Browse Source

Merge branch 'philippTopologicalRevival' into cuda_integration

Conflicts:
	src/storage/Decomposition.h
	src/storage/SparseMatrix.cpp
	src/storage/SparseMatrix.h
	src/storage/StronglyConnectedComponentDecomposition.cpp
	src/storage/StronglyConnectedComponentDecomposition.h
	src/storm.cpp
	test/functional/storage/StronglyConnectedComponentDecompositionTest.cpp

Former-commit-id: 27e660a295
main
David_Korzeniewski 10 years ago
parent
commit
06dfecda55
  1. 3
      .gitmodules
  2. 25
      CMakeLists.txt
  3. 2
      examples/mdp/scc/scc.pctl
  4. 1
      resources/3rdparty/cusplibrary
  5. 56
      resources/cmake/FindCusp.cmake
  6. 52
      resources/cmake/FindThrust.cmake
  7. 64
      resources/cudaForStorm/CMakeAlignmentCheck.cpp
  8. 31
      resources/cudaForStorm/CMakeFloatAlignmentCheck.cpp
  9. 294
      resources/cudaForStorm/CMakeLists.txt
  10. 6
      resources/cudaForStorm/srcCuda/allCudaKernels.h
  11. 0
      resources/cudaForStorm/srcCuda/bandWidth.cu
  12. 0
      resources/cudaForStorm/srcCuda/bandWidth.h
  13. 286
      resources/cudaForStorm/srcCuda/basicAdd.cu
  14. 9
      resources/cudaForStorm/srcCuda/basicAdd.h
  15. 879
      resources/cudaForStorm/srcCuda/basicValueIteration.cu
  16. 107
      resources/cudaForStorm/srcCuda/basicValueIteration.h
  17. 19
      resources/cudaForStorm/srcCuda/cudaForStorm.h
  18. 49
      resources/cudaForStorm/srcCuda/cuspExtension.h
  19. 361
      resources/cudaForStorm/srcCuda/cuspExtensionDouble.h
  20. 375
      resources/cudaForStorm/srcCuda/cuspExtensionFloat.h
  21. 39
      resources/cudaForStorm/srcCuda/kernelSwitchTest.cu
  22. 1
      resources/cudaForStorm/srcCuda/kernelSwitchTest.h
  23. 33
      resources/cudaForStorm/srcCuda/utility.cu
  24. 12
      resources/cudaForStorm/srcCuda/utility.h
  25. 28
      resources/cudaForStorm/srcCuda/version.cu
  26. 16
      resources/cudaForStorm/srcCuda/version.h
  27. 21
      resources/cudaForStorm/storm-cudaplugin-config.h.in
  28. 10
      src/counterexamples/PathBasedSubsystemGenerator.h
  29. 101
      src/modelchecker/prctl/TopologicalValueIterationMdpPrctlModelChecker.h
  30. 111
      src/models/PseudoModel.cpp
  31. 90
      src/models/PseudoModel.h
  32. 3
      src/solver/NativeNondeterministicLinearEquationSolver.cpp
  33. 2
      src/solver/NativeNondeterministicLinearEquationSolver.h
  34. 467
      src/solver/TopologicalValueIterationNondeterministicLinearEquationSolver.cpp
  35. 97
      src/solver/TopologicalValueIterationNondeterministicLinearEquationSolver.h
  36. 10
      src/utility/graph.h
  37. 19
      src/utility/vector.h
  38. 3
      storm-config.h.in
  39. 240
      test/functional/modelchecker/TopologicalValueIterationMdpPrctlModelCheckerTest.cpp
  40. 354
      test/functional/solver/CudaPluginTest.cpp
  41. 163
      test/performance/modelchecker/TopologicalValueIterationMdpPrctlModelCheckerTest.cpp

3
.gitmodules

@ -0,0 +1,3 @@
[submodule "resources/3rdparty/cusplibrary"]
path = resources/3rdparty/cusplibrary
url = https://github.com/cusplibrary/cusplibrary.git

25
CMakeLists.txt

@ -27,6 +27,7 @@ option(STORM_USE_INTELTBB "Sets whether the Intel TBB libraries should be used."
option(STORM_USE_COTIRE "Sets whether Cotire should be used (for building precompiled headers)." OFF)
option(LINK_LIBCXXABI "Sets whether libc++abi should be linked." OFF)
option(USE_LIBCXX "Sets whether the standard library is libc++." OFF)
option(STORM_USE_CUDAFORSTORM "Sets whether StoRM is built with its CUDA extension." OFF)
set(GUROBI_ROOT "" CACHE STRING "The root directory of Gurobi (if available).")
set(Z3_ROOT "" CACHE STRING "The root directory of Z3 (if available).")
set(CUDA_ROOT "" CACHE STRING "The root directory of CUDA.")
@ -212,6 +213,13 @@ endif()
# glpk defines
set(STORM_CPP_GLPK_DEF "define")
# CUDA Defines
if (STORM_USE_CUDAFORSTORM)
set(STORM_CPP_CUDAFORSTORM_DEF "define")
else()
set(STORM_CPP_CUDAFORSTORM_DEF "undef")
endif()
# Z3 Defines
if (ENABLE_Z3)
set(STORM_CPP_Z3_DEF "define")
@ -352,6 +360,9 @@ endif()
if (ENABLE_Z3)
link_directories("${Z3_ROOT}/bin")
endif()
if (STORM_USE_CUDAFORSTORM)
link_directories("${PROJECT_BINARY_DIR}/cudaForStorm/lib")
endif()
if ((NOT Boost_LIBRARY_DIRS) OR ("${Boost_LIBRARY_DIRS}" STREQUAL ""))
set(Boost_LIBRARY_DIRS "${Boost_INCLUDE_DIRS}/stage/lib")
endif ()
@ -386,6 +397,20 @@ target_link_libraries(storm ${Boost_LIBRARIES})
#message(STATUS "BOOST_INCLUDE_DIRS is ${Boost_INCLUDE_DIRS}")
#message(STATUS "BOOST_LIBRARY_DIRS is ${Boost_LIBRARY_DIRS}")
#############################################################
##
## CUDA For Storm
##
#############################################################
if (STORM_USE_CUDAFORSTORM)
message (STATUS "StoRM - Linking with CudaForStorm")
include_directories("${PROJECT_BINARY_DIR}/cudaForStorm/include")
include_directories("${PROJECT_SOURCE_DIR}/resources/cudaForStorm")
target_link_libraries(storm cudaForStorm)
target_link_libraries(storm-functional-tests cudaForStorm)
target_link_libraries(storm-performance-tests cudaForStorm)
endif(STORM_USE_CUDAFORSTORM)
#############################################################
##
## CUDD

2
examples/mdp/scc/scc.pctl

@ -0,0 +1,2 @@
Pmin=? [ (!statetwo) U end ]
Pmax=? [ (!statetwo) U end ]

1
resources/3rdparty/cusplibrary

@ -0,0 +1 @@
Subproject commit d8d7d9e97add8db08ef0ad5c0a7e9929fd83ce3c

56
resources/cmake/FindCusp.cmake

@ -0,0 +1,56 @@
#
# FindCusp
#
# This module finds the CUSP header files and extracts their version. It
# sets the following variables.
#
# CUSP_INCLUDE_DIR - Include directory for cusp header files. (All header
# files will actually be in the cusp subdirectory.)
# CUSP_VERSION - Version of cusp in the form "major.minor.patch".
#
# CUSP_FOUND - Indicates whether Cusp has been found
#
find_path(CUSP_INCLUDE_DIR
HINTS
/usr/include/cusp
/usr/local/include
/usr/local/cusp/include
${CUSP_INCLUDE_DIRS}
${CUSP_HINT}
NAMES cusp/version.h
DOC "Cusp headers"
)
if(CUSP_INCLUDE_DIR)
list(REMOVE_DUPLICATES CUSP_INCLUDE_DIR)
# Find cusp version
file(STRINGS ${CUSP_INCLUDE_DIR}/cusp/version.h
version
REGEX "#define CUSP_VERSION[ \t]+([0-9x]+)"
)
string(REGEX REPLACE
"#define CUSP_VERSION[ \t]+"
""
version
"${version}"
)
#define CUSP_MAJOR_VERSION (CUSP_VERSION / 100000)
#define CUSP_MINOR_VERSION (CUSP_VERSION / 100 % 1000)
#define CUSP_SUBMINOR_VERSION (CUSP_VERSION % 100)
math(EXPR CUSP_MAJOR_VERSION "${version} / 100000")
math(EXPR CUSP_MINOR_VERSION "${version} / 100 % 1000")
math(EXPR CUSP_PATCH_VERSION "${version} % 100")
set(CUSP_VERSION "${CUSP_MAJOR_VERSION}.${CUSP_MINOR_VERSION}.${CUSP_PATCH_VERSION}")
# Check for required components
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(Cusp REQUIRED_VARS CUSP_INCLUDE_DIR VERSION_VAR CUSP_VERSION)
set(CUSP_INCLUDE_DIRS ${CUSP_INCLUDE_DIR})
mark_as_advanced(CUSP_INCLUDE_DIR)
endif(CUSP_INCLUDE_DIR)

52
resources/cmake/FindThrust.cmake

@ -0,0 +1,52 @@
#
# FindThrust
#
# This module finds the Thrust header files and extracts their version. It
# sets the following variables.
#
# THRUST_INCLUDE_DIR - Include directory for thrust header files. (All header
# files will actually be in the thrust subdirectory.)
# THRUST_VERSION - Version of thrust in the form "major.minor.patch".
#
# Thrust_FOUND - Indicates whether Thrust has been found
#
find_path(THRUST_INCLUDE_DIR
HINTS
/usr/include/cuda
/usr/local/include
/usr/local/cuda/include
${CUDA_INCLUDE_DIRS}
NAMES thrust/version.h
DOC "Thrust headers"
)
if(THRUST_INCLUDE_DIR)
list(REMOVE_DUPLICATES THRUST_INCLUDE_DIR)
endif(THRUST_INCLUDE_DIR)
# Find thrust version
file(STRINGS ${THRUST_INCLUDE_DIR}/thrust/version.h
version
REGEX "#define THRUST_VERSION[ \t]+([0-9x]+)"
)
string(REGEX REPLACE
"#define THRUST_VERSION[ \t]+"
""
version
"${version}"
)
string(REGEX MATCH "^[0-9]" major ${version})
string(REGEX REPLACE "^${major}00" "" version "${version}")
string(REGEX MATCH "^[0-9]" minor ${version})
string(REGEX REPLACE "^${minor}0" "" version "${version}")
set(THRUST_VERSION "${major}.${minor}.${version}")
set(THRUST_MAJOR_VERSION "${major}")
set(THRUST_MINOR_VERSION "${minor}")
# Check for required components
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(Thrust REQUIRED_VARS THRUST_INCLUDE_DIR VERSION_VAR THRUST_VERSION)
set(THRUST_INCLUDE_DIRS ${THRUST_INCLUDE_DIR})
mark_as_advanced(THRUST_INCLUDE_DIR)

64
resources/cudaForStorm/CMakeAlignmentCheck.cpp

@ -0,0 +1,64 @@
/*
* This is component of StoRM - Cuda Plugin to check whether type alignment matches the assumptions done while optimizing the code.
*/
#include <cstdint>
#include <utility>
#include <vector>
#define CONTAINER_SIZE 100ul
template <typename IndexType, typename ValueType>
int checkForAlignmentOfPairTypes(size_t containerSize, IndexType const firstValue, ValueType const secondValue) {
std::vector<std::pair<IndexType, ValueType>>* myVector = new std::vector<std::pair<IndexType, ValueType>>();
for (size_t i = 0; i < containerSize; ++i) {
myVector->push_back(std::make_pair(firstValue, secondValue));
}
size_t myVectorSize = myVector->size();
IndexType* firstStart = &(myVector->at(0).first);
IndexType* firstEnd = &(myVector->at(myVectorSize - 1).first);
ValueType* secondStart = &(myVector->at(0).second);
ValueType* secondEnd = &(myVector->at(myVectorSize - 1).second);
size_t startOffset = reinterpret_cast<size_t>(secondStart) - reinterpret_cast<size_t>(firstStart);
size_t endOffset = reinterpret_cast<size_t>(secondEnd) - reinterpret_cast<size_t>(firstEnd);
size_t firstOffset = reinterpret_cast<size_t>(firstEnd) - reinterpret_cast<size_t>(firstStart);
size_t secondOffset = reinterpret_cast<size_t>(secondEnd) - reinterpret_cast<size_t>(secondStart);
delete myVector;
myVector = nullptr;
if (myVectorSize != containerSize) {
return -2;
}
// Check for alignment:
// Requirement is that the pairs are aligned like: first, second, first, second, first, second, ...
if (sizeof(IndexType) != sizeof(ValueType)) {
return -3;
}
if (startOffset != sizeof(IndexType)) {
return -4;
}
if (endOffset != sizeof(IndexType)) {
return -5;
}
if (firstOffset != ((sizeof(IndexType) + sizeof(ValueType)) * (myVectorSize - 1))) {
return -6;
}
if (secondOffset != ((sizeof(IndexType) + sizeof(ValueType)) * (myVectorSize - 1))) {
return -7;
}
return 0;
}
int main(int argc, char* argv[]) {
int result = 0;
result = checkForAlignmentOfPairTypes<uint_fast64_t, double>(CONTAINER_SIZE, 42, 3.14);
if (result != 0) {
return result;
}
return 0;
}

31
resources/cudaForStorm/CMakeFloatAlignmentCheck.cpp

@ -0,0 +1,31 @@
/*
* This is component of StoRM - Cuda Plugin to check whether a pair of uint_fast64_t and float gets auto-aligned to match 64bit boundaries
*/
#include <cstdint>
#include <utility>
#include <vector>
#define CONTAINER_SIZE 100ul
int main(int argc, char* argv[]) {
int result = 0;
std::vector<std::pair<uint_fast64_t, float>> myVector;
for (size_t i = 0; i < CONTAINER_SIZE; ++i) {
myVector.push_back(std::make_pair(i, 42.12345f * i));
}
char* firstUintPointer = reinterpret_cast<char*>(&(myVector.at(0).first));
char* secondUintPointer = reinterpret_cast<char*>(&(myVector.at(1).first));
ptrdiff_t uintDiff = secondUintPointer - firstUintPointer;
if (uintDiff == (2 * sizeof(uint_fast64_t))) {
result = 2;
} else if (uintDiff == (sizeof(uint_fast64_t) + sizeof(float))) {
result = 3;
} else {
result = -5;
}
return result;
}

