3 changed files with 194 additions and 1 deletions
			
			
		- 
					5src/storm/modelchecker/multiobjective/pcaa/PcaaWeightVectorChecker.cpp
- 
					129src/storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.cpp
- 
					59src/storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.h
| @ -0,0 +1,129 @@ | |||||
|  | #include "storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.h"
 | ||||
|  | 
 | ||||
|  | #include "storm/adapters/RationalFunctionAdapter.h"
 | ||||
|  | #include "storm/models/sparse/Mdp.h"
 | ||||
|  | #include "storm/models/sparse/StandardRewardModel.h"
 | ||||
|  | #include "storm/utility/macros.h"
 | ||||
|  | #include "storm/utility/vector.h"
 | ||||
|  | #include "storm/logic/Formulas.h"
 | ||||
|  | #include "storm/solver/MinMaxLinearEquationSolver.h"
 | ||||
|  | #include "storm/solver/LinearEquationSolver.h"
 | ||||
|  | 
 | ||||
|  | 
 | ||||
|  | #include "storm/exceptions/InvalidPropertyException.h"
 | ||||
|  | #include "storm/exceptions/InvalidOperationException.h"
 | ||||
|  | #include "storm/exceptions/IllegalArgumentException.h"
 | ||||
|  | #include "storm/exceptions/NotSupportedException.h"
 | ||||
|  | #include "storm/exceptions/UnexpectedException.h"
 | ||||
|  | 
 | ||||
|  | 
 | ||||
|  | namespace storm { | ||||
|  |     namespace modelchecker { | ||||
|  |         namespace multiobjective { | ||||
|  |              | ||||
|  |             template <class SparseMdpModelType> | ||||
|  |             SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::SparseMdpRewardBoundedPcaaWeightVectorChecker(SparseMultiObjectivePreprocessorResult<SparseMdpModelType> const& preprocessorResult) : PcaaWeightVectorChecker<SparseMdpModelType>(preprocessorResult.objectives), rewardUnfolding(*preprocessorResult.preprocessedModel, this->objectives, storm::storage::BitVector(preprocessorResult.preprocessedModel->getNumberOfChoices(), true), preprocessorResult.reward0EStates) { | ||||
|  |              | ||||
|  |             } | ||||
|  |              | ||||
|  |             template <class SparseMdpModelType> | ||||
|  |             void SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::check(std::vector<ValueType> const& weightVector) { | ||||
|  |                 auto initEpoch = rewardUnfolding.getStartEpoch(); | ||||
|  |                 auto epochOrder = rewardUnfolding.getEpochComputationOrder(initEpoch); | ||||
|  |                 for (auto const& epoch : epochOrder) { | ||||
|  |                     computeEpochSolution(epoch, weightVector); | ||||
|  |                 } | ||||
|  |                  | ||||
|  |                 auto solution = rewardUnfolding.getInitialStateResult(initEpoch); | ||||
|  |                 // Todo: we currently assume precise results...
 | ||||
|  |                 underApproxResult = solution.objectiveValues; | ||||
|  |                 overApproxResult = solution.objectiveValues; | ||||
|  |                  | ||||
|  |             } | ||||
|  |              | ||||
|  |             template <class SparseMdpModelType> | ||||
|  |             void SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::computeEpochSolution(typename MultiDimensionalRewardUnfolding<ValueType>::Epoch const& epoch, std::vector<ValueType> const& weightVector) { | ||||
|  |                 auto const& epochModel = rewardUnfolding.setCurrentEpoch(epoch); | ||||
|  |                 std::vector<typename MultiDimensionalRewardUnfolding<ValueType>::SolutionType> result(epochModel.epochMatrix.getRowGroupCount()); | ||||
|  |                  | ||||
|  |                  | ||||
|  |                 // Formulate a min-max equation system max(A*x+b)=x for the weighted sum of the objectives
 | ||||
|  |                 std::vector<ValueType> b(epochModel.epochMatrix.getRowCount(), storm::utility::zero<ValueType>()); | ||||
|  |                 for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) { | ||||
|  |                     ValueType weight = storm::solver::minimize(this->objectives[objIndex].formula->getOptimalityType()) ? -weightVector[objIndex] : weightVector[objIndex]; | ||||
|  |                     if (!storm::utility::isZero(weight)) { | ||||
|  |                         std::vector<ValueType> const& objectiveReward = epochModel.objectiveRewards[objIndex]; | ||||
|  |                         for (auto const& choice : epochModel.objectiveRewardFilter[objIndex]) { | ||||
|  |                             b[choice] += weight * objectiveReward[choice]; | ||||
