Browse Source

added weight vector checker for reward bounded objectives

tempestpy_adaptions
TimQu 7 years ago
parent
commit
0cca4a51d0
  1. 7
      src/storm/modelchecker/multiobjective/pcaa/PcaaWeightVectorChecker.cpp
  2. 129
      src/storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.cpp
  3. 59
      src/storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.h

7
src/storm/modelchecker/multiobjective/pcaa/PcaaWeightVectorChecker.cpp

@ -2,6 +2,7 @@
#include "storm/modelchecker/multiobjective/pcaa/SparseMaPcaaWeightVectorChecker.h"
#include "storm/modelchecker/multiobjective/pcaa/SparseMdpPcaaWeightVectorChecker.h"
#include "storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.h"
#include "storm/utility/macros.h"
#include "storm/exceptions/NotSupportedException.h"
@ -33,7 +34,11 @@ namespace storm {
template <typename ModelType>
template<typename VT, typename std::enable_if<std::is_same<ModelType, storm::models::sparse::Mdp<VT>>::value, int>::type>
std::unique_ptr<PcaaWeightVectorChecker<ModelType>> WeightVectorCheckerFactory<ModelType>::create(SparseMultiObjectivePreprocessorResult<ModelType> const& preprocessorResult) {
return std::make_unique<SparseMdpPcaaWeightVectorChecker<ModelType>>(preprocessorResult);
if (preprocessorResult.containsOnlyRewardObjectives()) {
return std::make_unique<SparseMdpPcaaWeightVectorChecker<ModelType>>(preprocessorResult);
} else {
return std::make_unique<SparseMdpRewardBoundedPcaaWeightVectorChecker<ModelType>>(preprocessorResult);
}
}
template <typename ModelType>

129
src/storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.cpp

@ -0,0 +1,129 @@
#include "storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.h"
#include "storm/adapters/RationalFunctionAdapter.h"
#include "storm/models/sparse/Mdp.h"
#include "storm/models/sparse/StandardRewardModel.h"
#include "storm/utility/macros.h"
#include "storm/utility/vector.h"
#include "storm/logic/Formulas.h"
#include "storm/solver/MinMaxLinearEquationSolver.h"
#include "storm/solver/LinearEquationSolver.h"
#include "storm/exceptions/InvalidPropertyException.h"
#include "storm/exceptions/InvalidOperationException.h"
#include "storm/exceptions/IllegalArgumentException.h"
#include "storm/exceptions/NotSupportedException.h"
#include "storm/exceptions/UnexpectedException.h"
namespace storm {
namespace modelchecker {
namespace multiobjective {
template <class SparseMdpModelType>
SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::SparseMdpRewardBoundedPcaaWeightVectorChecker(SparseMultiObjectivePreprocessorResult<SparseMdpModelType> const& preprocessorResult) : PcaaWeightVectorChecker<SparseMdpModelType>(preprocessorResult.objectives), rewardUnfolding(*preprocessorResult.preprocessedModel, this->objectives, storm::storage::BitVector(preprocessorResult.preprocessedModel->getNumberOfChoices(), true), preprocessorResult.reward0EStates) {
}
template <class SparseMdpModelType>
void SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::check(std::vector<ValueType> const& weightVector) {
auto initEpoch = rewardUnfolding.getStartEpoch();
auto epochOrder = rewardUnfolding.getEpochComputationOrder(initEpoch);
for (auto const& epoch : epochOrder) {
computeEpochSolution(epoch, weightVector);
}
auto solution = rewardUnfolding.getInitialStateResult(initEpoch);
// Todo: we currently assume precise results...
underApproxResult = solution.objectiveValues;
overApproxResult = solution.objectiveValues;
}
template <class SparseMdpModelType>
void SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::computeEpochSolution(typename MultiDimensionalRewardUnfolding<ValueType>::Epoch const& epoch, std::vector<ValueType> const& weightVector) {
auto const& epochModel = rewardUnfolding.setCurrentEpoch(epoch);
std::vector<typename MultiDimensionalRewardUnfolding<ValueType>::SolutionType> result(epochModel.epochMatrix.getRowGroupCount());
// Formulate a min-max equation system max(A*x+b)=x for the weighted sum of the objectives
std::vector<ValueType> b(epochModel.epochMatrix.getRowCount(), storm::utility::zero<ValueType>());
for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
ValueType weight = storm::solver::minimize(this->objectives[objIndex].formula->getOptimalityType()) ? -weightVector[objIndex] : weightVector[objIndex];
if (!storm::utility::isZero(weight)) {
std::vector<ValueType> const& objectiveReward = epochModel.objectiveRewards[objIndex];
for (auto const& choice : epochModel.objectiveRewardFilter[objIndex]) {
b[choice] += weight * objectiveReward[choice];
}
}
}
auto stepSolutionIt = epochModel.stepSolutions.begin();
for (auto const& choice : epochModel.stepChoices) {
b[choice] += stepSolutionIt->weightedValue;
++stepSolutionIt;
}
// Invoke the min max solver
storm::solver::GeneralMinMaxLinearEquationSolverFactory<ValueType> minMaxSolverFactory;
auto minMaxSolver = minMaxSolverFactory.create(epochModel.epochMatrix);
minMaxSolver->setOptimizationDirection(storm::solver::OptimizationDirection::Maximize);
minMaxSolver->setTrackScheduler(true);
//minMaxSolver->setCachingEnabled(true);
std::vector<ValueType> x(result.size(), storm::utility::zero<ValueType>());
minMaxSolver->solveEquations(x, b);
for (uint64_t state = 0; state < x.size(); ++state) {
result[state].weightedValue = x[state];
}
// Formulate for each objective the linear equation system induced by the performed choices
auto const& choices = minMaxSolver->getSchedulerChoices();
storm::storage::SparseMatrix<ValueType> subMatrix = epochModel.epochMatrix.selectRowsFromRowGroups(choices, true);
subMatrix.convertToEquationSystem();
storm::solver::GeneralLinearEquationSolverFactory<ValueType> linEqSolverFactory;
auto linEqSolver = linEqSolverFactory.create(std::move(subMatrix));
b.resize(choices.size());
// TODO: start with a better initial guess
x.resize(choices.size());
for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) {
std::vector<ValueType> const& objectiveReward = epochModel.objectiveRewards[objIndex];
for (uint64_t state = 0; state < choices.size(); ++state) {
uint64_t choice = epochModel.epochMatrix.getRowGroupIndices()[state] + choices[state];
if (epochModel.objectiveRewardFilter[objIndex].get(choice)) {
b[state] = objectiveReward[choice];
} else {
b[state] = storm::utility::zero<ValueType>();
}
if (epochModel.stepChoices.get(choice)) {
b[state] += epochModel.stepSolutions[epochModel.stepChoices.getNumberOfSetBitsBeforeIndex(choice)].objectiveValues[objIndex];
}
}
linEqSolver->solveEquations(x, b);
for (uint64_t state = 0; state < choices.size(); ++state) {
result[state].objectiveValues.push_back(x[state]);
}
}
rewardUnfolding.setSolutionForCurrentEpoch(result);
}
template <class SparseMdpModelType>
std::vector<typename SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::ValueType> SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::getUnderApproximationOfInitialStateResults() const {
STORM_LOG_THROW(underApproxResult, storm::exceptions::InvalidOperationException, "Tried to retrieve results but check(..) has not been called before.");
return underApproxResult.get();
}
template <class SparseMdpModelType>
std::vector<typename SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::ValueType> SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::getOverApproximationOfInitialStateResults() const {
STORM_LOG_THROW(overApproxResult, storm::exceptions::InvalidOperationException, "Tried to retrieve results but check(..) has not been called before.");
return overApproxResult.get();
}
template class SparseMdpRewardBoundedPcaaWeightVectorChecker<storm::models::sparse::Mdp<double>>;
#ifdef STORM_HAVE_CARL
template class SparseMdpRewardBoundedPcaaWeightVectorChecker<storm::models::sparse::Mdp<storm::RationalNumber>>;
#endif
}
}
}