294
resources/cudaForStorm/CMakeLists.txt

@ -0,0 +1,294 @@
cmake_minimum_required (VERSION 2.8.6)
# Set project name
project (cudaForStorm CXX C)
# Set the version number
set (STORM_CPP_VERSION_MAJOR 1)
set (STORM_CPP_VERSION_MINOR 0)
# Add base folder for better inclusion paths
include_directories("${PROJECT_SOURCE_DIR}")
include_directories("${PROJECT_SOURCE_DIR}/src")
message(STATUS "StoRM (CudaPlugin) - CUDA_PATH is ${CUDA_PATH} or $ENV{CUDA_PATH}")
#############################################################
##
## CMake options of StoRM
##
#############################################################
option(CUDAFORSTORM_DEBUG "Sets whether the DEBUG mode is used" ON)
option(LINK_LIBCXXABI "Sets whether libc++abi should be linked." OFF)
option(USE_LIBCXX "Sets whether the standard library is libc++." OFF)
set(ADDITIONAL_INCLUDE_DIRS "" CACHE STRING "Additional directories added to the include directories.")
set(ADDITIONAL_LINK_DIRS "" CACHE STRING "Additional directories added to the link directories.")
set(STORM_LIB_INSTALL_DIR "${PROJECT_SOURCE_DIR}/../../build/cudaForStorm" CACHE STRING "The Build directory of storm, where the library files should be installed to (if available).")
#############################################################
##
## Inclusion of required libraries
##
#############################################################
# Add the resources/cmake folder to Module Search Path for FindTBB.cmake
set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${PROJECT_SOURCE_DIR}/../cmake/")
# Set the hint for CUSP
set(CUSP_HINT "${PROJECT_SOURCE_DIR}/../3rdparty/cusplibrary")
find_package(CUDA REQUIRED)
find_package(Cusp REQUIRED)
find_package(Doxygen REQUIRED)
find_package(Thrust REQUIRED)
# If the DEBUG option was turned on, we will target a debug version and a release version otherwise
if (CUDAFORSTORM_DEBUG)
set (CMAKE_BUILD_TYPE "DEBUG")
else()
set (CMAKE_BUILD_TYPE "RELEASE")
endif()
message(STATUS "StoRM (CudaPlugin) - Building ${CMAKE_BUILD_TYPE} version.")
message(STATUS "StoRM (CudaPlugin) - CMAKE_BUILD_TYPE: ${CMAKE_BUILD_TYPE}")
message(STATUS "StoRM (CudaPlugin) - CMAKE_BUILD_TYPE (ENV): $ENV{CMAKE_BUILD_TYPE}")
#############################################################
##
## CUDA Options
##
#############################################################
SET (CUDA_VERBOSE_BUILD ON CACHE BOOL "nvcc verbose" FORCE)
set(CUDA_ATTACH_VS_BUILD_RULE_TO_CUDA_FILE ON)
set(BUILD_SHARED_LIBS OFF)
set(CUDA_SEPARABLE_COMPILATION ON)
#set(CUDA_NVCC_FLAGS "-arch=sm_30")
# Because the FindCUDA.cmake file has a path related bug, two folders have to be present
file(MAKE_DIRECTORY "${PROJECT_BINARY_DIR}/CMakeFiles/cudaForStorm.dir/Debug")
file(MAKE_DIRECTORY "${PROJECT_BINARY_DIR}/CMakeFiles/cudaForStorm.dir/Release")
#############################################################
##
## Compiler specific settings and definitions
##
#############################################################
if(CMAKE_COMPILER_IS_GNUCC)
message(STATUS "StoRM (CudaPlugin) - Using Compiler Configuration: GCC")
# Set standard flags for GCC
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -funroll-loops")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 -Wall -pedantic")
elseif(MSVC)
message(STATUS "StoRM (CudaPlugin) - Using Compiler Configuration: MSVC")
# required for GMM to compile, ugly error directive in their code
add_definitions(/D_SCL_SECURE_NO_DEPRECATE /D_CRT_SECURE_NO_WARNINGS)
# required as the PRCTL Parser bloats object files (COFF) beyond their maximum size (see http://msdn.microsoft.com/en-us/library/8578y171(v=vs.110).aspx)
add_definitions(/bigobj)
# required by GTest and PrismGrammar::createIntegerVariable
add_definitions(/D_VARIADIC_MAX=10)
# Windows.h breaks GMM in gmm_except.h because of its macro definition for min and max
add_definitions(/DNOMINMAX)
else(CLANG)
message(STATUS "StoRM (CudaPlugin) - Using Compiler Configuration: Clang (LLVM)")
# As CLANG is not set as a variable, we need to set it in case we have not matched another compiler.
set (CLANG ON)
# Set standard flags for clang
set (CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -funroll-loops -O3")
if(UNIX AND NOT APPLE AND NOT USE_LIBCXX)
set(CLANG_STDLIB libstdc++)
message(STATUS "StoRM (CudaPlugin) - Linking against libstdc++")
else()
set(CLANG_STDLIB libc++)
message(STATUS "StoRM (CudaPlugin) - Linking against libc++")
# Set up some Xcode specific settings
set(CMAKE_XCODE_ATTRIBUTE_CLANG_CXX_LANGUAGE_STANDARD "c++11")
set(CMAKE_XCODE_ATTRIBUTE_CLANG_CXX_LIBRARY "libc++")
endif()
set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 -stdlib=${CLANG_STDLIB} -Wall -pedantic -Wno-unused-variable -DBOOST_RESULT_OF_USE_TR1 -DBOOST_NO_DECLTYPE -ftemplate-depth=1024")
set (CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -g")
endif()
#############################################################
##
## CMake-generated Config File for StoRM
##
#############################################################
# Test for type alignment
try_run(STORM_CUDA_RUN_RESULT_TYPEALIGNMENT STORM_CUDA_COMPILE_RESULT_TYPEALIGNMENT
${PROJECT_BINARY_DIR} "${PROJECT_SOURCE_DIR}/CMakeAlignmentCheck.cpp"
COMPILE_OUTPUT_VARIABLE OUTPUT_TEST_VAR
)
if(NOT STORM_CUDA_COMPILE_RESULT_TYPEALIGNMENT)
message(FATAL_ERROR "StoRM (CudaPlugin) - Could not test type alignment, there was an Error while compiling the file ${PROJECT_SOURCE_DIR}/CMakeAlignmentCheck.cpp: ${OUTPUT_TEST_VAR}")
elseif(STORM_CUDA_RUN_RESULT_TYPEALIGNMENT EQUAL 0)
message(STATUS "StoRM (CudaPlugin) - Result of Type Alignment Check: OK.")
else()
message(FATAL_ERROR "StoRM (CudaPlugin) - Result of Type Alignment Check: FAILED (Code ${STORM_CUDA_RUN_RESULT_TYPEALIGNMENT})")
endif()
# Test for Float 64bit Alignment
try_run(STORM_CUDA_RUN_RESULT_FLOATALIGNMENT STORM_CUDA_COMPILE_RESULT_FLOATALIGNMENT
${PROJECT_BINARY_DIR} "${PROJECT_SOURCE_DIR}/CMakeFloatAlignmentCheck.cpp"
COMPILE_OUTPUT_VARIABLE OUTPUT_TEST_VAR
)
if(NOT STORM_CUDA_COMPILE_RESULT_FLOATALIGNMENT)
message(FATAL_ERROR "StoRM (CudaPlugin) - Could not test float type alignment, there was an Error while compiling the file ${PROJECT_SOURCE_DIR}/CMakeFloatAlignmentCheck.cpp: ${OUTPUT_TEST_VAR}")
elseif(STORM_CUDA_RUN_RESULT_FLOATALIGNMENT EQUAL 2)
message(STATUS "StoRM (CudaPlugin) - Result of Float Type Alignment Check: 64bit alignment active.")
set(STORM_CUDAPLUGIN_FLOAT_64BIT_ALIGN_DEF "define")
elseif(STORM_CUDA_RUN_RESULT_FLOATALIGNMENT EQUAL 3)
message(STATUS "StoRM (CudaPlugin) - Result of Float Type Alignment Check: 64bit alignment disabled.")
set(STORM_CUDAPLUGIN_FLOAT_64BIT_ALIGN_DEF "undef")
else()
message(FATAL_ERROR "StoRM (CudaPlugin) - Result of Float Type Alignment Check: FAILED (Code ${STORM_CUDA_RUN_RESULT_FLOATALIGNMENT})")
endif()
#
# Make a version file containing the current version from git.
#
include(GetGitRevisionDescription)
git_describe_checkout(STORM_GIT_VERSION_STRING)
# Parse the git Tag into variables
string(REGEX REPLACE "^([0-9]+)\\..*" "\\1" STORM_CUDAPLUGIN_VERSION_MAJOR "${STORM_GIT_VERSION_STRING}")
string(REGEX REPLACE "^[0-9]+\\.([0-9]+).*" "\\1" STORM_CUDAPLUGIN_VERSION_MINOR "${STORM_GIT_VERSION_STRING}")
string(REGEX REPLACE "^[0-9]+\\.[0-9]+\\.([0-9]+).*" "\\1" STORM_CUDAPLUGIN_VERSION_PATCH "${STORM_GIT_VERSION_STRING}")
string(REGEX REPLACE "^[0-9]+\\.[0-9]+\\.[0-9]+\\-([0-9]+)\\-.*" "\\1" STORM_CUDAPLUGIN_VERSION_COMMITS_AHEAD "${STORM_GIT_VERSION_STRING}")
string(REGEX REPLACE "^[0-9]+\\.[0-9]+\\.[0-9]+\\-[0-9]+\\-([a-z0-9]+).*" "\\1" STORM_CUDAPLUGIN_VERSION_HASH "${STORM_GIT_VERSION_STRING}")
string(REGEX REPLACE "^[0-9]+\\.[0-9]+\\.[0-9]+\\-[0-9]+\\-[a-z0-9]+\\-(.*)" "\\1" STORM_CUDAPLUGIN_VERSION_APPENDIX "${STORM_GIT_VERSION_STRING}")
if ("${STORM_CUDAPLUGIN_VERSION_APPENDIX}" MATCHES "^.*dirty.*$")
set(STORM_CUDAPLUGIN_VERSION_DIRTY 1)
else()
set(STORM_CUDAPLUGIN_VERSION_DIRTY 0)
endif()
message(STATUS "StoRM (CudaPlugin) - Version information: ${STORM_CUDAPLUGIN_VERSION_MAJOR}.${STORM_CUDAPLUGIN_VERSION_MINOR}.${STORM_CUDAPLUGIN_VERSION_PATCH} (${STORM_CUDAPLUGIN_VERSION_COMMITS_AHEAD} commits ahead of Tag) build from ${STORM_CUDAPLUGIN_VERSION_HASH} (Dirty: ${STORM_CUDAPLUGIN_VERSION_DIRTY})")
# Configure a header file to pass some of the CMake settings to the source code
configure_file (
"${PROJECT_SOURCE_DIR}/storm-cudaplugin-config.h.in"
"${PROJECT_BINARY_DIR}/include/storm-cudaplugin-config.h"
)
# Add the binary dir include directory for storm-config.h
include_directories("${PROJECT_BINARY_DIR}/include")
# Add the main source directory for includes
include_directories("${PROJECT_SOURCE_DIR}/../../src")
#############################################################
##
## Source file aggregation and clustering
##
#############################################################
file(GLOB_RECURSE CUDAFORSTORM_HEADERS ${PROJECT_SOURCE_DIR}/src/*.h)
file(GLOB_RECURSE CUDAFORSTORM_SOURCES ${PROJECT_SOURCE_DIR}/src/*.cpp)
file(GLOB_RECURSE CUDAFORSTORM_CUDA_SOURCES "${PROJECT_SOURCE_DIR}/srcCuda/*.cu")
file(GLOB_RECURSE CUDAFORSTORM_CUDA_HEADERS "${PROJECT_SOURCE_DIR}/srcCuda/*.h")
# Additional include files like the storm-config.h
file(GLOB_RECURSE CUDAFORSTORM_BUILD_HEADERS ${PROJECT_BINARY_DIR}/include/*.h)
# Group the headers and sources
source_group(main FILES ${CUDAFORSTORM_HEADERS} ${CUDAFORSTORM_SOURCES})
source_group(cuda FILES ${CUDAFORSTORM_CUDA_SOURCES} ${CUDAFORSTORM_CUDA_HEADERS})
# Add custom additional include or link directories
if (ADDITIONAL_INCLUDE_DIRS)
message(STATUS "StoRM (CudaPlugin) - Using additional include directories ${ADDITIONAL_INCLUDE_DIRS}")
include_directories(${ADDITIONAL_INCLUDE_DIRS})
endif(ADDITIONAL_INCLUDE_DIRS)
if (ADDITIONAL_LINK_DIRS)
message(STATUS "StoRM (CudaPlugin) - Using additional link directories ${ADDITIONAL_LINK_DIRS}")
link_directories(${ADDITIONAL_LINK_DIRS})
endif(ADDITIONAL_LINK_DIRS)
#############################################################
##
## Pre executable-creation link_directories setup
##
#############################################################
#############################################################
##
## CUDA
##
#############################################################
#set(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS} --gpu-architecture sm_30)
#target_link_libraries(cudaLibrary ${CUDA_cusparse_LIBRARY})
#ADD_DEPENDENCIES(cudaForStorm cudaLibrary)
#target_link_libraries(cudaForStorm cudaLibrary)
message(STATUS "StoRM (CudaPlugin) - Found CUDA SDK in Version ${CUDA_VERSION_STRING}, sparse lib is ${CUDA_cusparse_LIBRARY}")
include_directories(${CUDA_INCLUDE_DIRS})
#############################################################
##
## CUSP
##
#############################################################
if(CUSP_FOUND)
include_directories(${CUSP_INCLUDE_DIR})
cuda_include_directories(${CUSP_INCLUDE_DIR})
message(STATUS "StoRM (CudaPlugin) - Found CUSP Version ${CUSP_VERSION} in location ${CUSP_INCLUDE_DIR}")
else()
message(FATAL_ERROR "StoRM (CudaPlugin) - Could not find CUSP!")
endif()
#############################################################
##
## Thrust
##
#############################################################
if(THRUST_FOUND)
include_directories(${THRUST_INCLUDE_DIR})
cuda_include_directories(${THRUST_INCLUDE_DIR})
message(STATUS "StoRM (CudaPlugin) - Found Thrust Version ${THRUST_VERSION} in location ${THRUST_INCLUDE_DIR}")
else()
message(FATAL_ERROR "StoRM (CudaPlugin) - Could not find Thrust! Check your CUDA installation.")
endif()
###############################################################################
## #
## Executable Creation #
## #
## All link_directories() calls AND include_directories() calls #
## MUST be made before this point #
## #
###############################################################################
include (GenerateExportHeader)
cuda_add_library(cudaForStorm SHARED
${CUDAFORSTORM_CUDA_SOURCES} ${CUDAFORSTORM_CUDA_HEADERS}
OPTIONS -DSTUFF="" -arch=sm_30
RELEASE -DNDEBUG
DEBUG -g -DDEBUG
)
GENERATE_EXPORT_HEADER( cudaForStorm
BASE_NAME cudaForStorm
EXPORT_MACRO_NAME cudaForStorm_EXPORT
EXPORT_FILE_NAME include/cudaForStorm_Export.h
STATIC_DEFINE cudaForStorm_BUILT_AS_STATIC
)
if (MSVC)
# Add the DebugHelper DLL
set(CMAKE_CXX_STANDARD_LIBRARIES "${CMAKE_CXX_STANDARD_LIBRARIES} Dbghelp.lib")
target_link_libraries(cudaForStorm "Dbghelp.lib")
endif(MSVC)
# Link against libc++abi if requested. May be needed to build on Linux systems using clang.
if (LINK_LIBCXXABI)
message (STATUS "StoRM (CudaPlugin) - Linking against libc++abi.")
target_link_libraries(cudaForStorm "c++abi")
endif(LINK_LIBCXXABI)
# Install Directive
install(TARGETS cudaForStorm DESTINATION "${STORM_LIB_INSTALL_DIR}/lib")
install(FILES "${PROJECT_SOURCE_DIR}/srcCuda/cudaForStorm.h" "${PROJECT_BINARY_DIR}/include/cudaForStorm_Export.h" DESTINATION "${STORM_LIB_INSTALL_DIR}/include")

6
resources/cudaForStorm/srcCuda/allCudaKernels.h

@ -0,0 +1,6 @@
#include "utility.h"
#include "bandWidth.h"
#include "basicAdd.h"
#include "kernelSwitchTest.h"
#include "basicValueIteration.h"
#include "version.h"

0
resources/cudaForStorm/srcCuda/bandWidth.cu

0
resources/cudaForStorm/srcCuda/bandWidth.h

286
resources/cudaForStorm/srcCuda/basicAdd.cu

@ -0,0 +1,286 @@
#include <cuda.h>
#include <stdlib.h>
#include <stdio.h>
#include <chrono>
#include <iostream>
__global__ void cuda_kernel_basicAdd(int a, int b, int *c) {
*c = a + b;
}
__global__ void cuda_kernel_arrayFma(int const * const A, int const * const B, int const * const C, int * const D, int const N) {
// Fused Multiply Add:
// A * B + C => D
/*
*Die Variable i dient für den Zugriff auf das Array. Da jeder Thread die Funktion VecAdd
*ausführt, muss i für jeden Thread unterschiedlich sein. Ansonsten würden unterschiedliche
*Threads auf denselben Index im Array schreiben. blockDim.x ist die Anzahl der Threads der x-Komponente
*des Blocks, blockIdx.x ist die x-Koordinate des aktuellen Blocks und threadIdx.x ist die x-Koordinate des
*Threads, der die Funktion gerade ausführt.
*/
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < N) {
D[i] = A[i] * B[i] + C[i];
}
}
__global__ void cuda_kernel_arrayFmaOptimized(int * const A, int const N, int const M) {
// Fused Multiply Add:
// A * B + C => D
// Layout:
// A B C D A B C D A B C D
int i = blockDim.x * blockIdx.x + threadIdx.x;
if ((i*M) < N) {
for (int j = i*M; j < i*M + M; ++j) {
A[j*4 + 3] = A[j*4] * A[j*4 + 1] + A[j*4 + 2];
}
}
}
extern "C" int cuda_basicAdd(int a, int b) {
int c = 0;
int *dev_c;
cudaMalloc((void**)&dev_c, sizeof(int));
cuda_kernel_basicAdd<<<1, 1>>>(a, b, dev_c);
cudaMemcpy(&c, dev_c, sizeof(int), cudaMemcpyDeviceToHost);
//printf("%d + %d + 42 is %d\n", a, b, c);
cudaFree(dev_c);
return c;
}
void cpp_cuda_bandwidthTest(int entryCount, int N) {
// Size of the Arrays
size_t arraySize = entryCount * sizeof(int);
int* deviceIntArray;
int* hostIntArray = new int[arraySize];
// Allocate space on the device
auto start_time = std::chrono::high_resolution_clock::now();
for (int i = 0; i < N; ++i) {
if (cudaMalloc((void**)&deviceIntArray, arraySize) != cudaSuccess) {
std::cout << "Error in cudaMalloc while allocating " << arraySize << " Bytes!" << std::endl;
delete[] hostIntArray;
return;
}
// Free memory on device
if (cudaFree(deviceIntArray) != cudaSuccess) {
std::cout << "Error in cudaFree!" << std::endl;
delete[] hostIntArray;
return;
}
}
auto end_time = std::chrono::high_resolution_clock::now();
auto copyTime = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count();
double mBytesPerSecond = (((double)(N * arraySize)) / copyTime) * 0.95367431640625;
std::cout << "Allocating the Array " << N << " times took " << copyTime << " Microseconds." << std::endl;
std::cout << "Resulting in " << mBytesPerSecond << " MBytes per Second Allocationspeed." << std::endl;
if (cudaMalloc((void**)&deviceIntArray, arraySize) != cudaSuccess) {
std::cout << "Error in cudaMalloc while allocating " << arraySize << " Bytes for copyTest!" << std::endl;
delete[] hostIntArray;
return;
}
// Prepare data
for (int i = 0; i < N; ++i) {
hostIntArray[i] = i * 333 + 123;
}
// Copy data TO device
start_time = std::chrono::high_resolution_clock::now();
for (int i = 0; i < N; ++i) {
if (cudaMemcpy(deviceIntArray, hostIntArray, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
std::cout << "Error in cudaMemcpy while copying " << arraySize << " Bytes to device!" << std::endl;
// Free memory on device
if (cudaFree(deviceIntArray) != cudaSuccess) {
std::cout << "Error in cudaFree!" << std::endl;
}
delete[] hostIntArray;
return;
}
}
end_time = std::chrono::high_resolution_clock::now();
copyTime = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count();
mBytesPerSecond = (((double)(N * arraySize)) / copyTime) * 0.95367431640625;
std::cout << "Copying the Array " << N << " times took " << copyTime << " Microseconds." << std::endl;
std::cout << "Resulting in " << mBytesPerSecond << " MBytes per Second TO device." << std::endl;
// Copy data FROM device
start_time = std::chrono::high_resolution_clock::now();
for (int i = 0; i < N; ++i) {
if (cudaMemcpy(hostIntArray, deviceIntArray, arraySize, cudaMemcpyDeviceToHost) != cudaSuccess) {
std::cout << "Error in cudaMemcpy while copying " << arraySize << " Bytes to host!" << std::endl;
// Free memory on device
if (cudaFree(deviceIntArray) != cudaSuccess) {
std::cout << "Error in cudaFree!" << std::endl;
}
delete[] hostIntArray;
return;
}
}
end_time = std::chrono::high_resolution_clock::now();
copyTime = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count();
mBytesPerSecond = (((double)(N * arraySize)) / copyTime) * 0.95367431640625;
std::cout << "Copying the Array " << N << " times took " << copyTime << " Microseconds." << std::endl;
std::cout << "Resulting in " << mBytesPerSecond << " MBytes per Second FROM device." << std::endl;
// Free memory on device
if (cudaFree(deviceIntArray) != cudaSuccess) {
std::cout << "Error in cudaFree!" << std::endl;
}
delete[] hostIntArray;
}
extern "C" void cuda_arrayFma(int const * const A, int const * const B, int const * const C, int * const D, int const N) {
// Size of the Arrays
size_t arraySize = N * sizeof(int);
int* deviceIntArrayA;
int* deviceIntArrayB;
int* deviceIntArrayC;
int* deviceIntArrayD;
// Allocate space on the device
if (cudaMalloc((void**)&deviceIntArrayA, arraySize) != cudaSuccess) {
printf("Error in cudaMalloc1!\n");
return;
}
if (cudaMalloc((void**)&deviceIntArrayB, arraySize) != cudaSuccess) {
printf("Error in cudaMalloc2!\n");
cudaFree(deviceIntArrayA);
return;
}
if (cudaMalloc((void**)&deviceIntArrayC, arraySize) != cudaSuccess) {
printf("Error in cudaMalloc3!\n");
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
return;
}
if (cudaMalloc((void**)&deviceIntArrayD, arraySize) != cudaSuccess) {
printf("Error in cudaMalloc4!\n");
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
cudaFree(deviceIntArrayC);
return;
}
// Copy data TO device
if (cudaMemcpy(deviceIntArrayA, A, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
printf("Error in cudaMemcpy!\n");
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
cudaFree(deviceIntArrayC);
cudaFree(deviceIntArrayD);
return;
}
if (cudaMemcpy(deviceIntArrayB, B, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
printf("Error in cudaMemcpy!\n");
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
cudaFree(deviceIntArrayC);
cudaFree(deviceIntArrayD);
return;
}
if (cudaMemcpy(deviceIntArrayC, C, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
printf("Error in cudaMemcpy!\n");
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
cudaFree(deviceIntArrayC);
cudaFree(deviceIntArrayD);
return;
}
// Festlegung der Threads pro Block
int threadsPerBlock = 512;
// Es werden soviele Blöcke benötigt, dass alle Elemente der Vektoren abgearbeitet werden können
int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;
// Run kernel
cuda_kernel_arrayFma<<<blocksPerGrid, threadsPerBlock>>>(deviceIntArrayA, deviceIntArrayB, deviceIntArrayC, deviceIntArrayD, N);
// Copy data FROM device
if (cudaMemcpy(D, deviceIntArrayD, arraySize, cudaMemcpyDeviceToHost) != cudaSuccess) {
printf("Error in cudaMemcpy!\n");
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
cudaFree(deviceIntArrayC);
cudaFree(deviceIntArrayD);
return;
}
// Free memory on device
cudaFree(deviceIntArrayA);
cudaFree(deviceIntArrayB);
cudaFree(deviceIntArrayC);
cudaFree(deviceIntArrayD);
}
extern "C" void cuda_arrayFmaOptimized(int * const A, int const N, int const M) {
// Size of the Arrays
size_t arraySize = N * sizeof(int) * 4;
int* deviceIntArrayA;
// Allocate space on the device
if (cudaMalloc((void**)&deviceIntArrayA, arraySize) != cudaSuccess) {
printf("Error in cudaMalloc1!\n");
return;
}
#define ONFAILFREE0() do { } while(0)
#define ONFAILFREE1(a) do { cudaFree(a); } while(0)
#define ONFAILFREE2(a, b) do { cudaFree(a); cudaFree(b); } while(0)
#define ONFAILFREE3(a, b, c) do { cudaFree(a); cudaFree(b); cudaFree(c); } while(0)
#define ONFAILFREE4(a, b, c, d) do { cudaFree(a); cudaFree(b); cudaFree(c); cudaFree(d); } while(0)
#define CHECKED_CUDA_CALL(func__, freeArgs, ...) do { int retCode = cuda##func__ (__VA_ARGS__); if (retCode != cudaSuccess) { freeArgs; printf("Error in func__!\n"); return; } } while(0)
// Copy data TO device
CHECKED_CUDA_CALL(Memcpy, ONFAILFREE1(deviceIntArrayA), deviceIntArrayA, A, arraySize, cudaMemcpyHostToDevice);
/*if (cudaMemcpy(deviceIntArrayA, A, arraySize, cudaMemcpyHostToDevice) != cudaSuccess) {
printf("Error in cudaMemcpy!\n");
cudaFree(deviceIntArrayA);
return;
}*/
// Festlegung der Threads pro Block
int threadsPerBlock = 512;
// Es werden soviele Blöcke benötigt, dass alle Elemente der Vektoren abgearbeitet werden können
int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;
// Run kernel
cuda_kernel_arrayFmaOptimized<<<blocksPerGrid, threadsPerBlock>>>(deviceIntArrayA, N, M);
// Copy data FROM device
if (cudaMemcpy(A, deviceIntArrayA, arraySize, cudaMemcpyDeviceToHost) != cudaSuccess) {
printf("Error in cudaMemcpy!\n");
cudaFree(deviceIntArrayA);
return;
}
// Free memory on device
if (cudaFree(deviceIntArrayA) != cudaSuccess) {
printf("Error in cudaFree!\n");
return;
}
}
extern "C" void cuda_arrayFmaHelper(int const * const A, int const * const B, int const * const C, int * const D, int const N) {
for (int i = 0; i < N; ++i) {
D[i] = A[i] * B[i] + C[i];
}
}
extern "C" void cuda_arrayFmaOptimizedHelper(int * const A, int const N) {
for (int i = 0; i < N; i += 4) {
A[i+3] = A[i] * A[i+1] + A[i+2];
}
}

