source

Correctly handled reward bounded objectives in multi-objective preprocessing

main
TimQu 8 years ago
parent
commit
0e88d711e8
  1. 4
      src/storm/modelchecker/multiobjective/Objective.h
  2. 11
      src/storm/modelchecker/multiobjective/SparseMultiObjectivePreprocessor.cpp
  3. 4
      src/storm/modelchecker/multiobjective/pcaa/SparseMaPcaaWeightVectorChecker.cpp
  4. 28
      src/storm/modelchecker/multiobjective/pcaa/SparseMdpPcaaWeightVectorChecker.cpp
  5. 27
      src/storm/modelchecker/multiobjective/pcaa/SparseMdpPcaaWeightVectorChecker.h

4
src/storm/modelchecker/multiobjective/Objective.h

@ -5,6 +5,7 @@
#include "storm/logic/Formula.h"
#include "storm/logic/Bound.h"
#include "storm/logic/TimeBound.h"
#include "storm/logic/TimeBoundType.h"
#include "storm/solver/OptimizationDirection.h"
namespace storm {
@ -28,8 +29,9 @@ namespace storm {
// if originalFormula does ot specifies one, the direction is derived from the bound.
storm::solver::OptimizationDirection optimizationDirection;
// Lower and upper time/step bouds
// Lower and upper time/step/reward bouds
boost::optional<storm::logic::TimeBound> lowerTimeBound, upperTimeBound;
boost::optional<storm::logic::TimeBoundReference> timeBoundReference;
boost::optional<ValueType> lowerResultBound, upperResultBound;

11
src/storm/modelchecker/multiobjective/SparseMultiObjectivePreprocessor.cpp

@ -1,7 +1,7 @@
#include "storm/modelchecker/multiobjective/SparseMultiObjectivePreprocessor.h"
#include <algorithm>
#include <storm/transformer/GoalStateMerger.h>
#include <set>
#include "storm/models/sparse/Mdp.h"
#include "storm/models/sparse/MarkovAutomaton.h"
@ -12,7 +12,7 @@
#include "storm/storage/memorystructure/MemoryStructureBuilder.h"
#include "storm/storage/memorystructure/SparseModelMemoryProduct.h"
#include "storm/storage/expressions/ExpressionManager.h"
#include "storm/transformer/SubsystemBuilder.h"
#include "storm/transformer/GoalStateMerger.h"
#include "storm/utility/macros.h"
#include "storm/utility/vector.h"
#include "storm/utility/graph.h"
@ -266,8 +266,6 @@ namespace storm {
template<typename SparseModelType>
void SparseMultiObjectivePreprocessor<SparseModelType>::preprocessBoundedUntilFormula(storm::logic::BoundedUntilFormula const& formula, PreprocessorData& data) {
STORM_LOG_THROW(!data.originalModel.isOfType(storm::models::ModelType::MarkovAutomaton) || !formula.getTimeBoundReference().isStepBound(), storm::exceptions::InvalidPropertyException, "Multi-objective model checking currently does not support STEP-bounded properties for Markov automata.");
if (formula.hasLowerBound()) {
STORM_LOG_THROW(!formula.getLowerBound().containsVariables(), storm::exceptions::InvalidPropertyException, "The lower time bound for the formula " << formula << " still contains variables");
if (!storm::utility::isZero(formula.getLowerBound<double>()) || formula.isLowerBoundStrict()) {
@ -280,6 +278,8 @@ namespace storm {
data.objectives.back()->upperTimeBound = storm::logic::TimeBound(formula.isUpperBoundStrict(), formula.getUpperBound());
}
}
data.objectives.back()->timeBoundReference = formula.getTimeBoundReference();
preprocessUntilFormula(storm::logic::UntilFormula(formula.getLeftSubformula().asSharedPointer(), formula.getRightSubformula().asSharedPointer()), data);
}
@ -375,6 +375,9 @@ namespace storm {
std::set<std::string> relevantRewardModels;
for (auto const& obj : result.objectives) {
relevantRewardModels.insert(*obj.rewardModelName);
if (obj.timeBoundReference->isRewardBound()) {
relevantRewardModels.insert(obj.timeBoundReference->getRewardName());
}
}
// Build a subsystem that discards states that yield infinite reward for all schedulers.

