TimQu
7 years ago
3 changed files with 194 additions and 1 deletions
-
7src/storm/modelchecker/multiobjective/pcaa/PcaaWeightVectorChecker.cpp
-
129src/storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.cpp
-
59src/storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.h
@ -0,0 +1,129 @@ |
|||
#include "storm/modelchecker/multiobjective/pcaa/SparseMdpRewardBoundedPcaaWeightVectorChecker.h"
|
|||
|
|||
#include "storm/adapters/RationalFunctionAdapter.h"
|
|||
#include "storm/models/sparse/Mdp.h"
|
|||
#include "storm/models/sparse/StandardRewardModel.h"
|
|||
#include "storm/utility/macros.h"
|
|||
#include "storm/utility/vector.h"
|
|||
#include "storm/logic/Formulas.h"
|
|||
#include "storm/solver/MinMaxLinearEquationSolver.h"
|
|||
#include "storm/solver/LinearEquationSolver.h"
|
|||
|
|||
|
|||
#include "storm/exceptions/InvalidPropertyException.h"
|
|||
#include "storm/exceptions/InvalidOperationException.h"
|
|||
#include "storm/exceptions/IllegalArgumentException.h"
|
|||
#include "storm/exceptions/NotSupportedException.h"
|
|||
#include "storm/exceptions/UnexpectedException.h"
|
|||
|
|||
|
|||
namespace storm { |
|||
namespace modelchecker { |
|||
namespace multiobjective { |
|||
|
|||
template <class SparseMdpModelType> |
|||
SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::SparseMdpRewardBoundedPcaaWeightVectorChecker(SparseMultiObjectivePreprocessorResult<SparseMdpModelType> const& preprocessorResult) : PcaaWeightVectorChecker<SparseMdpModelType>(preprocessorResult.objectives), rewardUnfolding(*preprocessorResult.preprocessedModel, this->objectives, storm::storage::BitVector(preprocessorResult.preprocessedModel->getNumberOfChoices(), true), preprocessorResult.reward0EStates) { |
|||
|
|||
} |
|||
|
|||
template <class SparseMdpModelType> |
|||
void SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::check(std::vector<ValueType> const& weightVector) { |
|||
auto initEpoch = rewardUnfolding.getStartEpoch(); |
|||
auto epochOrder = rewardUnfolding.getEpochComputationOrder(initEpoch); |
|||
for (auto const& epoch : epochOrder) { |
|||
computeEpochSolution(epoch, weightVector); |
|||
} |
|||
|
|||
auto solution = rewardUnfolding.getInitialStateResult(initEpoch); |
|||
// Todo: we currently assume precise results...
|
|||
underApproxResult = solution.objectiveValues; |
|||
overApproxResult = solution.objectiveValues; |
|||
|
|||
} |
|||
|
|||
template <class SparseMdpModelType> |
|||
void SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::computeEpochSolution(typename MultiDimensionalRewardUnfolding<ValueType>::Epoch const& epoch, std::vector<ValueType> const& weightVector) { |
|||
auto const& epochModel = rewardUnfolding.setCurrentEpoch(epoch); |
|||
std::vector<typename MultiDimensionalRewardUnfolding<ValueType>::SolutionType> result(epochModel.epochMatrix.getRowGroupCount()); |
|||
|
|||
|
|||
// Formulate a min-max equation system max(A*x+b)=x for the weighted sum of the objectives
|
|||
std::vector<ValueType> b(epochModel.epochMatrix.getRowCount(), storm::utility::zero<ValueType>()); |
|||
for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) { |
|||
ValueType weight = storm::solver::minimize(this->objectives[objIndex].formula->getOptimalityType()) ? -weightVector[objIndex] : weightVector[objIndex]; |
|||
if (!storm::utility::isZero(weight)) { |
|||
std::vector<ValueType> const& objectiveReward = epochModel.objectiveRewards[objIndex]; |
|||
for (auto const& choice : epochModel.objectiveRewardFilter[objIndex]) { |
|||
b[choice] += weight * objectiveReward[choice]; |
|||
} |
|||
} |
|||
} |
|||
auto stepSolutionIt = epochModel.stepSolutions.begin(); |
|||
for (auto const& choice : epochModel.stepChoices) { |
|||
b[choice] += stepSolutionIt->weightedValue; |
|||
++stepSolutionIt; |
|||
} |
|||
|
|||
// Invoke the min max solver
|
|||
storm::solver::GeneralMinMaxLinearEquationSolverFactory<ValueType> minMaxSolverFactory; |
|||
auto minMaxSolver = minMaxSolverFactory.create(epochModel.epochMatrix); |
|||
minMaxSolver->setOptimizationDirection(storm::solver::OptimizationDirection::Maximize); |
|||
minMaxSolver->setTrackScheduler(true); |
|||
//minMaxSolver->setCachingEnabled(true);
|
|||
std::vector<ValueType> x(result.size(), storm::utility::zero<ValueType>()); |
|||
minMaxSolver->solveEquations(x, b); |
|||
for (uint64_t state = 0; state < x.size(); ++state) { |
|||
result[state].weightedValue = x[state]; |
|||
} |
|||
|
|||
// Formulate for each objective the linear equation system induced by the performed choices
|
|||
auto const& choices = minMaxSolver->getSchedulerChoices(); |
|||
storm::storage::SparseMatrix<ValueType> subMatrix = epochModel.epochMatrix.selectRowsFromRowGroups(choices, true); |
|||
subMatrix.convertToEquationSystem(); |
|||
storm::solver::GeneralLinearEquationSolverFactory<ValueType> linEqSolverFactory; |
|||
auto linEqSolver = linEqSolverFactory.create(std::move(subMatrix)); |
|||
b.resize(choices.size()); |
|||
