diff --git a/src/modelchecker/prctl/SparseMdpPrctlModelChecker.cpp b/src/modelchecker/prctl/SparseMdpPrctlModelChecker.cpp index 9fa78f041..00045105d 100644 --- a/src/modelchecker/prctl/SparseMdpPrctlModelChecker.cpp +++ b/src/modelchecker/prctl/SparseMdpPrctlModelChecker.cpp @@ -341,18 +341,19 @@ namespace storm { // Get some data members for convenience. typename storm::storage::SparseMatrix const& transitionMatrix = this->getModel().getTransitionMatrix(); + std::vector const& nondeterministicChoiceIndices = this->getModel().getNondeterministicChoiceIndices(); ValueType one = storm::utility::one(); ValueType zero = storm::utility::zero(); //first calculate LRA for the Maximal End Components. storm::storage::BitVector statesInMecs(numOfStates); std::vector stateToMecIndexMap(transitionMatrix.getColumnCount()); - std::vector mecLra(mecDecomposition.size(), zero); + std::vector lraValuesForEndComponents(mecDecomposition.size(), zero); for (uint_fast64_t currentMecIndex = 0; currentMecIndex < mecDecomposition.size(); ++currentMecIndex) { storm::storage::MaximalEndComponent const& mec = mecDecomposition[currentMecIndex]; - mecLra[currentMecIndex] = computeLraForMaximalEndComponent(minimize, transitionMatrix, psiStates, mec); + lraValuesForEndComponents[currentMecIndex] = computeLraForMaximalEndComponent(minimize, transitionMatrix, psiStates, mec); // Gather information for later use. for (auto const& stateChoicesPair : mec) { @@ -361,66 +362,122 @@ namespace storm { } } - //calculate LRA for states not in MECs as expected reachability rewards - //we add an auxiliary target state, every state in any MEC has a choice to move to that state with prob 1. - //This transitions have the LRA of the MEC as reward. - //The expected reward corresponds to sum of LRAs in MEC weighted by the reachability probability of the MEC - - //we now build the submatrix of the transition matrix of the system with the auxiliary state, that only contains the states from - //the original state, i.e. all "maybe-states" - storm::storage::SparseMatrixBuilder rewardEquationSystemMatrixBuilder(transitionMatrix.getRowCount() + statesInMecs.getNumberOfSetBits(), - transitionMatrix.getColumnCount(), - transitionMatrix.getEntryCount(), - false, - true, - transitionMatrix.getRowGroupCount()); - - std::vector rewardRightSide(transitionMatrix.getRowCount() + statesInMecs.getNumberOfSetBits(), zero); - - uint_fast64_t rowIndex = 0; - uint_fast64_t oldRowIndex = 0; - for (uint_fast64_t rowGroupIndex = 0; rowGroupIndex < transitionMatrix.getRowGroupCount(); ++rowGroupIndex) { - rewardEquationSystemMatrixBuilder.newRowGroup(rowIndex); - for (uint_fast64_t i = 0; i < transitionMatrix.getRowGroupSize(rowGroupIndex); ++i) { - //we have to make sure that an entry exists for all diagonal elements, even if it is zero. Other wise the call to convertToEquationSystem will produce wrong results or fail. - bool foundDiagonal = false; - for (auto entry : transitionMatrix.getRow(oldRowIndex)) { - if (!foundDiagonal) { - if (entry.getColumn() > rowGroupIndex) { - foundDiagonal = true; - rewardEquationSystemMatrixBuilder.addNextValue(rowIndex, rowGroupIndex, zero); - } else if (entry.getColumn() == rowGroupIndex) { - foundDiagonal = true; - } + // For fast transition rewriting, we build some auxiliary data structures. + storm::storage::BitVector statesNotContainedInAnyMec = ~statesInMecs; + uint_fast64_t firstAuxiliaryStateIndex = statesNotContainedInAnyMec.getNumberOfSetBits(); + uint_fast64_t lastStateNotInMecs = 0; + uint_fast64_t numberOfStatesNotInMecs = 0; + std::vector statesNotInMecsBeforeIndex; + statesNotInMecsBeforeIndex.reserve(this->getModel().getNumberOfStates()); + for (auto state : statesNotContainedInAnyMec) { + while (lastStateNotInMecs <= state) { + statesNotInMecsBeforeIndex.push_back(numberOfStatesNotInMecs); + ++lastStateNotInMecs; + } + ++numberOfStatesNotInMecs; + } + + // Finally, we are