9
resources/cudaForStorm/srcCuda/basicAdd.h

@ -0,0 +1,9 @@
extern "C" int cuda_basicAdd(int a, int b);
extern "C" void cuda_arrayFmaOptimized(int * const A, int const N, int const M);
extern "C" void cuda_arrayFmaOptimizedHelper(int * const A, int const N);
extern "C" void cuda_arrayFma(int const * const A, int const * const B, int const * const C, int * const D, int const N);
extern "C" void cuda_arrayFmaHelper(int const * const A, int const * const B, int const * const C, int * const D, int const N);
void cpp_cuda_bandwidthTest(int entryCount, int N);

879
resources/cudaForStorm/srcCuda/basicValueIteration.cu

@ -0,0 +1,879 @@
#include "basicValueIteration.h"
#define CUSP_USE_TEXTURE_MEMORY
#include <iostream>
#include <chrono>
#include <cuda_runtime.h>
#include "cusparse_v2.h"
#include "utility.h"
#include "cuspExtension.h"
#include <thrust/transform.h>
#include <thrust/device_ptr.h>
#include <thrust/functional.h>
#include "storm-cudaplugin-config.h"
#ifdef DEBUG
#define CUDA_CHECK_ALL_ERRORS() do { cudaError_t errSync = cudaGetLastError(); cudaError_t errAsync = cudaDeviceSynchronize(); if (errSync != cudaSuccess) { std::cout << "(DLL) Sync kernel error: " << cudaGetErrorString(errSync) << " (Code: " << errSync << ") in Line " << __LINE__ << std::endl; } if (errAsync != cudaSuccess) { std::cout << "(DLL) Async kernel error: " << cudaGetErrorString(errAsync) << " (Code: " << errAsync << ") in Line " << __LINE__ << std::endl; } } while(false)
#else
#define CUDA_CHECK_ALL_ERRORS() do {} while (false)
#endif
template<typename T, bool Relative>
struct equalModuloPrecision : public thrust::binary_function<T,T,T>
{
__host__ __device__ T operator()(const T &x, const T &y) const
{
if (Relative) {
if (y == 0) {
return ((x >= 0) ? (x) : (-x));
}
const T result = (x - y) / y;
return ((result >= 0) ? (result) : (-result));
} else {
const T result = (x - y);
return ((result >= 0) ? (result) : (-result));
}
}
};
template<typename IndexType, typename ValueType>
void exploadVector(std::vector<std::pair<IndexType, ValueType>> const& inputVector, std::vector<IndexType>& indexVector, std::vector<ValueType>& valueVector) {
indexVector.reserve(inputVector.size());
valueVector.reserve(inputVector.size());
for (size_t i = 0; i < inputVector.size(); ++i) {
indexVector.push_back(inputVector.at(i).first);
valueVector.push_back(inputVector.at(i).second);
}
}
// TEMPLATE VERSION
template <bool Minimize, bool Relative, typename IndexType, typename ValueType>
bool basicValueIteration_mvReduce(uint_fast64_t const maxIterationCount, double const precision, std::vector<IndexType> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<ValueType>> const& columnIndicesAndValues, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<IndexType> const& nondeterministicChoiceIndices, size_t& iterationCount) {
//std::vector<IndexType> matrixColumnIndices;
//std::vector<ValueType> matrixValues;
//exploadVector<IndexType, ValueType>(columnIndicesAndValues, matrixColumnIndices, matrixValues);
bool errorOccured = false;
IndexType* device_matrixRowIndices = nullptr;
ValueType* device_matrixColIndicesAndValues = nullptr;
ValueType* device_x = nullptr;
ValueType* device_xSwap = nullptr;
ValueType* device_b = nullptr;
ValueType* device_multiplyResult = nullptr;
IndexType* device_nondeterministicChoiceIndices = nullptr;
#ifdef DEBUG
std::cout.sync_with_stdio(true);
std::cout << "(DLL) Entering CUDA Function: basicValueIteration_mvReduce" << std::endl;
std::cout << "(DLL) Device has " << getTotalCudaMemory() << " Bytes of Memory with " << getFreeCudaMemory() << "Bytes free (" << (static_cast<double>(getFreeCudaMemory()) / static_cast<double>(getTotalCudaMemory())) * 100 << "%)." << std::endl;
size_t memSize = sizeof(IndexType) * matrixRowIndices.size() + sizeof(IndexType) * columnIndicesAndValues.size() * 2 + sizeof(ValueType) * x.size() + sizeof(ValueType) * x.size() + sizeof(ValueType) * b.size() + sizeof(ValueType) * b.size() + sizeof(IndexType) * nondeterministicChoiceIndices.size();
std::cout << "(DLL) We will allocate " << memSize << " Bytes." << std::endl;
#endif
const IndexType matrixRowCount = matrixRowIndices.size() - 1;
const IndexType matrixColCount = nondeterministicChoiceIndices.size() - 1;
const IndexType matrixNnzCount = columnIndicesAndValues.size();
cudaError_t cudaMallocResult;
bool converged = false;
iterationCount = 0;
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixRowIndices), sizeof(IndexType) * (matrixRowCount + 1));
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Matrix Row Indices, Error Code " << cudaMallocResult << "." << std::endl;
errorOccured = true;
goto cleanup;
}
#ifdef STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT
#define STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT_VALUE true
#else
#define STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT_VALUE false
#endif
if (sizeof(ValueType) == sizeof(float) && STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT_VALUE) {
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixColIndicesAndValues), sizeof(IndexType) * matrixNnzCount + sizeof(IndexType) * matrixNnzCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Matrix Column Indices and Values, Error Code " << cudaMallocResult << "." << std::endl;
errorOccured = true;
goto cleanup;
}
} else {
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixColIndicesAndValues), sizeof(IndexType) * matrixNnzCount + sizeof(ValueType) * matrixNnzCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Matrix Column Indices and Values, Error Code " << cudaMallocResult << "." << std::endl;
errorOccured = true;
goto cleanup;
}
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_x), sizeof(ValueType) * matrixColCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector x, Error Code " << cudaMallocResult << "." << std::endl;
errorOccured = true;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_xSwap), sizeof(ValueType) * matrixColCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector x swap, Error Code " << cudaMallocResult << "." << std::endl;
errorOccured = true;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_b), sizeof(ValueType) * matrixRowCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector b, Error Code " << cudaMallocResult << "." << std::endl;
errorOccured = true;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_multiplyResult), sizeof(ValueType) * matrixRowCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector multiplyResult, Error Code " << cudaMallocResult << "." << std::endl;
errorOccured = true;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_nondeterministicChoiceIndices), sizeof(IndexType) * (matrixColCount + 1));
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Nondeterministic Choice Indices, Error Code " << cudaMallocResult << "." << std::endl;
errorOccured = true;
goto cleanup;
}
#ifdef DEBUG
std::cout << "(DLL) Finished allocating memory." << std::endl;
#endif
// Memory allocated, copy data to device
cudaError_t cudaCopyResult;
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_matrixRowIndices, matrixRowIndices.data(), sizeof(IndexType) * (matrixRowCount + 1), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Matrix Row Indices, Error Code " << cudaCopyResult << std::endl;
errorOccured = true;
goto cleanup;
}
// Copy all data as floats are expanded to 64bits :/
if (sizeof(ValueType) == sizeof(float) && STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT_VALUE) {
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_matrixColIndicesAndValues, columnIndicesAndValues.data(), (sizeof(IndexType) * matrixNnzCount) + (sizeof(IndexType) * matrixNnzCount), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Matrix Column Indices and Values, Error Code " << cudaCopyResult << std::endl;
errorOccured = true;
goto cleanup;
}
} else {
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_matrixColIndicesAndValues, columnIndicesAndValues.data(), (sizeof(IndexType) * matrixNnzCount) + (sizeof(ValueType) * matrixNnzCount), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Matrix Column Indices and Values, Error Code " << cudaCopyResult << std::endl;
errorOccured = true;
goto cleanup;
}
}
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_x, x.data(), sizeof(ValueType) * matrixColCount, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector x, Error Code " << cudaCopyResult << std::endl;
errorOccured = true;
goto cleanup;
}
// Preset the xSwap to zeros...
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemset(device_xSwap, 0, sizeof(ValueType) * matrixColCount);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not zero the Swap Vector x, Error Code " << cudaCopyResult << std::endl;
errorOccured = true;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_b, b.data(), sizeof(ValueType) * matrixRowCount, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector b, Error Code " << cudaCopyResult << std::endl;
errorOccured = true;
goto cleanup;
}
// Preset the multiplyResult to zeros...
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemset(device_multiplyResult, 0, sizeof(ValueType) * matrixRowCount);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not zero the multiply Result, Error Code " << cudaCopyResult << std::endl;
errorOccured = true;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_nondeterministicChoiceIndices, nondeterministicChoiceIndices.data(), sizeof(IndexType) * (matrixColCount + 1), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector b, Error Code " << cudaCopyResult << std::endl;
errorOccured = true;
goto cleanup;
}
#ifdef DEBUG
std::cout << "(DLL) Finished copying data to GPU memory." << std::endl;
#endif
// Data is on device, start Kernel
while (!converged && iterationCount < maxIterationCount) { // In a sub-area since transfer of control via label evades initialization
cusp::detail::device::storm_cuda_opt_spmv_csr_vector<ValueType>(matrixRowCount, matrixNnzCount, device_matrixRowIndices, device_matrixColIndicesAndValues, device_x, device_multiplyResult);
CUDA_CHECK_ALL_ERRORS();
thrust::device_ptr<ValueType> devicePtrThrust_b(device_b);
thrust::device_ptr<ValueType> devicePtrThrust_multiplyResult(device_multiplyResult);
// Transform: Add multiplyResult + b inplace to multiplyResult
thrust::transform(devicePtrThrust_multiplyResult, devicePtrThrust_multiplyResult + matrixRowCount, devicePtrThrust_b, devicePtrThrust_multiplyResult, thrust::plus<ValueType>());
CUDA_CHECK_ALL_ERRORS();
// Reduce: Reduce multiplyResult to a new x vector
cusp::detail::device::storm_cuda_opt_vector_reduce<Minimize, ValueType>(matrixColCount, matrixRowCount, device_nondeterministicChoiceIndices, device_xSwap, device_multiplyResult);
CUDA_CHECK_ALL_ERRORS();
// Check for convergence
// Transform: x = abs(x - xSwap)/ xSwap
thrust::device_ptr<ValueType> devicePtrThrust_x(device_x);
thrust::device_ptr<ValueType> devicePtrThrust_x_end(device_x + matrixColCount);
thrust::device_ptr<ValueType> devicePtrThrust_xSwap(device_xSwap);
thrust::transform(devicePtrThrust_x, devicePtrThrust_x_end, devicePtrThrust_xSwap, devicePtrThrust_x, equalModuloPrecision<ValueType, Relative>());
CUDA_CHECK_ALL_ERRORS();
// Reduce: get Max over x and check for res < Precision
ValueType maxX = thrust::reduce(devicePtrThrust_x, devicePtrThrust_x_end, -std::numeric_limits<ValueType>::max(), thrust::maximum<ValueType>());
CUDA_CHECK_ALL_ERRORS();
converged = (maxX < precision);
++iterationCount;
// Swap pointers, device_x always contains the most current result
std::swap(device_x, device_xSwap);
}
if (!converged && (iterationCount == maxIterationCount)) {
iterationCount = 0;
errorOccured = true;
}
#ifdef DEBUG
std::cout << "(DLL) Finished kernel execution." << std::endl;
std::cout << "(DLL) Executed " << iterationCount << " of max. " << maxIterationCount << " Iterations." << std::endl;
#endif
// Get x back from the device
cudaCopyResult = cudaMemcpy(x.data(), device_x, sizeof(ValueType) * matrixColCount, cudaMemcpyDeviceToHost);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy back data for result vector x, Error Code " << cudaCopyResult << std::endl;
errorOccured = true;
goto cleanup;
}
#ifdef DEBUG
std::cout << "(DLL) Finished copying result data." << std::endl;
#endif
// All code related to freeing memory and clearing up the device
cleanup:
if (device_matrixRowIndices != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_matrixRowIndices);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Matrix Row Indices, Error Code " << cudaFreeResult << "." << std::endl;
errorOccured = true;
}
device_matrixRowIndices = nullptr;
}
if (device_matrixColIndicesAndValues != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_matrixColIndicesAndValues);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Matrix Column Indices and Values, Error Code " << cudaFreeResult << "." << std::endl;
errorOccured = true;
}
device_matrixColIndicesAndValues = nullptr;
}
if (device_x != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_x);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector x, Error Code " << cudaFreeResult << "." << std::endl;
errorOccured = true;
}
device_x = nullptr;
}
if (device_xSwap != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_xSwap);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector x swap, Error Code " << cudaFreeResult << "." << std::endl;
errorOccured = true;
}
device_xSwap = nullptr;
}
if (device_b != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_b);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector b, Error Code " << cudaFreeResult << "." << std::endl;
errorOccured = true;
}
device_b = nullptr;
}
if (device_multiplyResult != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_multiplyResult);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector multiplyResult, Error Code " << cudaFreeResult << "." << std::endl;
errorOccured = true;
}
device_multiplyResult = nullptr;
}
if (device_nondeterministicChoiceIndices != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_nondeterministicChoiceIndices);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Nondeterministic Choice Indices, Error Code " << cudaFreeResult << "." << std::endl;
errorOccured = true;
}
device_nondeterministicChoiceIndices = nullptr;
}
#ifdef DEBUG
std::cout << "(DLL) Finished cleanup." << std::endl;
#endif
return !errorOccured;
}
template <typename IndexType, typename ValueType>
void basicValueIteration_spmv(uint_fast64_t const matrixColCount, std::vector<IndexType> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<ValueType>> const& columnIndicesAndValues, std::vector<ValueType> const& x, std::vector<ValueType>& b) {
IndexType* device_matrixRowIndices = nullptr;
ValueType* device_matrixColIndicesAndValues = nullptr;
ValueType* device_x = nullptr;
ValueType* device_multiplyResult = nullptr;
#ifdef DEBUG
std::cout.sync_with_stdio(true);
std::cout << "(DLL) Entering CUDA Function: basicValueIteration_spmv" << std::endl;
std::cout << "(DLL) Device has " << getTotalCudaMemory() << " Bytes of Memory with " << getFreeCudaMemory() << "Bytes free (" << (static_cast<double>(getFreeCudaMemory()) / static_cast<double>(getTotalCudaMemory()))*100 << "%)." << std::endl;
size_t memSize = sizeof(IndexType) * matrixRowIndices.size() + sizeof(IndexType) * columnIndicesAndValues.size() * 2 + sizeof(ValueType) * x.size() + sizeof(ValueType) * b.size();
std::cout << "(DLL) We will allocate " << memSize << " Bytes." << std::endl;
#endif
const IndexType matrixRowCount = matrixRowIndices.size() - 1;
const IndexType matrixNnzCount = columnIndicesAndValues.size();
cudaError_t cudaMallocResult;
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixRowIndices), sizeof(IndexType) * (matrixRowCount + 1));
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Matrix Row Indices, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
#ifdef STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixColIndicesAndValues), sizeof(IndexType) * matrixNnzCount + sizeof(IndexType) * matrixNnzCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Matrix Column Indices And Values, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
#else
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_matrixColIndicesAndValues), sizeof(IndexType) * matrixNnzCount + sizeof(ValueType) * matrixNnzCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Matrix Column Indices And Values, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
#endif
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_x), sizeof(ValueType) * matrixColCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector x, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_multiplyResult), sizeof(ValueType) * matrixRowCount);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector multiplyResult, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
#ifdef DEBUG
std::cout << "(DLL) Finished allocating memory." << std::endl;
#endif
// Memory allocated, copy data to device
cudaError_t cudaCopyResult;
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_matrixRowIndices, matrixRowIndices.data(), sizeof(IndexType) * (matrixRowCount + 1), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Matrix Row Indices, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
#ifdef STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_matrixColIndicesAndValues, columnIndicesAndValues.data(), (sizeof(IndexType) * matrixNnzCount) + (sizeof(IndexType) * matrixNnzCount), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Matrix Column Indices and Values, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
#else
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_matrixColIndicesAndValues, columnIndicesAndValues.data(), (sizeof(IndexType) * matrixNnzCount) + (sizeof(ValueType) * matrixNnzCount), cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Matrix Column Indices and Values, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
#endif
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_x, x.data(), sizeof(ValueType) * matrixColCount, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector x, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
// Preset the multiplyResult to zeros...
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemset(device_multiplyResult, 0, sizeof(ValueType) * matrixRowCount);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not zero the multiply Result, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
#ifdef DEBUG
std::cout << "(DLL) Finished copying data to GPU memory." << std::endl;
#endif
cusp::detail::device::storm_cuda_opt_spmv_csr_vector<ValueType>(matrixRowCount, matrixNnzCount, device_matrixRowIndices, device_matrixColIndicesAndValues, device_x, device_multiplyResult);
CUDA_CHECK_ALL_ERRORS();
#ifdef DEBUG
std::cout << "(DLL) Finished kernel execution." << std::endl;
#endif
// Get result back from the device
cudaCopyResult = cudaMemcpy(b.data(), device_multiplyResult, sizeof(ValueType) * matrixRowCount, cudaMemcpyDeviceToHost);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy back data for result vector, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
#ifdef DEBUG
std::cout << "(DLL) Finished copying result data." << std::endl;
#endif
// All code related to freeing memory and clearing up the device
cleanup:
if (device_matrixRowIndices != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_matrixRowIndices);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Matrix Row Indices, Error Code " << cudaFreeResult << "." << std::endl;
}
device_matrixRowIndices = nullptr;
}
if (device_matrixColIndicesAndValues != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_matrixColIndicesAndValues);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Matrix Column Indices and Values, Error Code " << cudaFreeResult << "." << std::endl;
}
device_matrixColIndicesAndValues = nullptr;
}
if (device_x != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_x);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector x, Error Code " << cudaFreeResult << "." << std::endl;
}
device_x = nullptr;
}
if (device_multiplyResult != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_multiplyResult);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector multiplyResult, Error Code " << cudaFreeResult << "." << std::endl;
}
device_multiplyResult = nullptr;
}
#ifdef DEBUG
std::cout << "(DLL) Finished cleanup." << std::endl;
#endif
}
template <typename ValueType>
void basicValueIteration_addVectorsInplace(std::vector<ValueType>& a, std::vector<ValueType> const& b) {
ValueType* device_a = nullptr;
ValueType* device_b = nullptr;
const size_t vectorSize = std::max(a.size(), b.size());
cudaError_t cudaMallocResult;
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_a), sizeof(ValueType) * vectorSize);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector a, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_b), sizeof(ValueType) * vectorSize);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector b, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
// Memory allocated, copy data to device
cudaError_t cudaCopyResult;
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_a, a.data(), sizeof(ValueType) * vectorSize, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector a, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_b, b.data(), sizeof(ValueType) * vectorSize, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector b, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
do {
// Transform: Add multiplyResult + b inplace to multiplyResult
thrust::device_ptr<ValueType> devicePtrThrust_a(device_a);
thrust::device_ptr<ValueType> devicePtrThrust_b(device_b);
thrust::transform(devicePtrThrust_a, devicePtrThrust_a + vectorSize, devicePtrThrust_b, devicePtrThrust_a, thrust::plus<ValueType>());
CUDA_CHECK_ALL_ERRORS();
} while (false);
// Get result back from the device
cudaCopyResult = cudaMemcpy(a.data(), device_a, sizeof(ValueType) * vectorSize, cudaMemcpyDeviceToHost);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy back data for result vector, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
// All code related to freeing memory and clearing up the device
cleanup:
if (device_a != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_a);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector a, Error Code " << cudaFreeResult << "." << std::endl;
}
device_a = nullptr;
}
if (device_b != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_b);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector b, Error Code " << cudaFreeResult << "." << std::endl;
}
device_b = nullptr;
}
}
template <typename IndexType, typename ValueType, bool Minimize>
void basicValueIteration_reduceGroupedVector(std::vector<ValueType> const& groupedVector, std::vector<IndexType> const& grouping, std::vector<ValueType>& targetVector) {
ValueType* device_groupedVector = nullptr;
IndexType* device_grouping = nullptr;
ValueType* device_target = nullptr;
const size_t groupedSize = groupedVector.size();
const size_t groupingSize = grouping.size();
const size_t targetSize = targetVector.size();
cudaError_t cudaMallocResult;
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_groupedVector), sizeof(ValueType) * groupedSize);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector groupedVector, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_grouping), sizeof(IndexType) * groupingSize);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector grouping, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_target), sizeof(ValueType) * targetSize);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector targetVector, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
// Memory allocated, copy data to device
cudaError_t cudaCopyResult;
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_groupedVector, groupedVector.data(), sizeof(ValueType) * groupedSize, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector groupedVector, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_grouping, grouping.data(), sizeof(IndexType) * groupingSize, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector grouping, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
do {
// Reduce: Reduce multiplyResult to a new x vector
cusp::detail::device::storm_cuda_opt_vector_reduce<Minimize, ValueType>(groupingSize - 1, groupedSize, device_grouping, device_target, device_groupedVector);
CUDA_CHECK_ALL_ERRORS();
} while (false);
// Get result back from the device
cudaCopyResult = cudaMemcpy(targetVector.data(), device_target, sizeof(ValueType) * targetSize, cudaMemcpyDeviceToHost);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy back data for result vector, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
// All code related to freeing memory and clearing up the device
cleanup:
if (device_groupedVector != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_groupedVector);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector groupedVector, Error Code " << cudaFreeResult << "." << std::endl;
}
device_groupedVector = nullptr;
}
if (device_grouping != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_grouping);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector grouping, Error Code " << cudaFreeResult << "." << std::endl;
}
device_grouping = nullptr;
}
if (device_target != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_target);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector target, Error Code " << cudaFreeResult << "." << std::endl;
}
device_target = nullptr;
}
}
template <typename ValueType, bool Relative>
void basicValueIteration_equalModuloPrecision(std::vector<ValueType> const& x, std::vector<ValueType> const& y, ValueType& maxElement) {
ValueType* device_x = nullptr;
ValueType* device_y = nullptr;
const size_t vectorSize = x.size();
cudaError_t cudaMallocResult;
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_x), sizeof(ValueType) * vectorSize);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector x, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaMallocResult = cudaMalloc(reinterpret_cast<void**>(&device_y), sizeof(ValueType) * vectorSize);
if (cudaMallocResult != cudaSuccess) {
std::cout << "Could not allocate memory for Vector y, Error Code " << cudaMallocResult << "." << std::endl;
goto cleanup;
}
// Memory allocated, copy data to device
cudaError_t cudaCopyResult;
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_x, x.data(), sizeof(ValueType) * vectorSize, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector x, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
CUDA_CHECK_ALL_ERRORS();
cudaCopyResult = cudaMemcpy(device_y, y.data(), sizeof(ValueType) * vectorSize, cudaMemcpyHostToDevice);
if (cudaCopyResult != cudaSuccess) {
std::cout << "Could not copy data for Vector y, Error Code " << cudaCopyResult << std::endl;
goto cleanup;
}
do {
// Transform: x = abs(x - xSwap)/ xSwap
thrust::device_ptr<ValueType> devicePtrThrust_x(device_x);
thrust::device_ptr<ValueType> devicePtrThrust_y(device_y);
thrust::transform(devicePtrThrust_x, devicePtrThrust_x + vectorSize, devicePtrThrust_y, devicePtrThrust_x, equalModuloPrecision<ValueType, Relative>());
CUDA_CHECK_ALL_ERRORS();
// Reduce: get Max over x and check for res < Precision
maxElement = thrust::reduce(devicePtrThrust_x, devicePtrThrust_x + vectorSize, -std::numeric_limits<ValueType>::max(), thrust::maximum<ValueType>());
CUDA_CHECK_ALL_ERRORS();
} while (false);
// All code related to freeing memory and clearing up the device
cleanup:
if (device_x != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_x);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector x, Error Code " << cudaFreeResult << "." << std::endl;
}
device_x = nullptr;
}
if (device_y != nullptr) {
cudaError_t cudaFreeResult = cudaFree(device_y);
if (cudaFreeResult != cudaSuccess) {
std::cout << "Could not free Memory of Vector y, Error Code " << cudaFreeResult << "." << std::endl;
}
device_y = nullptr;
}
}
/*
* Declare and implement all exported functions for these Kernels here
*
*/
void basicValueIteration_spmv_uint64_double(uint_fast64_t const matrixColCount, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<double>> const& columnIndicesAndValues, std::vector<double> const& x, std::vector<double>& b) {
basicValueIteration_spmv<uint_fast64_t, double>(matrixColCount, matrixRowIndices, columnIndicesAndValues, x, b);
}
void basicValueIteration_addVectorsInplace_double(std::vector<double>& a, std::vector<double> const& b) {
basicValueIteration_addVectorsInplace<double>(a, b);
}
void basicValueIteration_reduceGroupedVector_uint64_double_minimize(std::vector<double> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<double>& targetVector) {
basicValueIteration_reduceGroupedVector<uint_fast64_t, double, true>(groupedVector, grouping, targetVector);
}
void basicValueIteration_reduceGroupedVector_uint64_double_maximize(std::vector<double> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<double>& targetVector) {
basicValueIteration_reduceGroupedVector<uint_fast64_t, double, false>(groupedVector, grouping, targetVector);
}
void basicValueIteration_equalModuloPrecision_double_Relative(std::vector<double> const& x, std::vector<double> const& y, double& maxElement) {
basicValueIteration_equalModuloPrecision<double, true>(x, y, maxElement);
}
void basicValueIteration_equalModuloPrecision_double_NonRelative(std::vector<double> const& x, std::vector<double> const& y, double& maxElement) {
basicValueIteration_equalModuloPrecision<double, false>(x, y, maxElement);
}
// Float
void basicValueIteration_spmv_uint64_float(uint_fast64_t const matrixColCount, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<float>> const& columnIndicesAndValues, std::vector<float> const& x, std::vector<float>& b) {
basicValueIteration_spmv<uint_fast64_t, float>(matrixColCount, matrixRowIndices, columnIndicesAndValues, x, b);
}
void basicValueIteration_addVectorsInplace_float(std::vector<float>& a, std::vector<float> const& b) {
basicValueIteration_addVectorsInplace<float>(a, b);
}
void basicValueIteration_reduceGroupedVector_uint64_float_minimize(std::vector<float> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<float>& targetVector) {
basicValueIteration_reduceGroupedVector<uint_fast64_t, float, true>(groupedVector, grouping, targetVector);
}
void basicValueIteration_reduceGroupedVector_uint64_float_maximize(std::vector<float> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<float>& targetVector) {
basicValueIteration_reduceGroupedVector<uint_fast64_t, float, false>(groupedVector, grouping, targetVector);
}
void basicValueIteration_equalModuloPrecision_float_Relative(std::vector<float> const& x, std::vector<float> const& y, float& maxElement) {
basicValueIteration_equalModuloPrecision<float, true>(x, y, maxElement);
}
void basicValueIteration_equalModuloPrecision_float_NonRelative(std::vector<float> const& x, std::vector<float> const& y, float& maxElement) {
basicValueIteration_equalModuloPrecision<float, false>(x, y, maxElement);
}
bool basicValueIteration_mvReduce_uint64_double_minimize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<double>> const& columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
if (relativePrecisionCheck) {
return basicValueIteration_mvReduce<true, true, uint_fast64_t, double>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
} else {
return basicValueIteration_mvReduce<true, false, uint_fast64_t, double>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
}
}
bool basicValueIteration_mvReduce_uint64_double_maximize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<double>> const& columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
if (relativePrecisionCheck) {
return basicValueIteration_mvReduce<false, true, uint_fast64_t, double>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
} else {
return basicValueIteration_mvReduce<false, false, uint_fast64_t, double>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
}
}
bool basicValueIteration_mvReduce_uint64_float_minimize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<float>> const& columnIndicesAndValues, std::vector<float>& x, std::vector<float> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
if (relativePrecisionCheck) {
return basicValueIteration_mvReduce<true, true, uint_fast64_t, float>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
} else {
return basicValueIteration_mvReduce<true, false, uint_fast64_t, float>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
}
}
bool basicValueIteration_mvReduce_uint64_float_maximize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<float>> const& columnIndicesAndValues, std::vector<float>& x, std::vector<float> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
if (relativePrecisionCheck) {
return basicValueIteration_mvReduce<false, true, uint_fast64_t, float>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
} else {
return basicValueIteration_mvReduce<false, false, uint_fast64_t, float>(maxIterationCount, precision, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
}
}
size_t basicValueIteration_mvReduce_uint64_double_calculateMemorySize(size_t const rowCount, size_t const rowGroupCount, size_t const nnzCount) {
size_t const valueTypeSize = sizeof(double);
size_t const indexTypeSize = sizeof(uint_fast64_t);
/*
IndexType* device_matrixRowIndices = nullptr;
IndexType* device_matrixColIndices = nullptr;
ValueType* device_matrixValues = nullptr;
ValueType* device_x = nullptr;
ValueType* device_xSwap = nullptr;
ValueType* device_b = nullptr;
ValueType* device_multiplyResult = nullptr;
IndexType* device_nondeterministicChoiceIndices = nullptr;
*/
// Row Indices, Column Indices, Values, Choice Indices
size_t const matrixDataSize = ((rowCount + 1) * indexTypeSize) + (nnzCount * indexTypeSize) + (nnzCount * valueTypeSize) + ((rowGroupCount + 1) * indexTypeSize);
// Vectors x, xSwap, b, multiplyResult
size_t const vectorSizes = (rowGroupCount * valueTypeSize) + (rowGroupCount * valueTypeSize) + (rowCount * valueTypeSize) + (rowCount * valueTypeSize);
return (matrixDataSize + vectorSizes);
}
size_t basicValueIteration_mvReduce_uint64_float_calculateMemorySize(size_t const rowCount, size_t const rowGroupCount, size_t const nnzCount) {
size_t const valueTypeSize = sizeof(float);
size_t const indexTypeSize = sizeof(uint_fast64_t);
/*
IndexType* device_matrixRowIndices = nullptr;
IndexType* device_matrixColIndices = nullptr;
ValueType* device_matrixValues = nullptr;
ValueType* device_x = nullptr;
ValueType* device_xSwap = nullptr;
ValueType* device_b = nullptr;
ValueType* device_multiplyResult = nullptr;
IndexType* device_nondeterministicChoiceIndices = nullptr;
*/
// Row Indices, Column Indices, Values, Choice Indices
size_t const matrixDataSize = ((rowCount + 1) * indexTypeSize) + (nnzCount * indexTypeSize) + (nnzCount * valueTypeSize) + ((rowGroupCount + 1) * indexTypeSize);
// Vectors x, xSwap, b, multiplyResult
size_t const vectorSizes = (rowGroupCount * valueTypeSize) + (rowGroupCount * valueTypeSize) + (rowCount * valueTypeSize) + (rowCount * valueTypeSize);
return (matrixDataSize + vectorSizes);
}