|  |                         } | ||||
|  |                     } | ||||
|  |                 } | ||||
|  |                 auto stepSolutionIt = epochModel.stepSolutions.begin(); | ||||
|  |                 for (auto const& choice : epochModel.stepChoices) { | ||||
|  |                     b[choice] += stepSolutionIt->weightedValue; | ||||
|  |                     ++stepSolutionIt; | ||||
|  |                 } | ||||
|  |                  | ||||
|  |                 // Invoke the min max solver
 | ||||
|  |                 storm::solver::GeneralMinMaxLinearEquationSolverFactory<ValueType> minMaxSolverFactory; | ||||
|  |                 auto minMaxSolver = minMaxSolverFactory.create(epochModel.epochMatrix); | ||||
|  |                 minMaxSolver->setOptimizationDirection(storm::solver::OptimizationDirection::Maximize); | ||||
|  |                 minMaxSolver->setTrackScheduler(true); | ||||
|  |                 //minMaxSolver->setCachingEnabled(true);
 | ||||
|  |                 std::vector<ValueType> x(result.size(), storm::utility::zero<ValueType>()); | ||||
|  |                 minMaxSolver->solveEquations(x, b); | ||||
|  |                 for (uint64_t state = 0; state < x.size(); ++state) { | ||||
|  |                     result[state].weightedValue = x[state]; | ||||
|  |                 } | ||||
|  |                  | ||||
|  |                 // Formulate for each objective the linear equation system induced by the performed choices
 | ||||
|  |                 auto const& choices = minMaxSolver->getSchedulerChoices(); | ||||
|  |                 storm::storage::SparseMatrix<ValueType> subMatrix = epochModel.epochMatrix.selectRowsFromRowGroups(choices, true); | ||||
|  |                 subMatrix.convertToEquationSystem(); | ||||
|  |                 storm::solver::GeneralLinearEquationSolverFactory<ValueType> linEqSolverFactory; | ||||
|  |                 auto linEqSolver = linEqSolverFactory.create(std::move(subMatrix)); | ||||
|  |                 b.resize(choices.size()); | ||||
|  |                 // TODO: start with a better initial guess
 | ||||
|  |                 x.resize(choices.size()); | ||||
|  |                 for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) { | ||||
|  |                     std::vector<ValueType> const& objectiveReward = epochModel.objectiveRewards[objIndex]; | ||||
|  |                     for (uint64_t state = 0; state < choices.size(); ++state) { | ||||
|  |                         uint64_t choice = epochModel.epochMatrix.getRowGroupIndices()[state] + choices[state]; | ||||
|  |                         if (epochModel.objectiveRewardFilter[objIndex].get(choice)) { | ||||
|  |                             b[state] = objectiveReward[choice]; | ||||
|  |                         } else { | ||||
|  |                             b[state] = storm::utility::zero<ValueType>(); | ||||
|  |                         } | ||||
|  |                         if (epochModel.stepChoices.get(choice)) { | ||||
|  |                             b[state] += epochModel.stepSolutions[epochModel.stepChoices.getNumberOfSetBitsBeforeIndex(choice)].objectiveValues[objIndex]; | ||||
|  |                         } | ||||
|  |                     } | ||||
|  |                     linEqSolver->solveEquations(x, b); | ||||
|  |                     for (uint64_t state = 0; state < choices.size(); ++state) { | ||||
|  |                         result[state].objectiveValues.push_back(x[state]); | ||||
|  |                     } | ||||
|  |                 } | ||||
|  |                  | ||||
|  |                 rewardUnfolding.setSolutionForCurrentEpoch(result); | ||||
|  |             } | ||||
|  | 
 | ||||
|  |             template <class SparseMdpModelType> | ||||
|  |             std::vector<typename SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::ValueType> SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::getUnderApproximationOfInitialStateResults() const { | ||||
|  |                 STORM_LOG_THROW(underApproxResult, storm::exceptions::InvalidOperationException, "Tried to retrieve results but check(..) has not been called before."); | ||||
|  |                 return underApproxResult.get(); | ||||
|  |             } | ||||
|  |              | ||||
|  |             template <class SparseMdpModelType> | ||||
|  |             std::vector<typename SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::ValueType> SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::getOverApproximationOfInitialStateResults() const { | ||||