ready to create the SSP matrix and right-hand side of the SSP. + std::vector b; + typename storm::storage::SparseMatrixBuilder sspMatrixBuilder(0, 0, 0, false, true, numberOfStatesNotInMecs + mecDecomposition.size()); + + // If the source state is not contained in any MEC, we copy its choices (and perform the necessary modifications). + uint_fast64_t currentChoice = 0; + for (auto state : statesNotContainedInAnyMec) { + sspMatrixBuilder.newRowGroup(currentChoice); + + for (uint_fast64_t choice = nondeterministicChoiceIndices[state]; choice < nondeterministicChoiceIndices[state + 1]; ++choice, ++currentChoice) { + std::vector auxiliaryStateToProbabilityMap(mecDecomposition.size()); + b.push_back(storm::utility::zero()); + + for (auto element : transitionMatrix.getRow(choice)) { + if (statesNotContainedInAnyMec.get(element.getColumn())) { + // If the target state is not contained in an MEC, we can copy over the entry. + sspMatrixBuilder.addNextValue(currentChoice, statesNotInMecsBeforeIndex[element.getColumn()], element.getValue()); + } else { + // If the target state is contained in MEC i, we need to add the probability to the corresponding field in the vector + // so that we are able to write the cumulative probability to the MEC into the matrix. + auxiliaryStateToProbabilityMap[stateToMecIndexMap[element.getColumn()]] += element.getValue(); } - //copy over values from transition matrix of the actual system - rewardEquationSystemMatrixBuilder.addNextValue(rowIndex, entry.getColumn(), entry.getValue()); } - if (!foundDiagonal) { - rewardEquationSystemMatrixBuilder.addNextValue(rowIndex, rowGroupIndex, zero); + + // Now insert all (cumulative) probability values that target an MEC. + for (uint_fast64_t mecIndex = 0; mecIndex < auxiliaryStateToProbabilityMap.size(); ++mecIndex) { + if (auxiliaryStateToProbabilityMap[mecIndex] != 0) { + sspMatrixBuilder.addNextValue(currentChoice, firstAuxiliaryStateIndex + mecIndex, auxiliaryStateToProbabilityMap[mecIndex]); + } } - ++oldRowIndex; - ++rowIndex; } - if (statesInMecs.get(rowGroupIndex)) { - //put the transition-reward on the right side - rewardRightSide[rowIndex] = mecLra[stateToMecIndexMap[rowGroupIndex]]; - //add the choice where we go to the auxiliary state, which is a row with all zeros in the submatrix we build - rewardEquationSystemMatrixBuilder.addNextValue(rowIndex, rowGroupIndex, zero); - ++rowIndex; + } + + // Now we are ready to construct the choices for the auxiliary states. + for (uint_fast64_t mecIndex = 0; mecIndex < mecDecomposition.size(); ++mecIndex) { + storm::storage::MaximalEndComponent const& mec = mecDecomposition[mecIndex]; + sspMatrixBuilder.newRowGroup(currentChoice); + + for (auto const& stateChoicesPair : mec) { + uint_fast64_t state = stateChoicesPair.first; + boost::container::flat_set const& choicesInMec = stateChoicesPair.second; + + for (uint_fast64_t choice = nondeterministicChoiceIndices[state]; choice < nondeterministicChoiceIndices[state + 1]; ++choice) { + std::vector auxiliaryStateToProbabilityMap(mecDecomposition.size()); + + // If the choice is not contained in the MEC itself, we have to add a similar distribution to the auxiliary state. + if (choicesInMec.find(choice) == choicesInMec.end()) { + b.push_back(storm::utility::zero()); + + for (auto element : transitionMatrix.getRow(choice)) { + if (statesNotContainedInAnyMec.get(element.getColumn())) { + // If the target state is not contained in an MEC, we can copy over the entry. + sspMatrixBuilder.addNextValue(currentChoice, statesNotInMecsBeforeIndex[element.getColumn()], element.getValue()); + } else { + // If the target state is contained in MEC i, we need to add the probability to the corresponding field in the vector + // so that we are able to write the cumulative probability to the MEC into the matrix. + auxiliaryStateToProbabilityMap[stateToMecIndexMap[element.getColumn()]] += element.getValue(); + } + } + + // Now