107
resources/cudaForStorm/srcCuda/basicValueIteration.h

@ -0,0 +1,107 @@
#ifndef STORM_CUDAFORSTORM_BASICVALUEITERATION_H_
#define STORM_CUDAFORSTORM_BASICVALUEITERATION_H_
#include <cstdint>
#include <vector>
#include <utility>
// Library exports
#include "cudaForStorm_Export.h"
/* Helper declaration to cope with new internal format */
#ifndef STORM_STORAGE_SPARSEMATRIX_H_
namespace storm {
namespace storage {
template<typename T>
class MatrixEntry {
public:
/*!
* Constructs a matrix entry with the given column and value.
*
* @param column The column of the matrix entry.
* @param value The value of the matrix entry.
*/
MatrixEntry(uint_fast64_t column, T value);
/*!
* Move-constructs the matrix entry fro the given column-value pair.
*
* @param pair The column-value pair from which to move-construct the matrix entry.
*/
MatrixEntry(std::pair<uint_fast64_t, T>&& pair);
//MatrixEntry() = default;
//MatrixEntry(MatrixEntry const& other) = default;
//MatrixEntry& operator=(MatrixEntry const& other) = default;
#ifndef WINDOWS
//MatrixEntry(MatrixEntry&& other) = default;
//MatrixEntry& operator=(MatrixEntry&& other) = default;
#endif
/*!
* Retrieves the column of the matrix entry.
*
* @return The column of the matrix entry.
*/
uint_fast64_t const& getColumn() const;
/*!
* Retrieves the column of the matrix entry.
*
* @return The column of the matrix entry.
*/
uint_fast64_t& getColumn();
/*!
* Retrieves the value of the matrix entry.
*
* @return The value of the matrix entry.
*/
T const& getValue() const;
/*!
* Retrieves the value of the matrix entry.
*
* @return The value of the matrix entry.
*/
T& getValue();
/*!
* Retrieves a pair of column and value that characterizes this entry.
*
* @return A column-value pair that characterizes this entry.
*/
std::pair<uint_fast64_t, T> const& getColumnValuePair() const;
private:
// The actual matrix entry.
std::pair<uint_fast64_t, T> entry;
};
}
}
#endif
cudaForStorm_EXPORT size_t basicValueIteration_mvReduce_uint64_double_calculateMemorySize(size_t const rowCount, size_t const rowGroupCount, size_t const nnzCount);
cudaForStorm_EXPORT bool basicValueIteration_mvReduce_uint64_double_minimize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<double>> const& columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount);
cudaForStorm_EXPORT bool basicValueIteration_mvReduce_uint64_double_maximize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<double>> const& columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount);
cudaForStorm_EXPORT size_t basicValueIteration_mvReduce_uint64_float_calculateMemorySize(size_t const rowCount, size_t const rowGroupCount, size_t const nnzCount);
cudaForStorm_EXPORT bool basicValueIteration_mvReduce_uint64_float_minimize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<float>> const& columnIndicesAndValues, std::vector<float>& x, std::vector<float> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount);
cudaForStorm_EXPORT bool basicValueIteration_mvReduce_uint64_float_maximize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<float>> const& columnIndicesAndValues, std::vector<float>& x, std::vector<float> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount);
cudaForStorm_EXPORT void basicValueIteration_spmv_uint64_double(uint_fast64_t const matrixColCount, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<double>> const& columnIndicesAndValues, std::vector<double> const& x, std::vector<double>& b);
cudaForStorm_EXPORT void basicValueIteration_addVectorsInplace_double(std::vector<double>& a, std::vector<double> const& b);
cudaForStorm_EXPORT void basicValueIteration_reduceGroupedVector_uint64_double_minimize(std::vector<double> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<double>& targetVector);
cudaForStorm_EXPORT void basicValueIteration_reduceGroupedVector_uint64_double_maximize(std::vector<double> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<double>& targetVector);
cudaForStorm_EXPORT void basicValueIteration_equalModuloPrecision_double_Relative(std::vector<double> const& x, std::vector<double> const& y, double& maxElement);
cudaForStorm_EXPORT void basicValueIteration_equalModuloPrecision_double_NonRelative(std::vector<double> const& x, std::vector<double> const& y, double& maxElement);
cudaForStorm_EXPORT void basicValueIteration_spmv_uint64_float(uint_fast64_t const matrixColCount, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<float>> const& columnIndicesAndValues, std::vector<float> const& x, std::vector<float>& b);
cudaForStorm_EXPORT void basicValueIteration_addVectorsInplace_float(std::vector<float>& a, std::vector<float> const& b);
cudaForStorm_EXPORT void basicValueIteration_reduceGroupedVector_uint64_float_minimize(std::vector<float> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<float>& targetVector);
cudaForStorm_EXPORT void basicValueIteration_reduceGroupedVector_uint64_float_maximize(std::vector<float> const& groupedVector, std::vector<uint_fast64_t> const& grouping, std::vector<float>& targetVector);
cudaForStorm_EXPORT void basicValueIteration_equalModuloPrecision_float_Relative(std::vector<float> const& x, std::vector<float> const& y, float& maxElement);
cudaForStorm_EXPORT void basicValueIteration_equalModuloPrecision_float_NonRelative(std::vector<float> const& x, std::vector<float> const& y, float& maxElement);
#endif // STORM_CUDAFORSTORM_BASICVALUEITERATION_H_

