3 changed files with 194 additions and 1 deletions
			
			
		- 
					7src/storm/modelchecker/multiobjective/pcaa/PcaaWeightVectorChecker.cpp
 - 
					129src/storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.cpp
 - 
					59src/storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.h
 
@ -0,0 +1,129 @@ | 
				
			|||
#include "storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.h"
 | 
				
			|||
 | 
				
			|||
#include "storm/adapters/RationalFunctionAdapter.h"
 | 
				
			|||
#include "storm/models/sparse/Mdp.h"
 | 
				
			|||
#include "storm/models/sparse/StandardRewardModel.h"
 | 
				
			|||
#include "storm/utility/macros.h"
 | 
				
			|||
#include "storm/utility/vector.h"
 | 
				
			|||
#include "storm/logic/Formulas.h"
 | 
				
			|||
#include "storm/solver/MinMaxLinearEquationSolver.h"
 | 
				
			|||
#include "storm/solver/LinearEquationSolver.h"
 | 
				
			|||
 | 
				
			|||
 | 
				
			|||
#include "storm/exceptions/InvalidPropertyException.h"
 | 
				
			|||
#include "storm/exceptions/InvalidOperationException.h"
 | 
				
			|||
#include "storm/exceptions/IllegalArgumentException.h"
 | 
				
			|||
#include "storm/exceptions/NotSupportedException.h"
 | 
				
			|||
#include "storm/exceptions/UnexpectedException.h"
 | 
				
			|||
 | 
				
			|||
 | 
				
			|||
namespace storm { | 
				
			|||
    namespace modelchecker { | 
				
			|||
        namespace multiobjective { | 
				
			|||
             | 
				
			|||
            template <class SparseMdpModelType> | 
				
			|||
            SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::SparseMdpRewardBoundedPcaaWeightVectorChecker(SparseMultiObjectivePreprocessorResult<SparseMdpModelType> const& preprocessorResult) : PcaaWeightVectorChecker<SparseMdpModelType>(preprocessorResult.objectives), rewardUnfolding(*preprocessorResult.preprocessedModel, this->objectives, storm::storage::BitVector(preprocessorResult.preprocessedModel->getNumberOfChoices(), true), preprocessorResult.reward0EStates) { | 
				
			|||
             | 
				
			|||
            } | 
				
			|||
             | 
				
			|||
            template <class SparseMdpModelType> | 
				
			|||
            void SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::check(std::vector<ValueType> const& weightVector) { | 
				
			|||
                auto initEpoch = rewardUnfolding.getStartEpoch(); | 
				
			|||
                auto epochOrder = rewardUnfolding.getEpochComputationOrder(initEpoch); | 
				
			|||
                for (auto const& epoch : epochOrder) { | 
				
			|||
                    computeEpochSolution(epoch, weightVector); | 
				
			|||
                } | 
				
			|||
                 | 
				
			|||
                auto solution = rewardUnfolding.getInitialStateResult(initEpoch); | 
				
			|||
                // Todo: we currently assume precise results...
 | 
				
			|||
                underApproxResult = solution.objectiveValues; | 
				
			|||
                overApproxResult = solution.objectiveValues; | 
				
			|||
                 | 
				
			|||
            } | 
				
			|||
             | 
				
			|||
            template <class SparseMdpModelType> | 
				
			|||
            void SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::computeEpochSolution(typename MultiDimensionalRewardUnfolding<ValueType>::Epoch const& epoch, std::vector<ValueType> const& weightVector) { | 
				
			|||
                auto const& epochModel = rewardUnfolding.setCurrentEpoch(epoch); | 
				
			|||
                std::vector<typename MultiDimensionalRewardUnfolding<ValueType>::SolutionType> result(epochModel.epochMatrix.getRowGroupCount()); | 
				
			|||
                 | 
				
			|||
                 | 
				
			|||
                // Formulate a min-max equation system max(A*x+b)=x for the weighted sum of the objectives
 | 
				
			|||
                std::vector<ValueType> b(epochModel.epochMatrix.getRowCount(), storm::utility::zero<ValueType>()); | 
				
			|||
                for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) { | 
				
			|||
                    ValueType weight = storm::solver::minimize(this->objectives[objIndex].formula->getOptimalityType()) ? -weightVector[objIndex] : weightVector[objIndex]; | 
				
			|||
                    if (!storm::utility::isZero(weight)) { | 
				
			|||
                        std::vector<ValueType> const& objectiveReward = epochModel.objectiveRewards[objIndex]; | 
				
			|||
                        for (auto const& choice : epochModel.objectiveRewardFilter[objIndex]) { | 
				