insert all (cumulative) probability values that target an MEC. + for (uint_fast64_t targetMecIndex = 0; targetMecIndex < auxiliaryStateToProbabilityMap.size(); ++targetMecIndex) { + if (auxiliaryStateToProbabilityMap[targetMecIndex] != 0) { + // If the target MEC is the same as the current one, instead of adding a transition, we need to add the weighted reward + // to the right-hand side vector of the SSP. + if (mecIndex == targetMecIndex) { + b.back() += auxiliaryStateToProbabilityMap[mecIndex] * lraValuesForEndComponents[mecIndex]; + } else { + // Otherwise, we add a transition to the auxiliary state that is associated with the target MEC. + sspMatrixBuilder.addNextValue(currentChoice, firstAuxiliaryStateIndex + targetMecIndex, auxiliaryStateToProbabilityMap[targetMecIndex]); + } + } + } + + ++currentChoice; + } + } } + + // For each auxiliary state, there is the option to achieve the reward value of the LRA associated with the MEC. + ++currentChoice; + b.push_back(lraValuesForEndComponents[mecIndex]); } - storm::storage::SparseMatrix rewardEquationSystemMatrix = rewardEquationSystemMatrixBuilder.build(); - rewardEquationSystemMatrix.convertToEquationSystem(); + // Finalize the matrix and solve the corresponding system of equations. + storm::storage::SparseMatrix sspMatrix = sspMatrixBuilder.build(currentChoice); - std::vector result(rewardEquationSystemMatrix.getColumnCount(), one); + std::vector sspResult(numberOfStatesNotInMecs + mecDecomposition.size()); + std::unique_ptr> solver = MinMaxLinearEquationSolverFactory->create(sspMatrix); + solver->solveEquationSystem(minimize, sspResult, b); - { - auto solver = this->MinMaxLinearEquationSolverFactory->create(rewardEquationSystemMatrix); - solver->solveEquationSystem(minimize, result, rewardRightSide); + // Prepare result vector. + std::vector result(this->getModel().getNumberOfStates()); + + // Set the values for states not contained in MECs. + storm::utility::vector::setVectorValues(result, statesNotContainedInAnyMec, sspResult); + + // Set the values for all states in MECs. + for (auto state : statesInMecs) { + result[state] = sspResult[firstAuxiliaryStateIndex + stateToMecIndexMap[state]]; } - return result; } @@ -455,16 +512,16 @@ namespace storm { // Now, based on the type of the state, create a suitable constraint. for (auto choice : stateChoicesPair.second) { - storm::expressions::Expression constraint = solver->getConstant(1); - ValueType w = 0; + storm::expressions::Expression constraint = -lambda; + ValueType r = 0; for (auto element : transitionMatrix.getRow(choice)) { constraint = constraint + stateToVariableMap.at(element.getColumn()) * solver->getConstant(element.getValue()); if (psiStates.get(element.getColumn())) { - w += element.getValue(); + r += element.getValue(); } } - constraint = constraint - solver->getConstant(w) * lambda; + constraint = solver->getConstant(r) + constraint; if (minimize) { constraint = stateToVariableMap.at(state) <= constraint; diff --git a/test/functional/modelchecker/SparseMdpPrctlModelCheckerTest.cpp b/test/functional/modelchecker/SparseMdpPrctlModelCheckerTest.cpp index 3ea26261f..d3210a395 100644 --- a/test/functional/modelchecker/SparseMdpPrctlModelCheckerTest.cpp +++ b/test/functional/modelchecker/SparseMdpPrctlModelCheckerTest.cpp @@ -195,7 +195,7 @@ TEST(SparseMdpPrctlModelCheckerTest, AsynchronousLeader) { EXPECT_NEAR(4.285689611, quantitativeResult6[0], storm::settings::nativeEquationSolverSettings().getPrecision()); } -TEST(SparseMdpPrctlModelCheckerTest, LRA) { +TEST(SparseMdpPrctlModelCheckerTest, LRA_SingleMec) { storm::storage::SparseMatrixBuilder matrixBuilder; std::shared_ptr> mdp; @@ -216,10 +216,314 @@ TEST(SparseMdpPrctlModelCheckerTest, LRA) { auto labelFormula = std::make_shared("a"); auto lraFormula = std::make_shared(storm::logic::OptimalityType::Maximize, labelFormula); - std::unique_ptr result = checker.check(*lraFormula); - storm::modelchecker::ExplicitQuantitativeCheckResult& quantitativeResult = result->asExplicitQuantitativeCheckResult(); + std::unique_ptr result = std::move(checker.check(*lraFormula)); + storm::modelchecker::ExplicitQuantitativeCheckResult& quantitativeResult1 = result->asExplicitQuantitativeCheckResult(); + + EXPECT_NEAR(.5, quantitativeResult1[0], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(.5, quantitativeResult1[1], storm::settings::nativeEquationSolverSettings().getPrecision()); + + lraFormula = std::make_shared(storm::logic::OptimalityType::Minimize, labelFormula); + + result = std::move(checker.check(*lraFormula)); + storm::modelchecker::ExplicitQuantitativeCheckResult& quantitativeResult2 = result->asExplicitQuantitativeCheckResult(); + + EXPECT_NEAR(.5, quantitativeResult2[0], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(.5, quantitativeResult2[1], storm::settings::nativeEquationSolverSettings().getPrecision()); + } + { + matrixBuilder = storm::storage::SparseMatrixBuilder(2, 2, 4); + matrixBuilder.addNextValue(0, 0, .5); + matrixBuilder.addNextValue(0, 1, .5); + matrixBuilder.addNextValue(1, 0, .5); + matrixBuilder.addNextValue(1, 1, .5); + storm::storage::SparseMatrix transitionMatrix = matrixBuilder.build(); + + storm::models::sparse::StateLabeling ap(2); + ap.addLabel("a"); + ap.addLabelToState("a", 1); + + mdp.reset(new storm::models::sparse::Mdp(transitionMatrix, ap, boost::none, boost::none, boost::none)); + + storm::modelchecker::SparseMdpPrctlModelChecker checker(*mdp, std::unique_ptr>(new storm::utility::solver::NativeMinMaxLinearEquationSolverFactory())); + + auto labelFormula = std::make_shared("a"); + auto lraFormula = std::make_shared(storm::logic::OptimalityType::Maximize, labelFormula); + + std::unique_ptr result = std::move(checker.check(*lraFormula)); + storm::modelchecker::ExplicitQuantitativeCheckResult& quantitativeResult1 = result->asExplicitQuantitativeCheckResult(); + + EXPECT_NEAR(.5, quantitativeResult1[0], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(.5, quantitativeResult1[1], storm::settings::nativeEquationSolverSettings().getPrecision()); + + lraFormula = std::make_shared(storm::logic::OptimalityType::Minimize, labelFormula); + + result = std::move(checker.check(*lraFormula)); + storm::modelchecker::ExplicitQuantitativeCheckResult& quantitativeResult2 = result->asExplicitQuantitativeCheckResult(); + + EXPECT_NEAR(.5, quantitativeResult2[0], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(.5, quantitativeResult2[1], storm::settings::nativeEquationSolverSettings().getPrecision()); + } + + { + matrixBuilder = storm::storage::SparseMatrixBuilder(4, 3, 4, true, true, 3); + matrixBuilder.newRowGroup(0); + matrixBuilder.addNextValue(0, 1, 1); + matrixBuilder.newRowGroup(1); + matrixBuilder.addNextValue(1, 0, 1); + matrixBuilder.addNextValue(2, 2, 1); + matrixBuilder.newRowGroup(3); + matrixBuilder.addNextValue(3, 0, 1); + storm::storage::SparseMatrix transitionMatrix = matrixBuilder.build(); + + storm::models::sparse::StateLabeling ap(3); + ap.addLabel("a"); + ap.addLabelToState("a", 2); + ap.addLabel("b"); + ap.addLabelToState("b", 0); + ap.addLabel("c"); + ap.addLabelToState("c", 0); + ap.addLabelToState("c", 2); + + mdp.reset(new storm::models::sparse::Mdp(transitionMatrix, ap, boost::none, boost::none, boost::none)); + + storm::modelchecker::SparseMdpPrctlModelChecker checker(*mdp, std::unique_ptr>(new storm::utility::solver::NativeMinMaxLinearEquationSolverFactory())); + + auto labelFormula = std::make_shared("a"); + auto lraFormula = std::make_shared(storm::logic::OptimalityType::Maximize, labelFormula); + + std::unique_ptr result = std::move(checker.check(*lraFormula)); + storm::modelchecker::ExplicitQuantitativeCheckResult& quantitativeResult1 = result->asExplicitQuantitativeCheckResult(); + + EXPECT_NEAR(1. / 3., quantitativeResult1[0], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(1. / 