19
resources/cudaForStorm/srcCuda/cudaForStorm.h

@ -0,0 +1,19 @@
#ifndef STORM_CUDAFORSTORM_CUDAFORSTORM_H_
#define STORM_CUDAFORSTORM_CUDAFORSTORM_H_
/*
* List of exported functions in this library
*/
// TopologicalValueIteration
#include "srcCuda/basicValueIteration.h"
// Utility Functions
#include "srcCuda/utility.h"
// Version Information
#include "srcCuda/version.h"
#endif // STORM_CUDAFORSTORM_CUDAFORSTORM_H_

49
resources/cudaForStorm/srcCuda/cuspExtension.h

@ -0,0 +1,49 @@
#pragma once
#include "cuspExtensionFloat.h"
#include "cuspExtensionDouble.h"
namespace cusp {
namespace detail {
namespace device {
template <typename ValueType>
void storm_cuda_opt_spmv_csr_vector(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const ValueType * matrixColumnIndicesAndValues, const ValueType* x, ValueType* y) {
//
throw;
}
template <>
void storm_cuda_opt_spmv_csr_vector<double>(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const double * matrixColumnIndicesAndValues, const double* x, double* y) {
storm_cuda_opt_spmv_csr_vector_double(num_rows, num_entries, matrixRowIndices, matrixColumnIndicesAndValues, x, y);
}
template <>
void storm_cuda_opt_spmv_csr_vector<float>(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const float * matrixColumnIndicesAndValues, const float* x, float* y) {
storm_cuda_opt_spmv_csr_vector_float(num_rows, num_entries, matrixRowIndices, matrixColumnIndicesAndValues, x, y);
}
template <bool Minimize, typename ValueType>
void storm_cuda_opt_vector_reduce(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * nondeterministicChoiceIndices, ValueType * x, const ValueType * y) {
//
throw;
}
template <>
void storm_cuda_opt_vector_reduce<true, double>(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * nondeterministicChoiceIndices, double * x, const double * y) {
storm_cuda_opt_vector_reduce_double<true>(num_rows, num_entries, nondeterministicChoiceIndices, x, y);
}
template <>
void storm_cuda_opt_vector_reduce<false, double>(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * nondeterministicChoiceIndices, double * x, const double * y) {
storm_cuda_opt_vector_reduce_double<false>(num_rows, num_entries, nondeterministicChoiceIndices, x, y);
}
template <>
void storm_cuda_opt_vector_reduce<true, float>(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * nondeterministicChoiceIndices, float * x, const float * y) {
storm_cuda_opt_vector_reduce_float<true>(num_rows, num_entries, nondeterministicChoiceIndices, x, y);
}
template <>
void storm_cuda_opt_vector_reduce<false, float>(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * nondeterministicChoiceIndices, float * x, const float * y) {
storm_cuda_opt_vector_reduce_float<false>(num_rows, num_entries, nondeterministicChoiceIndices, x, y);
}
} // end namespace device
} // end namespace detail
} // end namespace cusp

361
resources/cudaForStorm/srcCuda/cuspExtensionDouble.h

@ -0,0 +1,361 @@
/*
* This is an extension of the original CUSP csr_vector.h SPMV implementation.
* It is based on the Code and incorporates changes as to cope with the details
* of the StoRM code.
* Changes have been made for 1) different input format, 2) the sum calculation and 3) the group-reduce algorithm
*/
/*
* Copyright 2008-2009 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <limits>
#include <cstdint>
#include <algorithm>
#include <math_functions.h>
#include <cusp/detail/device/spmv/csr_vector.h>
namespace cusp
{
namespace detail
{
namespace device
{
//////////////////////////////////////////////////////////////////////////////
// CSR SpMV kernels based on a vector model (one warp per row)
//////////////////////////////////////////////////////////////////////////////
//
// spmv_csr_vector_device
// Each row of the CSR matrix is assigned to a warp. The warp computes
// y[i] = A[i,:] * x, i.e. the dot product of the i-th row of A with
// the x vector, in parallel. This division of work implies that
// the CSR index and data arrays (Aj and Ax) are accessed in a contiguous
// manner (but generally not aligned). On GT200 these accesses are
// coalesced, unlike kernels based on the one-row-per-thread division of
// work. Since an entire 32-thread warp is assigned to each row, many
// threads will remain idle when their row contains a small number
// of elements. This code relies on implicit synchronization among
// threads in a warp.
//
// spmv_csr_vector_tex_device
// Same as spmv_csr_vector_tex_device, except that the texture cache is
// used for accessing the x vector.
//
// Note: THREADS_PER_VECTOR must be one of [2,4,8,16,32]
template <unsigned int VECTORS_PER_BLOCK, unsigned int THREADS_PER_VECTOR, bool UseCache>
__launch_bounds__(VECTORS_PER_BLOCK * THREADS_PER_VECTOR,1)
__global__ void
storm_cuda_opt_spmv_csr_vector_kernel_double(const uint_fast64_t num_rows, const uint_fast64_t * __restrict__ matrixRowIndices, const double * __restrict__ matrixColumnIndicesAndValues, const double * __restrict__ x, double * __restrict__ y)
{
__shared__ volatile double sdata[VECTORS_PER_BLOCK * THREADS_PER_VECTOR + THREADS_PER_VECTOR / 2]; // padded to avoid reduction conditionals
__shared__ volatile uint_fast64_t ptrs[VECTORS_PER_BLOCK][2];
const uint_fast64_t THREADS_PER_BLOCK = VECTORS_PER_BLOCK * THREADS_PER_VECTOR;
const uint_fast64_t thread_id = THREADS_PER_BLOCK * blockIdx.x + threadIdx.x; // global thread index
const uint_fast64_t thread_lane = threadIdx.x & (THREADS_PER_VECTOR - 1); // thread index within the vector
const uint_fast64_t vector_id = thread_id / THREADS_PER_VECTOR; // global vector index
const uint_fast64_t vector_lane = threadIdx.x / THREADS_PER_VECTOR; // vector index within the block
const uint_fast64_t num_vectors = VECTORS_PER_BLOCK * gridDim.x; // total number of active vectors
for(uint_fast64_t row = vector_id; row < num_rows; row += num_vectors)
{
// use two threads to fetch Ap[row] and Ap[row+1]
// this is considerably faster than the straightforward version
if(thread_lane < 2)
ptrs[vector_lane][thread_lane] = matrixRowIndices[row + thread_lane];
const uint_fast64_t row_start = ptrs[vector_lane][0]; //same as: row_start = Ap[row];
const uint_fast64_t row_end = ptrs[vector_lane][1]; //same as: row_end = Ap[row+1];
// initialize local sum
double sum = 0;
if (THREADS_PER_VECTOR == 32 && row_end - row_start > 32)
{
// ensure aligned memory access to Aj and Ax
uint_fast64_t jj = row_start - (row_start & (THREADS_PER_VECTOR - 1)) + thread_lane;
// accumulate local sums
if(jj >= row_start && jj < row_end) {
sum += matrixColumnIndicesAndValues[2 * jj + 1] * fetch_x<UseCache>(*reinterpret_cast<uint_fast64_t const*>(matrixColumnIndicesAndValues + 2 * jj), x);
//sum += reinterpret_cast<ValueType const*>(matrixColumnIndicesAndValues)[2*jj + 1] * fetch_x<UseCache>(matrixColumnIndicesAndValues[2*jj], x);
}
// accumulate local sums
for(jj += THREADS_PER_VECTOR; jj < row_end; jj += THREADS_PER_VECTOR) {
//sum += reinterpret_cast<ValueType const*>(matrixColumnIndicesAndValues)[2*jj + 1] * fetch_x<UseCache>(matrixColumnIndicesAndValues[2*jj], x);
sum += matrixColumnIndicesAndValues[2 * jj + 1] * fetch_x<UseCache>(*reinterpret_cast<uint_fast64_t const*>(matrixColumnIndicesAndValues + 2 * jj), x);
}
} else {
// accumulate local sums
for(uint_fast64_t jj = row_start + thread_lane; jj < row_end; jj += THREADS_PER_VECTOR) {
//sum += reinterpret_cast<ValueType const*>(matrixColumnIndicesAndValues)[2*jj + 1] * fetch_x<UseCache>(matrixColumnIndicesAndValues[2*jj], x);
sum += matrixColumnIndicesAndValues[2 * jj + 1] * fetch_x<UseCache>(*reinterpret_cast<uint_fast64_t const*>(matrixColumnIndicesAndValues + 2 * jj), x);
}
}
// store local sum in shared memory
sdata[threadIdx.x] = sum;
// reduce local sums to row sum
if (THREADS_PER_VECTOR > 16) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 16];
if (THREADS_PER_VECTOR > 8) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 8];
if (THREADS_PER_VECTOR > 4) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 4];
if (THREADS_PER_VECTOR > 2) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 2];
if (THREADS_PER_VECTOR > 1) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 1];
// first thread writes the result
if (thread_lane == 0)
y[row] = sdata[threadIdx.x];
}
}
template <unsigned int ROWS_PER_BLOCK, unsigned int THREADS_PER_ROW, bool Minimize>
__launch_bounds__(ROWS_PER_BLOCK * THREADS_PER_ROW,1)
__global__ void
storm_cuda_opt_vector_reduce_kernel_double(const uint_fast64_t num_rows, const uint_fast64_t * __restrict__ nondeterministicChoiceIndices, double * __restrict__ x, const double * __restrict__ y, const double minMaxInitializer)
{
__shared__ volatile double sdata[ROWS_PER_BLOCK * THREADS_PER_ROW + THREADS_PER_ROW / 2]; // padded to avoid reduction conditionals
__shared__ volatile uint_fast64_t ptrs[ROWS_PER_BLOCK][2];
const uint_fast64_t THREADS_PER_BLOCK = ROWS_PER_BLOCK * THREADS_PER_ROW;
const uint_fast64_t thread_id = THREADS_PER_BLOCK * blockIdx.x + threadIdx.x; // global thread index
const uint_fast64_t thread_lane = threadIdx.x & (THREADS_PER_ROW - 1); // thread index within the vector
const uint_fast64_t vector_id = thread_id / THREADS_PER_ROW; // global vector index
const uint_fast64_t vector_lane = threadIdx.x / THREADS_PER_ROW; // vector index within the block
const uint_fast64_t num_vectors = ROWS_PER_BLOCK * gridDim.x; // total number of active vectors
for(uint_fast64_t row = vector_id; row < num_rows; row += num_vectors)
{
// use two threads to fetch Ap[row] and Ap[row+1]
// this is considerably faster than the straightforward version
if(thread_lane < 2)
ptrs[vector_lane][thread_lane] = nondeterministicChoiceIndices[row + thread_lane];
const uint_fast64_t row_start = ptrs[vector_lane][0]; //same as: row_start = Ap[row];
const uint_fast64_t row_end = ptrs[vector_lane][1]; //same as: row_end = Ap[row+1];
// initialize local Min/Max
double localMinMaxElement = minMaxInitializer;
if (THREADS_PER_ROW == 32 && row_end - row_start > 32)
{
// ensure aligned memory access to Aj and Ax
uint_fast64_t jj = row_start - (row_start & (THREADS_PER_ROW - 1)) + thread_lane;
// accumulate local sums
if(jj >= row_start && jj < row_end) {
if(Minimize) {
localMinMaxElement = min(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement > y[jj]) ? y[jj] : localMinMaxElement;
} else {
localMinMaxElement = max(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement < y[jj]) ? y[jj] : localMinMaxElement;
}
}
// accumulate local sums
for(jj += THREADS_PER_ROW; jj < row_end; jj += THREADS_PER_ROW)
if(Minimize) {
localMinMaxElement = min(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement > y[jj]) ? y[jj] : localMinMaxElement;
} else {
localMinMaxElement = max(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement < y[jj]) ? y[jj] : localMinMaxElement;
}
}
else
{
// accumulate local sums
for(uint_fast64_t jj = row_start + thread_lane; jj < row_end; jj += THREADS_PER_ROW)
if(Minimize) {
localMinMaxElement = min(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement > y[jj]) ? y[jj] : localMinMaxElement;
} else {
localMinMaxElement = max(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement < y[jj]) ? y[jj] : localMinMaxElement;
}
}
// store local sum in shared memory
sdata[threadIdx.x] = localMinMaxElement;
// reduce local min/max to row min/max
if (Minimize) {
/*if (THREADS_PER_ROW > 16) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 16]) ? sdata[threadIdx.x + 16] : localMinMaxElement);
if (THREADS_PER_ROW > 8) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 8]) ? sdata[threadIdx.x + 8] : localMinMaxElement);
if (THREADS_PER_ROW > 4) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 4]) ? sdata[threadIdx.x + 4] : localMinMaxElement);
if (THREADS_PER_ROW > 2) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 2]) ? sdata[threadIdx.x + 2] : localMinMaxElement);
if (THREADS_PER_ROW > 1) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 1]) ? sdata[threadIdx.x + 1] : localMinMaxElement);*/
if (THREADS_PER_ROW > 16) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 16]);
if (THREADS_PER_ROW > 8) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 8]);
if (THREADS_PER_ROW > 4) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 4]);
if (THREADS_PER_ROW > 2) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 2]);
if (THREADS_PER_ROW > 1) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 1]);
} else {
/*if (THREADS_PER_ROW > 16) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 16]) ? sdata[threadIdx.x + 16] : localMinMaxElement);
if (THREADS_PER_ROW > 8) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 8]) ? sdata[threadIdx.x + 8] : localMinMaxElement);
if (THREADS_PER_ROW > 4) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 4]) ? sdata[threadIdx.x + 4] : localMinMaxElement);
if (THREADS_PER_ROW > 2) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 2]) ? sdata[threadIdx.x + 2] : localMinMaxElement);
if (THREADS_PER_ROW > 1) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 1]) ? sdata[threadIdx.x + 1] : localMinMaxElement);*/
if (THREADS_PER_ROW > 16) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 16]);
if (THREADS_PER_ROW > 8) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 8]);
if (THREADS_PER_ROW > 4) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 4]);
if (THREADS_PER_ROW > 2) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 2]);
if (THREADS_PER_ROW > 1) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 1]);
}
// first thread writes the result
if (thread_lane == 0)
x[row] = sdata[threadIdx.x];
}
}
template <bool Minimize, unsigned int THREADS_PER_VECTOR>
void __storm_cuda_opt_vector_reduce_double(const uint_fast64_t num_rows, const uint_fast64_t * nondeterministicChoiceIndices, double * x, const double * y)
{
double __minMaxInitializer = -std::numeric_limits<double>::max();
if (Minimize) {
__minMaxInitializer = std::numeric_limits<double>::max();
}
const double minMaxInitializer = __minMaxInitializer;
const size_t THREADS_PER_BLOCK = 128;
const size_t VECTORS_PER_BLOCK = THREADS_PER_BLOCK / THREADS_PER_VECTOR;
const size_t MAX_BLOCKS = cusp::detail::device::arch::max_active_blocks(storm_cuda_opt_vector_reduce_kernel_double<VECTORS_PER_BLOCK, THREADS_PER_VECTOR, Minimize>, THREADS_PER_BLOCK, (size_t) 0);
const size_t NUM_BLOCKS = std::min<size_t>(MAX_BLOCKS, DIVIDE_INTO(num_rows, VECTORS_PER_BLOCK));
storm_cuda_opt_vector_reduce_kernel_double<VECTORS_PER_BLOCK, THREADS_PER_VECTOR, Minimize> <<<NUM_BLOCKS, THREADS_PER_BLOCK>>>
(num_rows, nondeterministicChoiceIndices, x, y, minMaxInitializer);
}
template <bool Minimize>
void storm_cuda_opt_vector_reduce_double(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * nondeterministicChoiceIndices, double * x, const double * y)
{
const uint_fast64_t rows_per_group = num_entries / num_rows;
if (rows_per_group <= 2) { __storm_cuda_opt_vector_reduce_double<Minimize, 2>(num_rows, nondeterministicChoiceIndices, x, y); return; }
if (rows_per_group <= 4) { __storm_cuda_opt_vector_reduce_double<Minimize, 4>(num_rows, nondeterministicChoiceIndices, x, y); return; }
if (rows_per_group <= 8) { __storm_cuda_opt_vector_reduce_double<Minimize, 8>(num_rows, nondeterministicChoiceIndices, x, y); return; }
if (rows_per_group <= 16) { __storm_cuda_opt_vector_reduce_double<Minimize,16>(num_rows, nondeterministicChoiceIndices, x, y); return; }
__storm_cuda_opt_vector_reduce_double<Minimize,32>(num_rows, nondeterministicChoiceIndices, x, y);
}
template <bool UseCache, unsigned int THREADS_PER_VECTOR>
void __storm_cuda_opt_spmv_csr_vector_double(const uint_fast64_t num_rows, const uint_fast64_t * matrixRowIndices, const double * matrixColumnIndicesAndValues, const double* x, double* y)
{
const size_t THREADS_PER_BLOCK = 128;
const size_t VECTORS_PER_BLOCK = THREADS_PER_BLOCK / THREADS_PER_VECTOR;
const size_t MAX_BLOCKS = cusp::detail::device::arch::max_active_blocks(storm_cuda_opt_spmv_csr_vector_kernel_double<VECTORS_PER_BLOCK, THREADS_PER_VECTOR, UseCache>, THREADS_PER_BLOCK, (size_t) 0);
const size_t NUM_BLOCKS = std::min<size_t>(MAX_BLOCKS, DIVIDE_INTO(num_rows, VECTORS_PER_BLOCK));
if (UseCache)
bind_x(x);
storm_cuda_opt_spmv_csr_vector_kernel_double<VECTORS_PER_BLOCK, THREADS_PER_VECTOR, UseCache> <<<NUM_BLOCKS, THREADS_PER_BLOCK>>>
(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y);
if (UseCache)
unbind_x(x);
}
void storm_cuda_opt_spmv_csr_vector_double(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const double * matrixColumnIndicesAndValues, const double* x, double* y)
{
const uint_fast64_t nnz_per_row = num_entries / num_rows;
if (nnz_per_row <= 2) { __storm_cuda_opt_spmv_csr_vector_double<false, 2>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 4) { __storm_cuda_opt_spmv_csr_vector_double<false, 4>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 8) { __storm_cuda_opt_spmv_csr_vector_double<false, 8>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 16) { __storm_cuda_opt_spmv_csr_vector_double<false,16>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
__storm_cuda_opt_spmv_csr_vector_double<false,32>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y);
}
void storm_cuda_opt_spmv_csr_vector_tex(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const double * matrixColumnIndicesAndValues, const double* x, double* y)
{
const uint_fast64_t nnz_per_row = num_entries / num_rows;
if (nnz_per_row <= 2) { __storm_cuda_opt_spmv_csr_vector_double<true, 2>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 4) { __storm_cuda_opt_spmv_csr_vector_double<true, 4>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 8) { __storm_cuda_opt_spmv_csr_vector_double<true, 8>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 16) { __storm_cuda_opt_spmv_csr_vector_double<true,16>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
__storm_cuda_opt_spmv_csr_vector_double<true,32>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y);
}
// NON-OPT
template <bool UseCache, unsigned int THREADS_PER_VECTOR>
void __storm_cuda_spmv_csr_vector_double(const uint_fast64_t num_rows, const uint_fast64_t * matrixRowIndices, const uint_fast64_t * matrixColumnIndices, const double * matrixValues, const double* x, double* y)
{
const size_t THREADS_PER_BLOCK = 128;
const size_t VECTORS_PER_BLOCK = THREADS_PER_BLOCK / THREADS_PER_VECTOR;
const size_t MAX_BLOCKS = cusp::detail::device::arch::max_active_blocks(spmv_csr_vector_kernel<uint_fast64_t, double, VECTORS_PER_BLOCK, THREADS_PER_VECTOR, UseCache>, THREADS_PER_BLOCK, (size_t) 0);
const size_t NUM_BLOCKS = std::min<size_t>(MAX_BLOCKS, DIVIDE_INTO(num_rows, VECTORS_PER_BLOCK));
if (UseCache)
bind_x(x);
spmv_csr_vector_kernel<uint_fast64_t, double, VECTORS_PER_BLOCK, THREADS_PER_VECTOR, UseCache> <<<NUM_BLOCKS, THREADS_PER_BLOCK>>>
(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y);
if (UseCache)
unbind_x(x);
}
void storm_cuda_spmv_csr_vector_double(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const uint_fast64_t * matrixColumnIndices, const double * matrixValues, const double* x, double* y)
{
const uint_fast64_t nnz_per_row = num_entries / num_rows;
if (nnz_per_row <= 2) { __storm_cuda_spmv_csr_vector_double<false, 2>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 4) { __storm_cuda_spmv_csr_vector_double<false, 4>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 8) { __storm_cuda_spmv_csr_vector_double<false, 8>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 16) { __storm_cuda_spmv_csr_vector_double<false,16>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
__storm_cuda_spmv_csr_vector_double<false,32>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y);
}
void storm_cuda_spmv_csr_vector_tex_double(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const uint_fast64_t * matrixColumnIndices, const double * matrixValues, const double* x, double* y)
{
const uint_fast64_t nnz_per_row = num_entries / num_rows;
if (nnz_per_row <= 2) { __storm_cuda_spmv_csr_vector_double<true, 2>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 4) { __storm_cuda_spmv_csr_vector_double<true, 4>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 8) { __storm_cuda_spmv_csr_vector_double<true, 8>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 16) { __storm_cuda_spmv_csr_vector_double<true,16>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
__storm_cuda_spmv_csr_vector_double<true,32>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y);
}
} // end namespace device
} // end namespace detail
} // end namespace cusp