|  |                 STORM_LOG_THROW(overApproxResult, storm::exceptions::InvalidOperationException, "Tried to retrieve results but check(..) has not been called before."); | ||||
|  |                 return overApproxResult.get(); | ||||
|  |             } | ||||
|  |              | ||||
|  |             template class SparseMdpRewardBoundedPcaaWeightVectorChecker<storm::models::sparse::Mdp<double>>; | ||||
|  | #ifdef STORM_HAVE_CARL
 | ||||
|  |             template class SparseMdpRewardBoundedPcaaWeightVectorChecker<storm::models::sparse::Mdp<storm::RationalNumber>>; | ||||
|  | #endif
 | ||||
|  |          | ||||
|  |         } | ||||
|  |     } | ||||
|  | } | ||||
| @ -0,0 +1,59 @@ | |||||
|  | #pragma once | ||||
|  | 
 | ||||
|  | #include <vector> | ||||
|  | 
 | ||||
|  | #include "storm/modelchecker/multiobjective/pcaa/PcaaWeightVectorChecker.h" | ||||
|  | #include "storm/modelchecker/multiobjective/rewardbounded/MultiDimensionalRewardUnfolding.h" | ||||
|  | 
 | ||||
|  | namespace storm { | ||||
|  |     namespace modelchecker { | ||||
|  |         namespace multiobjective { | ||||
|  |              | ||||
|  |             /*! | ||||
|  |              * Helper Class that takes preprocessed Pcaa data and a weight vector and ... | ||||
|  |              * - computes the maximal expected reward w.r.t. the weighted sum of the rewards of the individual objectives | ||||
|  |              * - extracts the scheduler that induces this maximum | ||||
|  |              * - computes for each objective the value induced by this scheduler | ||||
|  |              */ | ||||
|  |             template <class SparseMdpModelType> | ||||
|  |             class SparseMdpRewardBoundedPcaaWeightVectorChecker : public PcaaWeightVectorChecker<SparseMdpModelType> { | ||||
|  |             public: | ||||
|  |                 typedef typename SparseMdpModelType::ValueType ValueType; | ||||
|  |                 typedef typename SparseMdpModelType::RewardModelType RewardModelType; | ||||
|  |              | ||||
|  |                 SparseMdpRewardBoundedPcaaWeightVectorChecker(SparseMultiObjectivePreprocessorResult<SparseMdpModelType> const& preprocessorResult); | ||||
|  | 
 | ||||
|  |                 virtual ~SparseMdpRewardBoundedPcaaWeightVectorChecker() = default; | ||||
|  | 
 | ||||
|  |                 /*! | ||||
|  |                  * - computes the optimal expected reward w.r.t. the weighted sum of the rewards of the individual objectives | ||||
|  |                  * - extracts the scheduler that induces this optimum | ||||
|  |                  * - computes for each objective the value induced by this scheduler | ||||
|  |                  */ | ||||
|  |                 virtual void check(std::vector<ValueType> const& weightVector) override; | ||||
|  |                  | ||||
|  |                 /*! | ||||
|  |                  * Retrieves the results of the individual objectives at the initial state of the given model. | ||||
|  |                  * Note that check(..) has to be called before retrieving results. Otherwise, an exception is thrown. | ||||
|  |                  * Also note that there is no guarantee that the under/over approximation is in fact correct | ||||
|  |                  * as long as the underlying solution methods are unsound (e.g., standard value iteration). | ||||
|  |                  */ | ||||
|  |                 virtual std::vector<ValueType> getUnderApproximationOfInitialStateResults() const override; | ||||
|  |                 virtual std::vector<ValueType> getOverApproximationOfInitialStateResults() const override; | ||||
|  |                  | ||||
|  |             private: | ||||
|  |                  | ||||
|  |                 void computeEpochSolution(typename MultiDimensionalRewardUnfolding<ValueType>::Epoch const& epoch, std::vector<ValueType> const& weightVector); | ||||
|  |                  | ||||
|  |                  | ||||
|  |                 MultiDimensionalRewardUnfolding<ValueType> rewardUnfolding; | ||||
|  |                  | ||||
|  |                 boost::optional<std::vector<ValueType>> underApproxResult; | ||||
|  |                 boost::optional<std::vector<ValueType>> overApproxResult; | ||||
|  | 
 | ||||
|  |                  | ||||
|  |             }; | ||||
|  |              | ||||
|  |         } | ||||
|  |     } | ||||
|  | } | ||||
						Write
						Preview
					
					
					Loading…
					
					Cancel
						Save
					
		Reference in new issue