3., quantitativeResult1[1], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(1. / 3., quantitativeResult1[2], storm::settings::nativeEquationSolverSettings().getPrecision()); + + lraFormula = std::make_shared(storm::logic::OptimalityType::Minimize, labelFormula); + + result = std::move(checker.check(*lraFormula)); + storm::modelchecker::ExplicitQuantitativeCheckResult& quantitativeResult2 = result->asExplicitQuantitativeCheckResult(); + + EXPECT_NEAR(0.0, quantitativeResult2[0], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.0, quantitativeResult2[1], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.0, quantitativeResult2[2], storm::settings::nativeEquationSolverSettings().getPrecision()); + + labelFormula = std::make_shared("b"); + lraFormula = std::make_shared(storm::logic::OptimalityType::Maximize, labelFormula); + + result = std::move(checker.check(*lraFormula)); + storm::modelchecker::ExplicitQuantitativeCheckResult& quantitativeResult3 = result->asExplicitQuantitativeCheckResult(); + + EXPECT_NEAR(0.5, quantitativeResult3[0], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.5, quantitativeResult3[1], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.5, quantitativeResult3[2], storm::settings::nativeEquationSolverSettings().getPrecision()); + + lraFormula = std::make_shared(storm::logic::OptimalityType::Minimize, labelFormula); + + result = std::move(checker.check(*lraFormula)); + storm::modelchecker::ExplicitQuantitativeCheckResult& quantitativeResult4 = result->asExplicitQuantitativeCheckResult(); + + EXPECT_NEAR(1. / 3., quantitativeResult4[0], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(1. / 3., quantitativeResult4[1], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(1. / 3., quantitativeResult4[2], storm::settings::nativeEquationSolverSettings().getPrecision()); + + labelFormula = std::make_shared("c"); + lraFormula = std::make_shared(storm::logic::OptimalityType::Maximize, labelFormula); + + result = std::move(checker.check(*lraFormula)); + storm::modelchecker::ExplicitQuantitativeCheckResult& quantitativeResult5 = result->asExplicitQuantitativeCheckResult(); + + EXPECT_NEAR(2. / 3., quantitativeResult5[0], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(2. / 3., quantitativeResult5[1], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(2. / 3., quantitativeResult5[2], storm::settings::nativeEquationSolverSettings().getPrecision()); - EXPECT_NEAR(.5, quantitativeResult[0], storm::settings::nativeEquationSolverSettings().getPrecision()); - EXPECT_NEAR(.5, quantitativeResult[1], storm::settings::nativeEquationSolverSettings().getPrecision()); + lraFormula = std::make_shared(storm::logic::OptimalityType::Minimize, labelFormula); + + result = std::move(checker.check(*lraFormula)); + storm::modelchecker::ExplicitQuantitativeCheckResult& quantitativeResult6 = result->asExplicitQuantitativeCheckResult(); + + EXPECT_NEAR(0.5, quantitativeResult6[0], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.5, quantitativeResult6[1], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.5, quantitativeResult6[2], storm::settings::nativeEquationSolverSettings().getPrecision()); } } + +TEST(SparseMdpPrctlModelCheckerTest, LRA) { + storm::storage::SparseMatrixBuilder matrixBuilder; + std::shared_ptr> mdp; + + { + matrixBuilder = storm::storage::SparseMatrixBuilder(4, 3, 4, true, true, 3); + matrixBuilder.newRowGroup(0); + matrixBuilder.addNextValue(0, 1, 1); + matrixBuilder.newRowGroup(1); + matrixBuilder.addNextValue(1, 1, 1); + matrixBuilder.addNextValue(2, 2, 1); + matrixBuilder.newRowGroup(3); + matrixBuilder.addNextValue(3, 2, 1); + storm::storage::SparseMatrix transitionMatrix = matrixBuilder.build(); + + storm::models::sparse::StateLabeling ap(3); + ap.addLabel("a"); + ap.addLabelToState("a", 0); + ap.addLabel("b"); + ap.addLabelToState("b", 1); + ap.addLabel("c"); + ap.addLabelToState("c", 2); + + mdp.reset(new