375
resources/cudaForStorm/srcCuda/cuspExtensionFloat.h

@ -0,0 +1,375 @@
/*
* This is an extension of the original CUSP csr_vector.h SPMV implementation.
* It is based on the Code and incorporates changes as to cope with the details
* of the StoRM code.
* As this is mostly copy & paste, the original license still applies.
*/
/*
* Copyright 2008-2009 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <limits>
#include <cstdint>
#include <algorithm>
#include <math_functions.h>
#include <cusp/detail/device/spmv/csr_vector.h>
#include "storm-cudaplugin-config.h"
namespace cusp
{
namespace detail
{
namespace device
{
//////////////////////////////////////////////////////////////////////////////
// CSR SpMV kernels based on a vector model (one warp per row)
//////////////////////////////////////////////////////////////////////////////
//
// spmv_csr_vector_device
// Each row of the CSR matrix is assigned to a warp. The warp computes
// y[i] = A[i,:] * x, i.e. the dot product of the i-th row of A with
// the x vector, in parallel. This division of work implies that
// the CSR index and data arrays (Aj and Ax) are accessed in a contiguous
// manner (but generally not aligned). On GT200 these accesses are
// coalesced, unlike kernels based on the one-row-per-thread division of
// work. Since an entire 32-thread warp is assigned to each row, many
// threads will remain idle when their row contains a small number
// of elements. This code relies on implicit synchronization among
// threads in a warp.
//
// spmv_csr_vector_tex_device
// Same as spmv_csr_vector_tex_device, except that the texture cache is
// used for accessing the x vector.
//
// Note: THREADS_PER_VECTOR must be one of [2,4,8,16,32]
template <unsigned int VECTORS_PER_BLOCK, unsigned int THREADS_PER_VECTOR, bool UseCache>
__launch_bounds__(VECTORS_PER_BLOCK * THREADS_PER_VECTOR,1)
__global__ void
storm_cuda_opt_spmv_csr_vector_kernel_float(const uint_fast64_t num_rows, const uint_fast64_t * matrixRowIndices, const float * matrixColumnIndicesAndValues, const float * x, float * y)
{
__shared__ volatile float sdata[VECTORS_PER_BLOCK * THREADS_PER_VECTOR + THREADS_PER_VECTOR / 2]; // padded to avoid reduction conditionals
__shared__ volatile uint_fast64_t ptrs[VECTORS_PER_BLOCK][2];
const uint_fast64_t THREADS_PER_BLOCK = VECTORS_PER_BLOCK * THREADS_PER_VECTOR;
const uint_fast64_t thread_id = THREADS_PER_BLOCK * blockIdx.x + threadIdx.x; // global thread index
const uint_fast64_t thread_lane = threadIdx.x & (THREADS_PER_VECTOR - 1); // thread index within the vector
const uint_fast64_t vector_id = thread_id / THREADS_PER_VECTOR; // global vector index
const uint_fast64_t vector_lane = threadIdx.x / THREADS_PER_VECTOR; // vector index within the block
const uint_fast64_t num_vectors = VECTORS_PER_BLOCK * gridDim.x; // total number of active vectors
for(uint_fast64_t row = vector_id; row < num_rows; row += num_vectors)
{
// use two threads to fetch Ap[row] and Ap[row+1]
// this is considerably faster than the straightforward version
if(thread_lane < 2)
ptrs[vector_lane][thread_lane] = matrixRowIndices[row + thread_lane];
const uint_fast64_t row_start = ptrs[vector_lane][0]; //same as: row_start = Ap[row];
const uint_fast64_t row_end = ptrs[vector_lane][1]; //same as: row_end = Ap[row+1];
// initialize local sum
float sum = 0;
if (THREADS_PER_VECTOR == 32 && row_end - row_start > 32)
{
// ensure aligned memory access to Aj and Ax
uint_fast64_t jj = row_start - (row_start & (THREADS_PER_VECTOR - 1)) + thread_lane;
// accumulate local sums
if(jj >= row_start && jj < row_end) {
#ifdef STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT
sum += matrixColumnIndicesAndValues[4 * jj + 2] * fetch_x<UseCache>(*reinterpret_cast<uint_fast64_t const*>(matrixColumnIndicesAndValues + 4 * jj), x);
#else
sum += matrixColumnIndicesAndValues[3 * jj + 2] * fetch_x<UseCache>(*reinterpret_cast<uint_fast64_t const*>(matrixColumnIndicesAndValues + 3 * jj), x);
#endif
//sum += reinterpret_cast<ValueType const*>(matrixColumnIndicesAndValues)[2*jj + 1] * fetch_x<UseCache>(matrixColumnIndicesAndValues[2*jj], x);
}
// accumulate local sums
for(jj += THREADS_PER_VECTOR; jj < row_end; jj += THREADS_PER_VECTOR) {
//sum += reinterpret_cast<ValueType const*>(matrixColumnIndicesAndValues)[2*jj + 1] * fetch_x<UseCache>(matrixColumnIndicesAndValues[2*jj], x);
#ifdef STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT
sum += matrixColumnIndicesAndValues[4 * jj + 2] * fetch_x<UseCache>(*reinterpret_cast<uint_fast64_t const*>(matrixColumnIndicesAndValues + 4 * jj), x);
#else
sum += matrixColumnIndicesAndValues[3 * jj + 2] * fetch_x<UseCache>(*reinterpret_cast<uint_fast64_t const*>(matrixColumnIndicesAndValues + 3 * jj), x);
#endif
}
} else {
// accumulate local sums
for(uint_fast64_t jj = row_start + thread_lane; jj < row_end; jj += THREADS_PER_VECTOR) {
//sum += reinterpret_cast<ValueType const*>(matrixColumnIndicesAndValues)[2*jj + 1] * fetch_x<UseCache>(matrixColumnIndicesAndValues[2*jj], x);
#ifdef STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT
sum += matrixColumnIndicesAndValues[4 * jj + 2] * fetch_x<UseCache>(*reinterpret_cast<uint_fast64_t const*>(matrixColumnIndicesAndValues + 4 * jj), x);
#else
sum += matrixColumnIndicesAndValues[3 * jj + 2] * fetch_x<UseCache>(*reinterpret_cast<uint_fast64_t const*>(matrixColumnIndicesAndValues + 3 * jj), x);
#endif
}
}
// store local sum in shared memory
sdata[threadIdx.x] = sum;
// reduce local sums to row sum
if (THREADS_PER_VECTOR > 16) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 16];
if (THREADS_PER_VECTOR > 8) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 8];
if (THREADS_PER_VECTOR > 4) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 4];
if (THREADS_PER_VECTOR > 2) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 2];
if (THREADS_PER_VECTOR > 1) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 1];
// first thread writes the result
if (thread_lane == 0)
y[row] = sdata[threadIdx.x];
}
}
template <unsigned int ROWS_PER_BLOCK, unsigned int THREADS_PER_ROW, bool Minimize>
__launch_bounds__(ROWS_PER_BLOCK * THREADS_PER_ROW,1)
__global__ void
storm_cuda_opt_vector_reduce_kernel_float(const uint_fast64_t num_rows, const uint_fast64_t * nondeterministicChoiceIndices, float * x, const float * y, const float minMaxInitializer)
{
__shared__ volatile float sdata[ROWS_PER_BLOCK * THREADS_PER_ROW + THREADS_PER_ROW / 2]; // padded to avoid reduction conditionals
__shared__ volatile uint_fast64_t ptrs[ROWS_PER_BLOCK][2];
const uint_fast64_t THREADS_PER_BLOCK = ROWS_PER_BLOCK * THREADS_PER_ROW;
const uint_fast64_t thread_id = THREADS_PER_BLOCK * blockIdx.x + threadIdx.x; // global thread index
const uint_fast64_t thread_lane = threadIdx.x & (THREADS_PER_ROW - 1); // thread index within the vector
const uint_fast64_t vector_id = thread_id / THREADS_PER_ROW; // global vector index
const uint_fast64_t vector_lane = threadIdx.x / THREADS_PER_ROW; // vector index within the block
const uint_fast64_t num_vectors = ROWS_PER_BLOCK * gridDim.x; // total number of active vectors
for(uint_fast64_t row = vector_id; row < num_rows; row += num_vectors)
{
// use two threads to fetch Ap[row] and Ap[row+1]
// this is considerably faster than the straightforward version
if(thread_lane < 2)
ptrs[vector_lane][thread_lane] = nondeterministicChoiceIndices[row + thread_lane];
const uint_fast64_t row_start = ptrs[vector_lane][0]; //same as: row_start = Ap[row];
const uint_fast64_t row_end = ptrs[vector_lane][1]; //same as: row_end = Ap[row+1];
// initialize local Min/Max
float localMinMaxElement = minMaxInitializer;
if (THREADS_PER_ROW == 32 && row_end - row_start > 32)
{
// ensure aligned memory access to Aj and Ax
uint_fast64_t jj = row_start - (row_start & (THREADS_PER_ROW - 1)) + thread_lane;
// accumulate local sums
if(jj >= row_start && jj < row_end) {
if(Minimize) {
localMinMaxElement = min(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement > y[jj]) ? y[jj] : localMinMaxElement;
} else {
localMinMaxElement = max(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement < y[jj]) ? y[jj] : localMinMaxElement;
}
}
// accumulate local sums
for(jj += THREADS_PER_ROW; jj < row_end; jj += THREADS_PER_ROW)
if(Minimize) {
localMinMaxElement = min(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement > y[jj]) ? y[jj] : localMinMaxElement;
} else {
localMinMaxElement = max(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement < y[jj]) ? y[jj] : localMinMaxElement;
}
}
else
{
// accumulate local sums
for(uint_fast64_t jj = row_start + thread_lane; jj < row_end; jj += THREADS_PER_ROW)
if(Minimize) {
localMinMaxElement = min(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement > y[jj]) ? y[jj] : localMinMaxElement;
} else {
localMinMaxElement = max(localMinMaxElement, y[jj]);
//localMinMaxElement = (localMinMaxElement < y[jj]) ? y[jj] : localMinMaxElement;
}
}
// store local sum in shared memory
sdata[threadIdx.x] = localMinMaxElement;
// reduce local min/max to row min/max
if (Minimize) {
/*if (THREADS_PER_ROW > 16) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 16]) ? sdata[threadIdx.x + 16] : localMinMaxElement);
if (THREADS_PER_ROW > 8) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 8]) ? sdata[threadIdx.x + 8] : localMinMaxElement);
if (THREADS_PER_ROW > 4) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 4]) ? sdata[threadIdx.x + 4] : localMinMaxElement);
if (THREADS_PER_ROW > 2) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 2]) ? sdata[threadIdx.x + 2] : localMinMaxElement);
if (THREADS_PER_ROW > 1) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement > sdata[threadIdx.x + 1]) ? sdata[threadIdx.x + 1] : localMinMaxElement);*/
if (THREADS_PER_ROW > 16) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 16]);
if (THREADS_PER_ROW > 8) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 8]);
if (THREADS_PER_ROW > 4) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 4]);
if (THREADS_PER_ROW > 2) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 2]);
if (THREADS_PER_ROW > 1) sdata[threadIdx.x] = localMinMaxElement = min(localMinMaxElement, sdata[threadIdx.x + 1]);
} else {
/*if (THREADS_PER_ROW > 16) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 16]) ? sdata[threadIdx.x + 16] : localMinMaxElement);
if (THREADS_PER_ROW > 8) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 8]) ? sdata[threadIdx.x + 8] : localMinMaxElement);
if (THREADS_PER_ROW > 4) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 4]) ? sdata[threadIdx.x + 4] : localMinMaxElement);
if (THREADS_PER_ROW > 2) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 2]) ? sdata[threadIdx.x + 2] : localMinMaxElement);
if (THREADS_PER_ROW > 1) sdata[threadIdx.x] = localMinMaxElement = ((localMinMaxElement < sdata[threadIdx.x + 1]) ? sdata[threadIdx.x + 1] : localMinMaxElement);*/
if (THREADS_PER_ROW > 16) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 16]);
if (THREADS_PER_ROW > 8) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 8]);
if (THREADS_PER_ROW > 4) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 4]);
if (THREADS_PER_ROW > 2) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 2]);
if (THREADS_PER_ROW > 1) sdata[threadIdx.x] = localMinMaxElement = max(localMinMaxElement, sdata[threadIdx.x + 1]);
}
// first thread writes the result
if (thread_lane == 0)
x[row] = sdata[threadIdx.x];
}
}
template <bool Minimize, unsigned int THREADS_PER_VECTOR>
void __storm_cuda_opt_vector_reduce_float(const uint_fast64_t num_rows, const uint_fast64_t * nondeterministicChoiceIndices, float * x, const float * y)
{
float __minMaxInitializer = -std::numeric_limits<float>::max();
if (Minimize) {
__minMaxInitializer = std::numeric_limits<float>::max();
}
const float minMaxInitializer = __minMaxInitializer;
const size_t THREADS_PER_BLOCK = 128;
const size_t VECTORS_PER_BLOCK = THREADS_PER_BLOCK / THREADS_PER_VECTOR;
const size_t MAX_BLOCKS = cusp::detail::device::arch::max_active_blocks(storm_cuda_opt_vector_reduce_kernel_float<VECTORS_PER_BLOCK, THREADS_PER_VECTOR, Minimize>, THREADS_PER_BLOCK, (size_t) 0);
const size_t NUM_BLOCKS = std::min<size_t>(MAX_BLOCKS, DIVIDE_INTO(num_rows, VECTORS_PER_BLOCK));
storm_cuda_opt_vector_reduce_kernel_float<VECTORS_PER_BLOCK, THREADS_PER_VECTOR, Minimize> <<<NUM_BLOCKS, THREADS_PER_BLOCK>>>
(num_rows, nondeterministicChoiceIndices, x, y, minMaxInitializer);
}
template <bool Minimize>
void storm_cuda_opt_vector_reduce_float(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * nondeterministicChoiceIndices, float * x, const float * y)
{
const uint_fast64_t rows_per_group = num_entries / num_rows;
if (rows_per_group <= 2) { __storm_cuda_opt_vector_reduce_float<Minimize, 2>(num_rows, nondeterministicChoiceIndices, x, y); return; }
if (rows_per_group <= 4) { __storm_cuda_opt_vector_reduce_float<Minimize, 4>(num_rows, nondeterministicChoiceIndices, x, y); return; }
if (rows_per_group <= 8) { __storm_cuda_opt_vector_reduce_float<Minimize, 8>(num_rows, nondeterministicChoiceIndices, x, y); return; }
if (rows_per_group <= 16) { __storm_cuda_opt_vector_reduce_float<Minimize,16>(num_rows, nondeterministicChoiceIndices, x, y); return; }
__storm_cuda_opt_vector_reduce_float<Minimize,32>(num_rows, nondeterministicChoiceIndices, x, y);
}
template <bool UseCache, unsigned int THREADS_PER_VECTOR>
void __storm_cuda_opt_spmv_csr_vector_float(const uint_fast64_t num_rows, const uint_fast64_t * matrixRowIndices, const float * matrixColumnIndicesAndValues, const float* x, float* y)
{
const size_t THREADS_PER_BLOCK = 128;
const size_t VECTORS_PER_BLOCK = THREADS_PER_BLOCK / THREADS_PER_VECTOR;
const size_t MAX_BLOCKS = cusp::detail::device::arch::max_active_blocks(storm_cuda_opt_spmv_csr_vector_kernel_float<VECTORS_PER_BLOCK, THREADS_PER_VECTOR, UseCache>, THREADS_PER_BLOCK, (size_t) 0);
const size_t NUM_BLOCKS = std::min<size_t>(MAX_BLOCKS, DIVIDE_INTO(num_rows, VECTORS_PER_BLOCK));
if (UseCache)
bind_x(x);
storm_cuda_opt_spmv_csr_vector_kernel_float<VECTORS_PER_BLOCK, THREADS_PER_VECTOR, UseCache> <<<NUM_BLOCKS, THREADS_PER_BLOCK>>>
(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y);
if (UseCache)
unbind_x(x);
}
void storm_cuda_opt_spmv_csr_vector_float(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const float * matrixColumnIndicesAndValues, const float* x, float* y)
{
const uint_fast64_t nnz_per_row = num_entries / num_rows;
if (nnz_per_row <= 2) { __storm_cuda_opt_spmv_csr_vector_float<false, 2>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 4) { __storm_cuda_opt_spmv_csr_vector_float<false, 4>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 8) { __storm_cuda_opt_spmv_csr_vector_float<false, 8>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 16) { __storm_cuda_opt_spmv_csr_vector_float<false,16>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
__storm_cuda_opt_spmv_csr_vector_float<false,32>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y);
}
void storm_cuda_opt_spmv_csr_vector_tex(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const float * matrixColumnIndicesAndValues, const float* x, float* y)
{
const uint_fast64_t nnz_per_row = num_entries / num_rows;
if (nnz_per_row <= 2) { __storm_cuda_opt_spmv_csr_vector_float<true, 2>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 4) { __storm_cuda_opt_spmv_csr_vector_float<true, 4>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 8) { __storm_cuda_opt_spmv_csr_vector_float<true, 8>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
if (nnz_per_row <= 16) { __storm_cuda_opt_spmv_csr_vector_float<true,16>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y); return; }
__storm_cuda_opt_spmv_csr_vector_float<true,32>(num_rows, matrixRowIndices, matrixColumnIndicesAndValues, x, y);
}
// NON-OPT
template <bool UseCache, unsigned int THREADS_PER_VECTOR>
void __storm_cuda_spmv_csr_vector_float(const uint_fast64_t num_rows, const uint_fast64_t * matrixRowIndices, const uint_fast64_t * matrixColumnIndices, const float * matrixValues, const float* x, float* y)
{
const size_t THREADS_PER_BLOCK = 128;
const size_t VECTORS_PER_BLOCK = THREADS_PER_BLOCK / THREADS_PER_VECTOR;
const size_t MAX_BLOCKS = cusp::detail::device::arch::max_active_blocks(spmv_csr_vector_kernel<uint_fast64_t, float, VECTORS_PER_BLOCK, THREADS_PER_VECTOR, UseCache>, THREADS_PER_BLOCK, (size_t) 0);
const size_t NUM_BLOCKS = std::min<size_t>(MAX_BLOCKS, DIVIDE_INTO(num_rows, VECTORS_PER_BLOCK));
if (UseCache)
bind_x(x);
spmv_csr_vector_kernel<uint_fast64_t, float, VECTORS_PER_BLOCK, THREADS_PER_VECTOR, UseCache> <<<NUM_BLOCKS, THREADS_PER_BLOCK>>>
(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y);
if (UseCache)
unbind_x(x);
}
void storm_cuda_spmv_csr_vector_float(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const uint_fast64_t * matrixColumnIndices, const float * matrixValues, const float* x, float* y)
{
const uint_fast64_t nnz_per_row = num_entries / num_rows;
if (nnz_per_row <= 2) { __storm_cuda_spmv_csr_vector_float<false, 2>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 4) { __storm_cuda_spmv_csr_vector_float<false, 4>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 8) { __storm_cuda_spmv_csr_vector_float<false, 8>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 16) { __storm_cuda_spmv_csr_vector_float<false,16>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
__storm_cuda_spmv_csr_vector_float<false,32>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y);
}
void storm_cuda_spmv_csr_vector_tex_float(const uint_fast64_t num_rows, const uint_fast64_t num_entries, const uint_fast64_t * matrixRowIndices, const uint_fast64_t * matrixColumnIndices, const float * matrixValues, const float* x, float* y)
{
const uint_fast64_t nnz_per_row = num_entries / num_rows;
if (nnz_per_row <= 2) { __storm_cuda_spmv_csr_vector_float<true, 2>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 4) { __storm_cuda_spmv_csr_vector_float<true, 4>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 8) { __storm_cuda_spmv_csr_vector_float<true, 8>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
if (nnz_per_row <= 16) { __storm_cuda_spmv_csr_vector_float<true,16>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y); return; }
__storm_cuda_spmv_csr_vector_float<true,32>(num_rows, matrixRowIndices, matrixColumnIndices, matrixValues, x, y);
}
} // end namespace device
} // end namespace detail
} // end namespace cusp