4
src/storm/modelchecker/multiobjective/pcaa/SparseMaPcaaWeightVectorChecker.cpp

@ -41,6 +41,10 @@ namespace storm {
template <class SparseMaModelType>
void SparseMaPcaaWeightVectorChecker<SparseMaModelType>::boundedPhase(std::vector<ValueType> const& weightVector, std::vector<ValueType>& weightedRewardVector) {
for (auto const& obj : this->objectives) {
STORM_LOG_THROW(!obj.timeBoundReference || obj.timeBoundReference->isTimeBound(), storm::exceptions::InvalidPropertyException, "Multi-objective model checking of Markov automata is only supported for time-bounded formulass.");
}
// Split the preprocessed model into transitions from/to probabilistic/Markovian states.
SubModel MS = createSubModel(true, weightedRewardVector);
SubModel PS = createSubModel(false, weightedRewardVector);

28
src/storm/modelchecker/multiobjective/pcaa/SparseMdpPcaaWeightVectorChecker.cpp

@ -6,6 +6,9 @@
#include "storm/utility/macros.h"
#include "storm/utility/vector.h"
#include "storm/exceptions/InvalidPropertyException.h"
#include "storm/exceptions/IllegalArgumentException.h"
#include "storm/exceptions/NotSupportedException.h"
#include "storm/exceptions/UnexpectedException.h"
namespace storm {
@ -28,6 +31,24 @@ namespace storm {
template <class SparseMdpModelType>
void SparseMdpPcaaWeightVectorChecker<SparseMdpModelType>::boundedPhase(std::vector<ValueType> const& weightVector, std::vector<ValueType>& weightedRewardVector) {
// Check whether reward bounded objectives occur.
bool containsRewardBoundedObjectives = false;
for (auto const& obj : this->objectives) {
if (obj.timeBoundReference && obj.timeBoundReference->isRewardBound()) {
containsRewardBoundedObjectives = true;
break;
}
}
if (containsRewardBoundedObjectives) {
boundedPhaseWithRewardBounds(weightVector, weightedRewardVector);
} else {
boundedPhaseOnlyStepBounds(weightVector, weightedRewardVector);
}
}
template <class SparseMdpModelType>
void SparseMdpPcaaWeightVectorChecker<SparseMdpModelType>::boundedPhaseOnlyStepBounds(std::vector<ValueType> const& weightVector, std::vector<ValueType>& weightedRewardVector) {
// Allocate some memory so this does not need to happen for each time epoch
std::vector<uint_fast64_t> optimalChoicesInCurrentEpoch(this->model.getNumberOfStates());
std::vector<ValueType> choiceValues(weightedRewardVector.size());
@ -97,6 +118,13 @@ namespace storm {
}
}
template <class SparseMdpModelType>
void SparseMdpPcaaWeightVectorChecker<SparseMdpModelType>::boundedPhaseWithRewardBounds(std::vector<ValueType> const& weightVector, std::vector<ValueType>& weightedRewardVector) {
STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "Multi-objective model checking with reward bounded objectives is not supported.");
}
template class SparseMdpPcaaWeightVectorChecker<storm::models::sparse::Mdp<double>>;
#ifdef STORM_HAVE_CARL
template class SparseMdpPcaaWeightVectorChecker<storm::models::sparse::Mdp<storm::RationalNumber>>;

27
src/storm/modelchecker/multiobjective/pcaa/SparseMdpPcaaWeightVectorChecker.h

@ -19,6 +19,7 @@ namespace storm {
class SparseMdpPcaaWeightVectorChecker : public SparsePcaaWeightVectorChecker<SparseMdpModelType> {
public:
typedef typename SparseMdpModelType::ValueType ValueType;
typedef typename SparseMdpModelType::RewardModelType RewardModelType;
/*
* Creates a weight vextor checker.
@ -40,16 +41,32 @@ namespace storm {
private:
/*!
* For each time epoch (starting with the maximal stepBound occurring in the objectives), this method
* - determines the objectives that are relevant in the current time epoch
* - determines the maximizing scheduler for the weighted reward vector of these objectives
* - computes the values of these objectives w.r.t. this scheduler
* Computes the maximizing scheduler for the weighted sum of the objectives, including also step or reward bounded objectives.
* Moreover, the values of the individual objectives are computed w.r.t. this scheduler.
*
* @param weightVector the weight vector of the current check
* @param weightedRewardVector the weighted rewards considering the unbounded objectives. Will be invalidated after calling this.
*/
virtual void boundedPhase(std::vector<ValueType> const& weightVector, std::vector<ValueType>& weightedRewardVector) override;
/*!
* Computes the bounded phase for the case that only step bounded objectives are considered.
*
* @param weightVector the weight vector of the current check
* @param weightedRewardVector the weighted rewards considering the unbounded objectives. Will be invalidated after calling this.
*/
void boundedPhaseOnlyStepBounds(std::vector<ValueType> const& weightVector, std::vector<ValueType>& weightedRewardVector);
/*!
* Computes the bounded phase for the case that also reward bounded objectives occurr.
*
* @param weightVector the weight vector of the current check
* @param weightedRewardVector the weighted rewards considering the unbounded objectives. Will be invalidated after calling this.
*/
void boundedPhaseWithRewardBounds(std::vector<ValueType> const& weightVector, std::vector<ValueType>& weightedRewardVector);
};
}

Loading…
Cancel
Save