storm::models::sparse::Mdp(transitionMatrix, ap, boost::none, boost::none, boost::none)); + + storm::modelchecker::SparseMdpPrctlModelChecker checker(*mdp, std::unique_ptr>(new storm::utility::solver::NativeMinMaxLinearEquationSolverFactory())); + + auto labelFormula = std::make_shared("a"); + auto lraFormula = std::make_shared(storm::logic::OptimalityType::Maximize, labelFormula); + + std::unique_ptr result = std::move(checker.check(*lraFormula)); + storm::modelchecker::ExplicitQuantitativeCheckResult& quantitativeResult1 = result->asExplicitQuantitativeCheckResult(); + + EXPECT_NEAR(0.0, quantitativeResult1[0], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.0, quantitativeResult1[1], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.0, quantitativeResult1[2], storm::settings::nativeEquationSolverSettings().getPrecision()); + + lraFormula = std::make_shared(storm::logic::OptimalityType::Minimize, labelFormula); + + result = std::move(checker.check(*lraFormula)); + storm::modelchecker::ExplicitQuantitativeCheckResult& quantitativeResult2 = result->asExplicitQuantitativeCheckResult(); + + EXPECT_NEAR(0.0, quantitativeResult2[0], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.0, quantitativeResult2[1], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.0, quantitativeResult2[2], storm::settings::nativeEquationSolverSettings().getPrecision()); + + labelFormula = std::make_shared("b"); + lraFormula = std::make_shared(storm::logic::OptimalityType::Maximize, labelFormula); + + result = std::move(checker.check(*lraFormula)); + storm::modelchecker::ExplicitQuantitativeCheckResult& quantitativeResult3 = result->asExplicitQuantitativeCheckResult(); + + EXPECT_NEAR(1.0, quantitativeResult3[0], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(1.0, quantitativeResult3[1], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.0, quantitativeResult3[2], storm::settings::nativeEquationSolverSettings().getPrecision()); + + lraFormula = std::make_shared(storm::logic::OptimalityType::Minimize, labelFormula); + + result = std::move(checker.check(*lraFormula)); + storm::modelchecker::ExplicitQuantitativeCheckResult& quantitativeResult4 = result->asExplicitQuantitativeCheckResult(); + + EXPECT_NEAR(0.0, quantitativeResult4[0], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.0, quantitativeResult4[1], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.0, quantitativeResult4[2], storm::settings::nativeEquationSolverSettings().getPrecision()); + + labelFormula = std::make_shared("c"); + lraFormula = std::make_shared(storm::logic::OptimalityType::Maximize, labelFormula); + + result = std::move(checker.check(*lraFormula)); + storm::modelchecker::ExplicitQuantitativeCheckResult& quantitativeResult5 = result->asExplicitQuantitativeCheckResult(); + + EXPECT_NEAR(1.0, quantitativeResult5[0], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(1.0, quantitativeResult5[1], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(1.0, quantitativeResult5[2], storm::settings::nativeEquationSolverSettings().getPrecision()); + + lraFormula = std::make_shared(storm::logic::OptimalityType::Minimize, labelFormula); + + result = std::move(checker.check(*lraFormula)); + storm::modelchecker::ExplicitQuantitativeCheckResult& quantitativeResult6 = result->asExplicitQuantitativeCheckResult(); + + EXPECT_NEAR(0.0, quantitativeResult6[0], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.0, quantitativeResult6[1], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(1.0, quantitativeResult6[2], storm::settings::nativeEquationSolverSettings().getPrecision()); + } + { + matrixBuilder = storm::storage::SparseMatrixBuilder(22, 15, 28, true, true, 15); + matrixBuilder.newRowGroup(0); + matrixBuilder.addNextValue(0, 1, 1); + matrixBuilder.newRowGroup(1); + matrixBuilder.addNextValue(1, 0, 1); + matrixBuilder.addNextValue(2, 2, 1); + matrixBuilder.addNextValue(3, 4, 