39
resources/cudaForStorm/srcCuda/kernelSwitchTest.cu

@ -0,0 +1,39 @@
#include <iostream>
#include <chrono>
__global__ void cuda_kernel_kernelSwitchTest(int const * const A, int * const B) {
*B = *A;
}
void kernelSwitchTest(size_t N) {
int* deviceIntA;
int* deviceIntB;
if (cudaMalloc((void**)&deviceIntA, sizeof(int)) != cudaSuccess) {
std::cout << "Error in cudaMalloc while allocating " << sizeof(int) << " Bytes!" << std::endl;
return;
}
if (cudaMalloc((void**)&deviceIntB, sizeof(int)) != cudaSuccess) {
std::cout << "Error in cudaMalloc while allocating " << sizeof(int) << " Bytes!" << std::endl;
return;
}
// Allocate space on the device
auto start_time = std::chrono::high_resolution_clock::now();
for (int i = 0; i < N; ++i) {
cuda_kernel_kernelSwitchTest<<<1,1>>>(deviceIntA, deviceIntB);
}
auto end_time = std::chrono::high_resolution_clock::now();
std::cout << "Switching the Kernel " << N << " times took " << std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count() << "micros" << std::endl;
std::cout << "Resulting in " << (std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time).count() / ((double)(N))) << "Microseconds per Kernel Switch" << std::endl;
// Free memory on device
if (cudaFree(deviceIntA) != cudaSuccess) {
std::cout << "Error in cudaFree!" << std::endl;
return;
}
if (cudaFree(deviceIntB) != cudaSuccess) {
std::cout << "Error in cudaFree!" << std::endl;
return;
}
}

1
resources/cudaForStorm/srcCuda/kernelSwitchTest.h

@ -0,0 +1 @@
void kernelSwitchTest(size_t N);

33
resources/cudaForStorm/srcCuda/utility.cu

@ -0,0 +1,33 @@
#include "utility.h"
#include <cuda_runtime.h>
size_t getFreeCudaMemory() {
size_t freeMemory;
size_t totalMemory;
cudaMemGetInfo(&freeMemory, &totalMemory);
return freeMemory;
}
size_t getTotalCudaMemory() {
size_t freeMemory;
size_t totalMemory;
cudaMemGetInfo(&freeMemory, &totalMemory);
return totalMemory;
}
bool resetCudaDevice() {
cudaError_t result = cudaDeviceReset();
return (result == cudaSuccess);
}
int getRuntimeCudaVersion() {
int result = -1;
cudaError_t errorResult = cudaRuntimeGetVersion(&result);
if (errorResult != cudaSuccess) {
return -1;
}
return result;
}

12
resources/cudaForStorm/srcCuda/utility.h

@ -0,0 +1,12 @@
#ifndef STORM_CUDAFORSTORM_UTILITY_H_
#define STORM_CUDAFORSTORM_UTILITY_H_
// Library exports
#include "cudaForStorm_Export.h"
cudaForStorm_EXPORT size_t getFreeCudaMemory();
cudaForStorm_EXPORT size_t getTotalCudaMemory();
cudaForStorm_EXPORT bool resetCudaDevice();
cudaForStorm_EXPORT int getRuntimeCudaVersion();
#endif // STORM_CUDAFORSTORM_UTILITY_H_

28
resources/cudaForStorm/srcCuda/version.cu

@ -0,0 +1,28 @@
#include "version.h"
#include "storm-cudaplugin-config.h"
size_t getStormCudaPluginVersionMajor() {
return STORM_CUDAPLUGIN_VERSION_MAJOR;
}
size_t getStormCudaPluginVersionMinor() {
return STORM_CUDAPLUGIN_VERSION_MINOR;
}
size_t getStormCudaPluginVersionPatch() {
return STORM_CUDAPLUGIN_VERSION_PATCH;
}
size_t getStormCudaPluginVersionCommitsAhead() {
return STORM_CUDAPLUGIN_VERSION_COMMITS_AHEAD;
}
const char* getStormCudaPluginVersionHash() {
static const std::string versionHash = STORM_CUDAPLUGIN_VERSION_HASH;
return versionHash.c_str();
}
bool getStormCudaPluginVersionIsDirty() {
return ((STORM_CUDAPLUGIN_VERSION_DIRTY) != 0);
}

16
resources/cudaForStorm/srcCuda/version.h

@ -0,0 +1,16 @@
#ifndef STORM_CUDAFORSTORM_VERSION_H_
#define STORM_CUDAFORSTORM_VERSION_H_
// Library exports
#include "cudaForStorm_Export.h"
#include <string>
cudaForStorm_EXPORT size_t getStormCudaPluginVersionMajor();
cudaForStorm_EXPORT size_t getStormCudaPluginVersionMinor();
cudaForStorm_EXPORT size_t getStormCudaPluginVersionPatch();
cudaForStorm_EXPORT size_t getStormCudaPluginVersionCommitsAhead();
cudaForStorm_EXPORT const char* getStormCudaPluginVersionHash();
cudaForStorm_EXPORT bool getStormCudaPluginVersionIsDirty();
#endif // STORM_CUDAFORSTORM_VERSION_H_

21
resources/cudaForStorm/storm-cudaplugin-config.h.in

@ -0,0 +1,21 @@
/*
* StoRM - Build-in Options
*
* This file is parsed by CMake during makefile generation
*/
#ifndef STORM_CUDAPLUGIN_GENERATED_STORMCONFIG_H_
#define STORM_CUDAPLUGIN_GENERATED_STORMCONFIG_H_
// Version Information
#define STORM_CUDAPLUGIN_VERSION_MAJOR @STORM_CUDAPLUGIN_VERSION_MAJOR@ // The major version of StoRM
#define STORM_CUDAPLUGIN_VERSION_MINOR @STORM_CUDAPLUGIN_VERSION_MINOR@ // The minor version of StoRM
#define STORM_CUDAPLUGIN_VERSION_PATCH @STORM_CUDAPLUGIN_VERSION_PATCH@ // The patch version of StoRM
#define STORM_CUDAPLUGIN_VERSION_COMMITS_AHEAD @STORM_CUDAPLUGIN_VERSION_COMMITS_AHEAD@ // How many commits passed since the tag was last set
#define STORM_CUDAPLUGIN_VERSION_HASH "@STORM_CUDAPLUGIN_VERSION_HASH@" // The short hash of the git commit this build is bases on
#define STORM_CUDAPLUGIN_VERSION_DIRTY @STORM_CUDAPLUGIN_VERSION_DIRTY@ // 0 iff there no files were modified in the checkout, 1 else
// Whether the size of float in a pair<uint_fast64_t, float> is expanded to 64bit
#@STORM_CUDAPLUGIN_FLOAT_64BIT_ALIGN_DEF@ STORM_CUDAPLUGIN_HAVE_64BIT_FLOAT_ALIGNMENT
#endif // STORM_CUDAPLUGIN_GENERATED_STORMCONFIG_H_

10
src/counterexamples/PathBasedSubsystemGenerator.h

@ -430,7 +430,7 @@ public:
allowedStates = storm::storage::BitVector(targetStates.size(), true);
}
else if(globally.get() != nullptr){
//eventually reaching a state without property visiting only states with property
// eventually reaching a state without property visiting only states with property
allowedStates = globally->getChild()->check(modelCheck);
targetStates = storm::storage::BitVector(allowedStates);
targetStates.complement();
@ -451,9 +451,9 @@ public:
// estimate the path count using the models state count as well as the probability bound
uint_fast8_t const minPrec = 10;
uint_fast64_t const stateCount = model.getNumberOfStates();
uint_fast64_t const stateEstimate = static_cast<uint_fast64_t>(stateCount * bound);
uint_fast64_t const stateEstimate = static_cast<uint_fast64_t>((static_cast<T>(stateCount)) * bound);
//since this only has a good effect on big models -> use only if model has at least 10^5 states
// since this only has a good effect on big models -> use only if model has at least 10^5 states
uint_fast64_t precision = stateEstimate > 100000 ? stateEstimate/1000 : minPrec;
@ -546,11 +546,11 @@ public:
//std::cout << "Diff: " << diff << std::endl;
//std::cout << "Path count: " << pathCount << std::endl;
//Are we critical?
// Are we critical?
if(subSysProb >= bound){
break;
} else if (stateEstimate > 100000){
precision = static_cast<uint_fast64_t>((stateEstimate / 1000.0) - ((stateEstimate / 1000.0) - minPrec)*(subSysProb/bound));
precision = static_cast<uint_fast64_t>((stateEstimate / 1000.0) - ((stateEstimate / 1000.0) - minPrec) * (subSysProb/bound));
}
}
}

101
src/modelchecker/prctl/TopologicalValueIterationMdpPrctlModelChecker.h

@ -9,6 +9,7 @@
#define STORM_MODELCHECKER_PRCTL_TOPOLOGICALVALUEITERATIONSMDPPRCTLMODELCHECKER_H_
#include "src/modelchecker/prctl/SparseMdpPrctlModelChecker.h"
#include "src/solver/TopologicalValueIterationNondeterministicLinearEquationSolver.h"
#include "src/exceptions/InvalidPropertyException.h"
#include <cmath>
@ -29,7 +30,7 @@ public:
*
* @param model The MDP to be checked.
*/
explicit TopologicalValueIterationMdpPrctlModelChecker(storm::models::Mdp<Type> const& model) : SparseMdpPrctlModelChecker<Type>(model) {
explicit TopologicalValueIterationMdpPrctlModelChecker(storm::models::Mdp<Type> const& model) : SparseMdpPrctlModelChecker<Type>(model, std::shared_ptr<storm::solver::NondeterministicLinearEquationSolver<Type>>(new storm::solver::TopologicalValueIterationNondeterministicLinearEquationSolver<Type>())) {
// Intentionally left empty.
}
@ -37,8 +38,8 @@ public:
* Copy constructs a SparseMdpPrctlModelChecker from the given model checker. In particular, this means that the newly
* constructed model checker will have the model of the given model checker as its associated model.
*/
explicit TopologicalValueIterationMdpPrctlModelChecker(storm::modelchecker::TopologicalValueIterationMdpPrctlModelChecker<Type> const& modelchecker)
: SparseMdpPrctlModelChecker<Type>(modelchecker), minimumOperatorStack() {
explicit TopologicalValueIterationMdpPrctlModelChecker(storm::modelchecker::prctl::TopologicalValueIterationMdpPrctlModelChecker<Type> const& modelchecker)
: SparseMdpPrctlModelChecker<Type>(modelchecker) {
// Intentionally left empty.
}
@ -46,100 +47,6 @@ public:
* Virtual destructor. Needs to be virtual, because this class has virtual methods.
*/
virtual ~TopologicalValueIterationMdpPrctlModelChecker() { }
private:
/*!
* Solves the given equation system under the given parameters using the power method.
*
* @param A The matrix A specifying the coefficients of the equations.
* @param x The vector x for which to solve the equations. The initial value of the elements of
* this vector are used as the initial guess and might thus influence performance and convergence.
* @param b The vector b specifying the values on the right-hand-sides of the equations.
* @return The solution of the system of linear equations in form of the elements of the vector
* x.
*/
void solveEquationSystem(storm::storage::SparseMatrix<Type> const& matrix, std::vector<Type>& x, std::vector<Type> const& b) const {
// Get the settings object to customize solving.
storm::settings::Settings* s = storm::settings::Settings::getInstance();
// Get relevant user-defined settings for solving the equations.
double precision = s->getOptionByLongName("precision").getArgument(0).getValueAsDouble();
uint_fast64_t maxIterations = s->getOptionByLongName("maxIterations").getArgument(0).getValueAsUnsignedInteger();
bool relative = s->getOptionByLongName("relative").getArgument(0).getValueAsBoolean();
// Now, we need to determine the SCCs of the MDP and a topological sort.
std::vector<std::vector<uint_fast64_t>> stronglyConnectedComponents = storm::utility::graph::performSccDecomposition(this->getModel(), stronglyConnectedComponents, stronglyConnectedComponentsDependencyGraph);
storm::storage::SparseMatrix<T> stronglyConnectedComponentsDependencyGraph = this->getModel().extractSccDependencyGraph(stronglyConnectedComponents);
std::vector<uint_fast64_t> topologicalSort = storm::utility::graph::getTopologicalSort(stronglyConnectedComponentsDependencyGraph);
// Set up the environment for the power method.
std::vector<Type> multiplyResult(matrix.getRowCount());
std::vector<Type>* currentX = &x;
std::vector<Type>* newX = new std::vector<Type>(x.size());
std::vector<Type>* swap = nullptr;
uint_fast64_t currentMaxLocalIterations = 0;
uint_fast64_t localIterations = 0;
uint_fast64_t globalIterations = 0;
bool converged = true;
// Iterate over all SCCs of the MDP as specified by the topological sort. This guarantees that an SCC is only
// solved after all SCCs it depends on have been solved.
for (auto sccIndexIt = topologicalSort.begin(); sccIndexIt != topologicalSort.end() && converged; ++sccIndexIt) {
std::vector<uint_fast64_t> const& scc = stronglyConnectedComponents[*sccIndexIt];
// For the current SCC, we need to perform value iteration until convergence.
localIterations = 0;
converged = false;
while (!converged && localIterations < maxIterations) {
// Compute x' = A*x + b.
matrix.multiplyWithVector(scc, *currentX, multiplyResult);
storm::utility::addVectors(scc, matrix.getRowGroupIndices(), multiplyResult, b);
// Reduce the vector x' by applying min/max for all non-deterministic choices.
if (this->minimumOperatorStack.top()) {
storm::utility::reduceVectorMin(multiplyResult, newX, scc, matrix.getRowGroupIndices());
} else {
storm::utility::reduceVectorMax(multiplyResult, newX, scc, matrix.getRowGroupIndices());
}
// Determine whether the method converged.
// TODO: It seems that the equalModuloPrecision call that compares all values should have a higher
// running time. In fact, it is faster. This has to be investigated.
// converged = storm::utility::equalModuloPrecision(*currentX, *newX, scc, precision, relative);
converged = storm::utility::equalModuloPrecision(*currentX, *newX, precision, relative);
// Update environment variables.
swap = currentX;
currentX = newX;
newX = swap;
++localIterations;
++globalIterations;
}
// As the "number of iterations" of the full method is the maximum of the local iterations, we need to keep
// track of the maximum.
if (localIterations > currentMaxLocalIterations) {
currentMaxLocalIterations = localIterations;
}
}
// If we performed an odd number of global iterations, we need to swap the x and currentX, because the newest
// result is currently stored in currentX, but x is the output vector.
// TODO: Check whether this is correct or should be put into the for-loop over SCCs.
if (globalIterations % 2 == 1) {
std::swap(x, *currentX);
delete currentX;
} else {
delete newX;
}
// Check if the solver converged and issue a warning otherwise.
if (converged) {
LOG4CPLUS_INFO(logger, "Iterative solver converged after " << currentMaxLocalIterations << " iterations.");
} else {
LOG4CPLUS_WARN(logger, "Iterative solver did not converge.");
}
}
};
} // namespace prctl