// TODO: start with a better initial guess
|
|||
x.resize(choices.size()); |
|||
for (uint64_t objIndex = 0; objIndex < this->objectives.size(); ++objIndex) { |
|||
std::vector<ValueType> const& objectiveReward = epochModel.objectiveRewards[objIndex]; |
|||
for (uint64_t state = 0; state < choices.size(); ++state) { |
|||
uint64_t choice = epochModel.epochMatrix.getRowGroupIndices()[state] + choices[state]; |
|||
if (epochModel.objectiveRewardFilter[objIndex].get(choice)) { |
|||
b[state] = objectiveReward[choice]; |
|||
} else { |
|||
b[state] = storm::utility::zero<ValueType>(); |
|||
} |
|||
if (epochModel.stepChoices.get(choice)) { |
|||
b[state] += epochModel.stepSolutions[epochModel.stepChoices.getNumberOfSetBitsBeforeIndex(choice)].objectiveValues[objIndex]; |
|||
} |
|||
} |
|||
linEqSolver->solveEquations(x, b); |
|||
for (uint64_t state = 0; state < choices.size(); ++state) { |
|||
result[state].objectiveValues.push_back(x[state]); |
|||
} |
|||
} |
|||
|
|||
rewardUnfolding.setSolutionForCurrentEpoch(result); |
|||
} |
|||
|
|||
template <class SparseMdpModelType> |
|||
std::vector<typename SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::ValueType> SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::getUnderApproximationOfInitialStateResults() const { |
|||
STORM_LOG_THROW(underApproxResult, storm::exceptions::InvalidOperationException, "Tried to retrieve results but check(..) has not been called before."); |
|||
return underApproxResult.get(); |
|||
} |
|||
|
|||
template <class SparseMdpModelType> |
|||
std::vector<typename SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::ValueType> SparseMdpRewardBoundedPcaaWeightVectorChecker<SparseMdpModelType>::getOverApproximationOfInitialStateResults() const { |
|||
STORM_LOG_THROW(overApproxResult, storm::exceptions::InvalidOperationException, "Tried to retrieve results but check(..) has not been called before."); |
|||
return overApproxResult.get(); |
|||
} |
|||
|
|||
template class SparseMdpRewardBoundedPcaaWeightVectorChecker<storm::models::sparse::Mdp<double>>; |
|||
#ifdef STORM_HAVE_CARL
|
|||
template class SparseMdpRewardBoundedPcaaWeightVectorChecker<storm::models::sparse::Mdp<storm::RationalNumber>>; |
|||
#endif
|
|||
|
|||
} |
|||
} |
|||
} |
@ -0,0 +1,59 @@ |
|||
#pragma once |
|||
|
|||
#include <vector> |
|||
|
|||
#include "storm/modelchecker/multiobjective/pcaa/PcaaWeightVectorChecker.h" |
|||
#include "storm/modelchecker/multiobjective/rewardbounded/MultiDimensionalRewardUnfolding.h" |
|||
|
|||
namespace storm { |
|||
namespace modelchecker { |
|||
namespace multiobjective { |
|||
|
|||
/*! |
|||
* Helper Class that takes preprocessed Pcaa data and a weight vector and ... |
|||
* - computes the maximal expected reward w.r.t. the weighted sum of the rewards of the individual objectives |
|||
* - extracts the scheduler that induces this maximum |
|||
* - computes for each objective the value induced by this scheduler |
|||
*/ |
|||
template <class SparseMdpModelType> |
|||
class SparseMdpRewardBoundedPcaaWeightVectorChecker : public PcaaWeightVectorChecker<SparseMdpModelType> { |
|||
public: |
|||
typedef typename SparseMdpModelType::ValueType ValueType; |
|||
typedef typename SparseMdpModelType::RewardModelType RewardModelType; |
|||
|
|||
SparseMdpRewardBoundedPcaaWeightVectorChecker(SparseMultiObjectivePreprocessorResult<SparseMdpModelType> const& preprocessorResult); |
|||
|
|||
virtual ~SparseMdpRewardBoundedPcaaWeightVectorChecker() = default; |
|||
|
|||
/*! |
|||
* - computes the optimal expected reward w.r.t. the weighted sum of the rewards of the individual objectives |
|||
* - extracts the scheduler that induces this optimum |
|||
* - computes for each objective the value induced by this scheduler |
|||
*/ |
|||
virtual void check(std::vector<ValueType> const& weightVector) override; |
|||
|
|||
/*! |
|||
* Retrieves the results of the individual objectives at the initial state of the given model. |
|||
* Note that check(..) has to be called before retrieving results. Otherwise, an exception is thrown. |
|||
* Also note that there is no guarantee that the under/over approximation is in fact correct |
|||
* as long as the underlying solution methods are unsound (e.g., standard value iteration). |
|||
*/ |
|||
virtual std::vector<ValueType> getUnderApproximationOfInitialStateResults() const override; |
|||
virtual std::vector<ValueType> getOverApproximationOfInitialStateResults() const override; |
|||
|
|||
private: |
|||
|
|||
void computeEpochSolution(typename MultiDimensionalRewardUnfolding<ValueType>::Epoch const& epoch, std::vector<ValueType> const& weightVector); |
|||
|
|||
|
|||
MultiDimensionalRewardUnfolding<ValueType> rewardUnfolding; |
|||
|
|||
boost::optional<std::vector<ValueType>> underApproxResult; |
|||
boost::optional<std::vector<ValueType>> overApproxResult; |
|||
|
|||
|
|||
}; |
|||
|
|||
} |
|||
} |
|||
} |
Write
Preview
Loading…
Cancel
Save
Reference in new issue