59
src/storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.h

@ -0,0 +1,59 @@
#pragma once
#include <vector>
#include "storm/modelchecker/multiobjective/pcaa/PcaaWeightVectorChecker.h"
#include "storm/modelchecker/multiobjective/rewardbounded/MultiDimensionalRewardUnfolding.h"
namespace storm {
namespace modelchecker {
namespace multiobjective {
/*!
* Helper Class that takes preprocessed Pcaa data and a weight vector and ...
* - computes the maximal expected reward w.r.t. the weighted sum of the rewards of the individual objectives
* - extracts the scheduler that induces this maximum
* - computes for each objective the value induced by this scheduler
*/
template <class SparseMdpModelType>
class SparseMdpRewardBoundedPcaaWeightVectorChecker : public PcaaWeightVectorChecker<SparseMdpModelType> {
public:
typedef typename SparseMdpModelType::ValueType ValueType;
typedef typename SparseMdpModelType::RewardModelType RewardModelType;
SparseMdpRewardBoundedPcaaWeightVectorChecker(SparseMultiObjectivePreprocessorResult<SparseMdpModelType> const& preprocessorResult);
virtual ~SparseMdpRewardBoundedPcaaWeightVectorChecker() = default;
/*!
* - computes the optimal expected reward w.r.t. the weighted sum of the rewards of the individual objectives
* - extracts the scheduler that induces this optimum
* - computes for each objective the value induced by this scheduler
*/
virtual void check(std::vector<ValueType> const& weightVector) override;
/*!
* Retrieves the results of the individual objectives at the initial state of the given model.
* Note that check(..) has to be called before retrieving results. Otherwise, an exception is thrown.
* Also note that there is no guarantee that the under/over approximation is in fact correct
* as long as the underlying solution methods are unsound (e.g., standard value iteration).
*/
virtual std::vector<ValueType> getUnderApproximationOfInitialStateResults() const override;
virtual std::vector<ValueType> getOverApproximationOfInitialStateResults() const override;
private:
void computeEpochSolution(typename MultiDimensionalRewardUnfolding<ValueType>::Epoch const& epoch, std::vector<ValueType> const& weightVector);
MultiDimensionalRewardUnfolding<ValueType> rewardUnfolding;
boost::optional<std::vector<ValueType>> underApproxResult;
boost::optional<std::vector<ValueType>> overApproxResult;
};
}
}
}
Loading…
Cancel
Save