			|||
                            b[choice] += weight * objectiveReward[choice]; | 
				
			|||
                        } | 
				
			|||
                    } | 
				
			|||
                } | 
				
			|||
                auto stepSolutionIt = epochModel.stepSolutions.begin(); | 
				
			|||
                for (auto const& choice : epochModel.stepChoices) { | 
				
			|||
                    b[choice] += stepSolutionIt->weightedValue; | 
				
			|||
                    ++stepSolutionIt; | 
				
			|||
                } | 
				
			|||
                 | 
				
			|||
                // Invoke the min max solver
 | 
				
			|||
                storm::solver::GeneralMinMaxLinearEquationSolverFactory<ValueType> minMaxSolverFactory; | 
				
			|||
                auto minMaxSolver = minMaxSolverFactory.create(epochModel.epochMatrix); | 
				
			|||
                minMaxSolver->setOptimizationDirection(storm::solver::OptimizationDirection::Maximize); | 
				
			|||
                minMaxSolver->setTrackScheduler(true); | 
				
			|||
                //minMaxSolver->setCachingEnabled(true);
 | 
				
			|||
                std::vector<ValueType> x(result.size(), storm::utility::zero<ValueType>()); | 
				
			|||
                minMaxSolver->solveEquations(x, b); | 
				
			|||
                for (uint64_t state = 0; state < x.size(); ++state) { | 
				
			|||
                    result[state].weightedValue = x[state]; | 
				
			|||
                } | 
				
			|||
                 | 
				
			|||
                // Formulate for each objective the linear equation system induced by the performed choices
 | 
				
			|||
                auto const& choices = minMaxSolver->getSchedulerChoices(); | 
				
			|||
                storm::storage::SparseMatrix<ValueType> subMatrix = epochModel.epochMatrix.selectRowsFromRowGroups(choices, true); | 
				
			|||
                subMatrix.convertToEquationSystem(); | 
				
			|||
                storm::solver::GeneralLinearEquationSolverFactory<ValueType> linEqSolverFactory; | 
				
			|||
                auto linEqSolver = linEqSolverFactory.create(std::move(subMatrix)); | 
				
			|||
                b.resize(choices.size()); | 
				
			|||
                // TODO: start with a better initial guess
 | 
				
			|||
                x.resize(choices.size()); | 
				
			|||
                for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) { | 
				
			|||
                    std::vector<ValueType> const& objectiveReward = epochModel.objectiveRewards[objIndex]; | 
				
			|||
                    for (uint64_t state = 0; state < choices.size(); ++state) { | 
				
			|||
                        uint64_t choice = epochModel.epochMatrix.getRowGroupIndices()[state] + choices[state]; | 
				
			|||
                        if (epochModel.objectiveRewardFilter[objIndex].get(choice)) { | 
				
			|||
                            b[state] = objectiveReward[choice]; | 
				
			|||
                        } else { | 
				
			|||
                            b[state] = storm::utility::zero<ValueType>(); | 
				
			|||
                        } | 
				
			|||
                        if (epochModel.stepChoices.get(choice)) { | 
				
			|||
                            b[state] += epochModel.stepSolutions[epochModel.stepChoices.getNumberOfSetBitsBeforeIndex(choice)].objectiveValues[objIndex]; | 
				
			|||
                        } | 
				
			|||
                    } | 
				
			|||
                    linEqSolver->solveEquations(x, b); | 
				
			|||
                    for (uint64_t state = 0; state < choices.size(); ++state) { | 
				
			|||
                        result[state].objectiveValues.push_back(x[state]); | 
				
			|||
                    } | 
				
			|||
                } | 
				
			|||
                 | 
				
			|||
                rewardUnfolding.setSolutionForCurrentEpoch(result); | 
				
			|||
            } | 
				
			|||
 | 
				
			|||
            template <class SparseMdpModelType> | 
				
			|||
            std::vector<typename SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::ValueType> SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::getUnderApproximationOfInitialStateResults() const { | 
				
			|||
                STORM_LOG_THROW(underApproxResult, storm::exceptions::InvalidOperationException, "Tried to retrieve results but check(..) has not been called before."); | 
				
			|||
                return underApproxResult.get(); | 
				
			|||
            } | 
				
			|||
             | 
				
			|||
            template <class SparseMdpModelType> | 
				
			|||
            std::vector<typename SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::ValueType> SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::getOverApproximationOfInitialStateResults() const { | 
				
			|||
                STORM_LOG_THROW(overApproxResult, storm::exceptions::InvalidOperationException, "Tried to retrieve results but check(..) has not been called before."); | 
				