0.7); + matrixBuilder.addNextValue(3, 6, 0.3); + matrixBuilder.newRowGroup(4); + matrixBuilder.addNextValue(4, 0, 1); + + matrixBuilder.newRowGroup(5); + matrixBuilder.addNextValue(5, 4, 1); + matrixBuilder.addNextValue(6, 5, 0.8); + matrixBuilder.addNextValue(6, 9, 0.2); + matrixBuilder.newRowGroup(7); + matrixBuilder.addNextValue(7, 3, 1); + matrixBuilder.addNextValue(8, 5, 1); + matrixBuilder.newRowGroup(9); + matrixBuilder.addNextValue(9, 3, 1); + + matrixBuilder.newRowGroup(10); + matrixBuilder.addNextValue(10, 7, 1); + matrixBuilder.newRowGroup(11); + matrixBuilder.addNextValue(11, 6, 1); + matrixBuilder.addNextValue(12, 8, 1); + matrixBuilder.newRowGroup(13); + matrixBuilder.addNextValue(13, 6, 1); + + matrixBuilder.newRowGroup(14); + matrixBuilder.addNextValue(14, 10, 1); + matrixBuilder.newRowGroup(15); + matrixBuilder.addNextValue(15, 9, 1); + matrixBuilder.addNextValue(16, 11, 1); + matrixBuilder.newRowGroup(17); + matrixBuilder.addNextValue(17, 9, 1); + + matrixBuilder.newRowGroup(18); + matrixBuilder.addNextValue(18, 5, 0.4); + matrixBuilder.addNextValue(18, 8, 0.3); + matrixBuilder.addNextValue(18, 11, 0.3); + + matrixBuilder.newRowGroup(19); + matrixBuilder.addNextValue(19, 7, 0.7); + matrixBuilder.addNextValue(19, 12, 0.3); + + matrixBuilder.newRowGroup(20); + matrixBuilder.addNextValue(20, 12, 0.1); + matrixBuilder.addNextValue(20, 13, 0.9); + matrixBuilder.addNextValue(21, 12, 1); + + storm::storage::SparseMatrix transitionMatrix = matrixBuilder.build(); + + storm::models::sparse::StateLabeling ap(15); + ap.addLabel("a"); + ap.addLabelToState("a", 1); + ap.addLabelToState("a", 4); + ap.addLabelToState("a", 5); + ap.addLabelToState("a", 7); + ap.addLabelToState("a", 11); + ap.addLabelToState("a", 13); + ap.addLabelToState("a", 14); + + mdp.reset(new storm::models::sparse::Mdp(transitionMatrix, ap, boost::none, boost::none, boost::none)); + + storm::modelchecker::SparseMdpPrctlModelChecker checker(*mdp, std::unique_ptr>(new storm::utility::solver::NativeMinMaxLinearEquationSolverFactory())); + + auto labelFormula = std::make_shared("a"); + auto lraFormula = std::make_shared(storm::logic::OptimalityType::Maximize, labelFormula); + + std::unique_ptr result = std::move(checker.check(*lraFormula)); + storm::modelchecker::ExplicitQuantitativeCheckResult& quantitativeResult1 = result->asExplicitQuantitativeCheckResult(); + + EXPECT_NEAR(37./60., quantitativeResult1[0], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(2./3., quantitativeResult1[3], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.5, quantitativeResult1[6], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(1./3., quantitativeResult1[9], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(31./60., quantitativeResult1[12], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(101./200., quantitativeResult1[13], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(31./60., quantitativeResult1[14], storm::settings::nativeEquationSolverSettings().getPrecision()); + + lraFormula = std::make_shared(storm::logic::OptimalityType::Minimize, labelFormula); + + result = std::move(checker.check(*lraFormula)); + storm::modelchecker::ExplicitQuantitativeCheckResult& quantitativeResult2 = result->asExplicitQuantitativeCheckResult(); + + EXPECT_NEAR(1./3., quantitativeResult2[0], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.4, quantitativeResult2[3], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(1./3., quantitativeResult2[6], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(0.0, quantitativeResult2[9], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(.26, quantitativeResult2[12], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(467./1500., quantitativeResult2[13], storm::settings::nativeEquationSolverSettings().getPrecision()); + EXPECT_NEAR(.26, quantitativeResult2[14], storm::settings::nativeEquationSolverSettings().getPrecision()); + } +} \ No newline at end of file