			|||
                return overApproxResult.get(); | 
				
			|||
            } | 
				
			|||
             | 
				
			|||
            template class SparseMdpRewardBoundedPcaaWeightVectorChecker<storm::models::sparse::Mdp<double>>; | 
				
			|||
#ifdef STORM_HAVE_CARL
 | 
				
			|||
            template class SparseMdpRewardBoundedPcaaWeightVectorChecker<storm::models::sparse::Mdp<storm::RationalNumber>>; | 
				
			|||
#endif
 | 
				
			|||
         | 
				
			|||
        } | 
				
			|||
    } | 
				
			|||
} | 
				
			|||
@ -0,0 +1,59 @@ | 
				
			|||
#pragma once | 
				
			|||
 | 
				
			|||
#include <vector> | 
				
			|||
 | 
				
			|||
#include "storm/modelchecker/multiobjective/pcaa/PcaaWeightVectorChecker.h" | 
				
			|||
#include "storm/modelchecker/multiobjective/rewardbounded/MultiDimensionalRewardUnfolding.h" | 
				
			|||
 | 
				
			|||
namespace storm { | 
				
			|||
    namespace modelchecker { | 
				
			|||
        namespace multiobjective { | 
				
			|||
             | 
				
			|||
            /*! | 
				
			|||
             * Helper Class that takes preprocessed Pcaa data and a weight vector and ... | 
				
			|||
             * - computes the maximal expected reward w.r.t. the weighted sum of the rewards of the individual objectives | 
				
			|||
             * - extracts the scheduler that induces this maximum | 
				
			|||
             * - computes for each objective the value induced by this scheduler | 
				
			|||
             */ | 
				
			|||
            template <class SparseMdpModelType> | 
				
			|||
            class SparseMdpRewardBoundedPcaaWeightVectorChecker : public PcaaWeightVectorChecker<SparseMdpModelType> { | 
				
			|||
            public: | 
				
			|||
                typedef typename SparseMdpModelType::ValueType ValueType; | 
				
			|||
                typedef typename SparseMdpModelType::RewardModelType RewardModelType; | 
				
			|||
             | 
				
			|||
                SparseMdpRewardBoundedPcaaWeightVectorChecker(SparseMultiObjectivePreprocessorResult<SparseMdpModelType> const& preprocessorResult); | 
				
			|||
 | 
				
			|||
                virtual ~SparseMdpRewardBoundedPcaaWeightVectorChecker() = default; | 
				
			|||
 | 
				
			|||
                /*! | 
				
			|||
                 * - computes the optimal expected reward w.r.t. the weighted sum of the rewards of the individual objectives | 
				
			|||
                 * - extracts the scheduler that induces this optimum | 
				
			|||
                 * - computes for each objective the value induced by this scheduler | 
				
			|||
                 */ | 
				
			|||
                virtual void check(std::vector<ValueType> const& weightVector) override; | 
				
			|||
                 | 
				
			|||
                /*! | 
				
			|||
                 * Retrieves the results of the individual objectives at the initial state of the given model. | 
				
			|||
                 * Note that check(..) has to be called before retrieving results. Otherwise, an exception is thrown. | 
				
			|||
                 * Also note that there is no guarantee that the under/over approximation is in fact correct | 
				
			|||
                 * as long as the underlying solution methods are unsound (e.g., standard value iteration). | 
				
			|||
                 */ | 
				
			|||
                virtual std::vector<ValueType> getUnderApproximationOfInitialStateResults() const override; | 
				
			|||
                virtual std::vector<ValueType> getOverApproximationOfInitialStateResults() const override; | 
				
			|||
                 | 
				
			|||
            private: | 
				
			|||
                 | 
				
			|||
                void computeEpochSolution(typename MultiDimensionalRewardUnfolding<ValueType>::Epoch const& epoch, std::vector<ValueType> const& weightVector); | 
				
			|||
                 | 
				
			|||
                 | 
				
			|||
                MultiDimensionalRewardUnfolding<ValueType> rewardUnfolding; | 
				
			|||
                 | 
				
			|||
                boost::optional<std::vector<ValueType>> underApproxResult; | 
				
			|||
                boost::optional<std::vector<ValueType>> overApproxResult; | 
				
			|||
 | 
				
			|||
                 | 
				
			|||
            }; | 
				
			|||
             | 
				
			|||
        } | 
				
			|||
    } | 
				
			|||
} | 
				
			|||
						Write
						Preview
					
					
					Loading…
					
					Cancel
						Save
					
		Reference in new issue