111
src/models/PseudoModel.cpp

@ -0,0 +1,111 @@
#include "src/models/PseudoModel.h"
#include "src/utility/constants.h"
#include "src/models/AbstractModel.h"
namespace storm {
namespace models {
template<typename ValueType>
ModelBasedPseudoModel<ValueType>::ModelBasedPseudoModel(storm::models::AbstractModel<ValueType> const& model) : _model(model) {
// Intentionally left empty.
}
template<typename ValueType>
NonDeterministicMatrixBasedPseudoModel<ValueType>::NonDeterministicMatrixBasedPseudoModel(storm::storage::SparseMatrix<ValueType> const& matrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices) : _matrix(matrix), _nondeterministicChoiceIndices(nondeterministicChoiceIndices) {
// Intentionally left empty.
}
template<typename ValueType>
DeterministicMatrixBasedPseudoModel<ValueType>::DeterministicMatrixBasedPseudoModel(storm::storage::SparseMatrix<ValueType> const& matrix) : _matrix(matrix) {
// Intentionally left empty.
}
template<typename ValueType>
typename storm::storage::SparseMatrix<ValueType>::const_rows
ModelBasedPseudoModel<ValueType>::getRows(uint_fast64_t state) const {
return this->_model.getRows(state);
}
template<typename ValueType>
typename storm::storage::SparseMatrix<ValueType>::const_rows
NonDeterministicMatrixBasedPseudoModel<ValueType>::getRows(uint_fast64_t state) const {
return this->_matrix.getRows(this->_nondeterministicChoiceIndices[state], this->_nondeterministicChoiceIndices[state + 1] - 1);
}
template<typename ValueType>
typename storm::storage::SparseMatrix<ValueType>::const_rows
DeterministicMatrixBasedPseudoModel<ValueType>::getRows(uint_fast64_t state) const {
return this->_matrix.getRows(state, state);
}
template<typename ValueType>
uint_fast64_t
ModelBasedPseudoModel<ValueType>::getNumberOfStates() const {
return this->_model.getNumberOfStates();
}
template<typename ValueType>
uint_fast64_t
NonDeterministicMatrixBasedPseudoModel<ValueType>::getNumberOfStates() const {
return this->_matrix.getColumnCount();
}
template<typename ValueType>
uint_fast64_t
DeterministicMatrixBasedPseudoModel<ValueType>::getNumberOfStates() const {
return this->_matrix.getColumnCount();
}
template<typename ValueType>
storm::storage::SparseMatrix<ValueType>
AbstractPseudoModel<ValueType>::extractPartitionDependencyGraph(storm::storage::Decomposition<storm::storage::StateBlock> const& decomposition) const {
uint_fast64_t numberOfStates = decomposition.size();
// First, we need to create a mapping of states to their SCC index, to ease the computation of dependency transitions later.
std::vector<uint_fast64_t> stateToBlockMap(this->getNumberOfStates());
for (uint_fast64_t i = 0; i < decomposition.size(); ++i) {
for (auto state : decomposition[i]) {
stateToBlockMap[state] = i;
}
}
// The resulting sparse matrix will have as many rows/columns as there are blocks in the partition.
storm::storage::SparseMatrixBuilder<ValueType> dependencyGraphBuilder(numberOfStates, numberOfStates);
for (uint_fast64_t currentBlockIndex = 0; currentBlockIndex < decomposition.size(); ++currentBlockIndex) {
// Get the next block.
typename storm::storage::StateBlock const& block = decomposition[currentBlockIndex];
// Now, we determine the blocks which are reachable (in one step) from the current block.
boost::container::flat_set<uint_fast64_t> allTargetBlocks;
for (auto state : block) {
for (auto const& transitionEntry : this->getRows(state)) {
uint_fast64_t targetBlock = stateToBlockMap[transitionEntry.getColumn()];
// We only need to consider transitions that are actually leaving the SCC.
if (targetBlock != currentBlockIndex) {
allTargetBlocks.insert(targetBlock);
}
}
}
// Now we can just enumerate all the target SCCs and insert the corresponding transitions.
for (auto targetBlock : allTargetBlocks) {
dependencyGraphBuilder.addNextValue(currentBlockIndex, targetBlock, storm::utility::constantOne<ValueType>());
}
}
return dependencyGraphBuilder.build();
}
template class ModelBasedPseudoModel<double>;
template class NonDeterministicMatrixBasedPseudoModel<double>;
template class DeterministicMatrixBasedPseudoModel<double>;
template class ModelBasedPseudoModel <float> ;
template class NonDeterministicMatrixBasedPseudoModel <float>;
template class DeterministicMatrixBasedPseudoModel <float>;
template class ModelBasedPseudoModel<int>;
template class NonDeterministicMatrixBasedPseudoModel<int>;
template class DeterministicMatrixBasedPseudoModel<int>;
} // namespace models
} // namespace storm

90
src/models/PseudoModel.h

@ -0,0 +1,90 @@
#ifndef STORM_MODELS_PSEUDOMODEL_H_
#define STORM_MODELS_PSEUDOMODEL_H_
#include <cstdint>
#include "src/storage/SparseMatrix.h"
#include "src/storage/Decomposition.h"
namespace storm {
namespace models {
// Forward declare the abstract model class.
template <typename ValueType> class AbstractModel;
/*!
* This classes encapsulate the model/transitionmatrix on which the SCC decomposition is performed.
* The Abstract Base class is specialized by the two possible representations:
* - For a model the implementation ModelBasedPseudoModel hands the call to getRows() through to the model
* - For a matrix of a nondeterministic model the implementation NonDeterministicMatrixBasedPseudoModel emulates the call
* on the matrix itself like the model function would
* - For a matrix of a deterministic model the implementation DeterministicMatrixBasedPseudoModel emulates the call
* on the matrix itself like the model function would
*/
template <typename ValueType>
class AbstractPseudoModel {
public:
AbstractPseudoModel() {}
virtual ~AbstractPseudoModel() {}
virtual typename storm::storage::SparseMatrix<ValueType>::const_rows getRows(uint_fast64_t state) const = 0;
/*!
* Calculates the number of states in the represented system.
* @return The Number of States in the underlying model/transition matrix
*/
virtual uint_fast64_t getNumberOfStates() const = 0;
/*!
* Extracts the dependency graph from a (pseudo-) model according to the given partition.
*
* @param decomposition A decomposition containing the blocks of the partition of the system.
* @return A sparse matrix with bool entries that represents the dependency graph of the blocks of the partition.
*/
virtual storm::storage::SparseMatrix<ValueType> extractPartitionDependencyGraph(storm::storage::Decomposition<storm::storage::StateBlock> const& decomposition) const;
};
template <typename ValueType>
class ModelBasedPseudoModel : public AbstractPseudoModel<ValueType> {
public:
/*!
* Creates an encapsulation for the SCC decomposition based on a model
* @param model The Model on which the decomposition is to be performed
*/
ModelBasedPseudoModel(storm::models::AbstractModel<ValueType> const& model);
virtual typename storm::storage::SparseMatrix<ValueType>::const_rows getRows(uint_fast64_t state) const override;
virtual uint_fast64_t getNumberOfStates() const override;
private:
storm::models::AbstractModel<ValueType> const& _model;
};
template <typename ValueType>
class NonDeterministicMatrixBasedPseudoModel : public AbstractPseudoModel<ValueType> {
public:
/*!
* Creates an encapsulation for the SCC decomposition based on a matrix
* @param matrix The Matrix on which the decomposition is to be performed
*/
NonDeterministicMatrixBasedPseudoModel(storm::storage::SparseMatrix<ValueType> const& matrix, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices);
virtual typename storm::storage::SparseMatrix<ValueType>::const_rows getRows(uint_fast64_t state) const override;
virtual uint_fast64_t getNumberOfStates() const override;
private:
storm::storage::SparseMatrix<ValueType> const& _matrix;
std::vector<uint_fast64_t> const& _nondeterministicChoiceIndices;
};
template <typename ValueType>
class DeterministicMatrixBasedPseudoModel : public AbstractPseudoModel<ValueType> {
public:
/*!
* Creates an encapsulation for the SCC decomposition based on a matrix
* @param matrix The Matrix on which the decomposition is to be performed
*/
DeterministicMatrixBasedPseudoModel(storm::storage::SparseMatrix<ValueType> const& matrix);
virtual typename storm::storage::SparseMatrix<ValueType>::const_rows getRows(uint_fast64_t state) const override;
virtual uint_fast64_t getNumberOfStates() const override;
private:
storm::storage::SparseMatrix<ValueType> const& _matrix;
};
}
}
#endif // STORM_MODELS_PSEUDOMODEL_H_

3
src/solver/NativeNondeterministicLinearEquationSolver.cpp

@ -66,7 +66,7 @@ namespace storm {
}
// Determine whether the method converged.
converged = storm::utility::vector::equalModuloPrecision(*currentX, *newX, precision, relative);
converged = storm::utility::vector::equalModuloPrecision<ValueType>(*currentX, *newX, precision, relative);
// Update environment variables.
std::swap(currentX, newX);
@ -130,5 +130,6 @@ namespace storm {
// Explicitly instantiate the solver.
template class NativeNondeterministicLinearEquationSolver<double>;
template class NativeNondeterministicLinearEquationSolver<float>;
} // namespace solver
} // namespace storm

2
src/solver/NativeNondeterministicLinearEquationSolver.h

@ -34,7 +34,7 @@ namespace storm {
virtual void solveEquationSystem(bool minimize, storm::storage::SparseMatrix<ValueType> const& A, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<ValueType>* multiplyResult = nullptr, std::vector<ValueType>* newX = nullptr) const override;
private:
protected:
// The required precision for the iterative methods.
double precision;

467
src/solver/TopologicalValueIterationNondeterministicLinearEquationSolver.cpp

@ -0,0 +1,467 @@
#include "src/solver/TopologicalValueIterationNondeterministicLinearEquationSolver.h"
#include <utility>
#include <chrono>
#include "src/settings/Settings.h"
#include "src/utility/vector.h"
#include "src/utility/graph.h"
#include "src/models/PseudoModel.h"
#include "src/storage/StronglyConnectedComponentDecomposition.h"
#include "src/exceptions/IllegalArgumentException.h"
#include "src/exceptions/InvalidStateException.h"
#include "log4cplus/logger.h"
#include "log4cplus/loggingmacros.h"
extern log4cplus::Logger logger;
#include "storm-config.h"
#ifdef STORM_HAVE_CUDAFORSTORM
# include "cudaForStorm.h"
#endif
namespace storm {
namespace solver {
template<typename ValueType>
TopologicalValueIterationNondeterministicLinearEquationSolver<ValueType>::TopologicalValueIterationNondeterministicLinearEquationSolver() {
// Get the settings object to customize solving.
storm::settings::Settings* settings = storm::settings::Settings::getInstance();
// Get appropriate settings.
this->maximalNumberOfIterations = settings->getOptionByLongName("maxiter").getArgument(0).getValueAsUnsignedInteger();
this->precision = settings->getOptionByLongName("precision").getArgument(0).getValueAsDouble();
this->relative = !settings->isSet("absolute");
}
template<typename ValueType>
TopologicalValueIterationNondeterministicLinearEquationSolver<ValueType>::TopologicalValueIterationNondeterministicLinearEquationSolver(double precision, uint_fast64_t maximalNumberOfIterations, bool relative) : NativeNondeterministicLinearEquationSolver<ValueType>(precision, maximalNumberOfIterations, relative) {
// Intentionally left empty.
}
template<typename ValueType>
NondeterministicLinearEquationSolver<ValueType>* TopologicalValueIterationNondeterministicLinearEquationSolver<ValueType>::clone() const {
return new TopologicalValueIterationNondeterministicLinearEquationSolver<ValueType>(*this);
}
template<typename ValueType>
void TopologicalValueIterationNondeterministicLinearEquationSolver<ValueType>::solveEquationSystem(bool minimize, storm::storage::SparseMatrix<ValueType> const& A, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<ValueType>* multiplyResult, std::vector<ValueType>* newX) const {
#ifdef GPU_USE_FLOAT
#define __FORCE_FLOAT_CALCULATION true
#else
#define __FORCE_FLOAT_CALCULATION false
#endif
if (__FORCE_FLOAT_CALCULATION && (sizeof(ValueType) == sizeof(double))) {
TopologicalValueIterationNondeterministicLinearEquationSolver<float> tvindles(precision, maximalNumberOfIterations, relative);
storm::storage::SparseMatrix<float> new_A = A.toValueType<float>();
std::vector<float> new_x = storm::utility::vector::toValueType<float>(x);
std::vector<float> const new_b = storm::utility::vector::toValueType<float>(b);
tvindles.solveEquationSystem(minimize, new_A, new_x, new_b, nullptr, nullptr);
for (size_t i = 0, size = new_x.size(); i < size; ++i) {
x.at(i) = new_x.at(i);
}
return;
}
// For testing only
if (sizeof(ValueType) == sizeof(double)) {
std::cout << "<<< Using CUDA-DOUBLE Kernels >>>" << std::endl;
LOG4CPLUS_INFO(logger, "<<< Using CUDA-DOUBLE Kernels >>>");
} else {
std::cout << "<<< Using CUDA-FLOAT Kernels >>>" << std::endl;
LOG4CPLUS_INFO(logger, "<<< Using CUDA-FLOAT Kernels >>>");
}
// Now, we need to determine the SCCs of the MDP and perform a topological sort.
std::vector<uint_fast64_t> const& nondeterministicChoiceIndices = A.getRowGroupIndices();
storm::models::NonDeterministicMatrixBasedPseudoModel<ValueType> const pseudoModel(A, nondeterministicChoiceIndices);
// Check if the decomposition is necessary
#ifdef STORM_HAVE_CUDAFORSTORM
#define __USE_CUDAFORSTORM_OPT true
size_t const gpuSizeOfCompleteSystem = basicValueIteration_mvReduce_uint64_double_calculateMemorySize(static_cast<size_t>(A.getRowCount()), nondeterministicChoiceIndices.size(), static_cast<size_t>(A.getEntryCount()));
size_t const cudaFreeMemory = static_cast<size_t>(getFreeCudaMemory() * 0.95);
#else
#define __USE_CUDAFORSTORM_OPT false
size_t const gpuSizeOfCompleteSystem = 0;
size_t const cudaFreeMemory = 0;
#endif
std::vector<std::pair<bool, storm::storage::StateBlock>> sccDecomposition;
if (__USE_CUDAFORSTORM_OPT && (gpuSizeOfCompleteSystem < cudaFreeMemory)) {
// Dummy output for SCC Times
std::cout << "Computing the SCC Decomposition took 0ms" << std::endl;
#ifdef STORM_HAVE_CUDAFORSTORM
if (!resetCudaDevice()) {
LOG4CPLUS_ERROR(logger, "Could not reset CUDA Device, can not use CUDA Equation Solver.");
throw storm::exceptions::InvalidStateException() << "Could not reset CUDA Device, can not use CUDA Equation Solver.";
}
std::chrono::high_resolution_clock::time_point calcStartTime = std::chrono::high_resolution_clock::now();
bool result = false;
size_t globalIterations = 0;
if (minimize) {
result = __basicValueIteration_mvReduce_uint64_minimize<ValueType>(this->maximalNumberOfIterations, this->precision, this->relative, A.rowIndications, A.columnsAndValues, x, b, nondeterministicChoiceIndices, globalIterations);
} else {
result = __basicValueIteration_mvReduce_uint64_maximize<ValueType>(this->maximalNumberOfIterations, this->precision, this->relative, A.rowIndications, A.columnsAndValues, x, b, nondeterministicChoiceIndices, globalIterations);
}
LOG4CPLUS_INFO(logger, "Executed " << globalIterations << " of max. " << maximalNumberOfIterations << " Iterations on GPU.");
bool converged = false;
if (!result) {
converged = false;
LOG4CPLUS_ERROR(logger, "An error occurred in the CUDA Plugin. Can not continue.");
throw storm::exceptions::InvalidStateException() << "An error occurred in the CUDA Plugin. Can not continue.";
} else {
converged = true;
}
std::chrono::high_resolution_clock::time_point calcEndTime = std::chrono::high_resolution_clock::now();
std::cout << "Obtaining the fixpoint solution took " << std::chrono::duration_cast<std::chrono::milliseconds>(calcEndTime - calcStartTime).count() << "ms." << std::endl;
std::cout << "Used a total of " << globalIterations << " iterations with a maximum of " << globalIterations << " iterations in a single block." << std::endl;
// Check if the solver converged and issue a warning otherwise.
if (converged) {
LOG4CPLUS_INFO(logger, "Iterative solver converged after " << globalIterations << " iterations.");
} else {
LOG4CPLUS_WARN(logger, "Iterative solver did not converged after " << globalIterations << " iterations.");
}
#else
LOG4CPLUS_ERROR(logger, "The useGpu Flag of a SCC was set, but this version of StoRM does not support CUDA acceleration. Internal Error!");
throw storm::exceptions::InvalidStateException() << "The useGpu Flag of a SCC was set, but this version of StoRM does not support CUDA acceleration. Internal Error!";
#endif
} else {
std::chrono::high_resolution_clock::time_point sccStartTime = std::chrono::high_resolution_clock::now();
storm::storage::StronglyConnectedComponentDecomposition<ValueType> sccDecomposition(pseudoModel, false, false);
if (sccDecomposition.size() == 0) {
LOG4CPLUS_ERROR(logger, "Can not solve given Equation System as the SCC Decomposition returned no SCCs.");
throw storm::exceptions::IllegalArgumentException() << "Can not solve given Equation System as the SCC Decomposition returned no SCCs.";
}
storm::storage::SparseMatrix<ValueType> stronglyConnectedComponentsDependencyGraph = pseudoModel.extractPartitionDependencyGraph(sccDecomposition);
std::vector<uint_fast64_t> topologicalSort = storm::utility::graph::getTopologicalSort(stronglyConnectedComponentsDependencyGraph);
// Calculate the optimal distribution of sccs
std::vector<std::pair<bool, storm::storage::StateBlock>> optimalSccs = this->getOptimalGroupingFromTopologicalSccDecomposition(sccDecomposition, topologicalSort, A);
LOG4CPLUS_INFO(logger, "Optimized SCC Decomposition, originally " << topologicalSort.size() << " SCCs, optimized to " << optimalSccs.size() << " SCCs.");
std::chrono::high_resolution_clock::time_point sccEndTime = std::chrono::high_resolution_clock::now();
std::cout << "Computing the SCC Decomposition took " << std::chrono::duration_cast<std::chrono::milliseconds>(sccEndTime - sccStartTime).count() << "ms." << std::endl;
std::chrono::high_resolution_clock::time_point calcStartTime = std::chrono::high_resolution_clock::now();
std::vector<ValueType>* currentX = nullptr;
std::vector<ValueType>* swap = nullptr;
size_t currentMaxLocalIterations = 0;
size_t localIterations = 0;
size_t globalIterations = 0;
bool converged = true;
// Iterate over all SCCs of the MDP as specified by the topological sort. This guarantees that an SCC is only
// solved after all SCCs it depends on have been solved.
int counter = 0;
for (auto sccIndexIt = optimalSccs.cbegin(); sccIndexIt != optimalSccs.cend() && converged; ++sccIndexIt) {
bool const useGpu = sccIndexIt->first;
storm::storage::StateBlock const& scc = sccIndexIt->second;
// Generate a sub matrix
storm::storage::BitVector subMatrixIndices(A.getColumnCount(), scc.cbegin(), scc.cend());
storm::storage::SparseMatrix<ValueType> sccSubmatrix = A.getSubmatrix(true, subMatrixIndices, subMatrixIndices);
std::vector<ValueType> sccSubB(sccSubmatrix.getRowCount());
storm::utility::vector::selectVectorValues<ValueType>(sccSubB, subMatrixIndices, nondeterministicChoiceIndices, b);
std::vector<ValueType> sccSubX(sccSubmatrix.getColumnCount());
std::vector<ValueType> sccSubXSwap(sccSubmatrix.getColumnCount());
std::vector<ValueType> sccMultiplyResult(sccSubmatrix.getRowCount());
// Prepare the pointers for swapping in the calculation
currentX = &sccSubX;
swap = &sccSubXSwap;
storm::utility::vector::selectVectorValues<ValueType>(sccSubX, subMatrixIndices, x); // x is getCols() large, where as b and multiplyResult are getRows() (nondet. choices times states)
std::vector<uint_fast64_t> sccSubNondeterministicChoiceIndices(sccSubmatrix.getColumnCount() + 1);
sccSubNondeterministicChoiceIndices.at(0) = 0;
// Pre-process all dependent states
// Remove outgoing transitions and create the ChoiceIndices
uint_fast64_t innerIndex = 0;
uint_fast64_t outerIndex = 0;
for (uint_fast64_t state : scc) {
// Choice Indices
sccSubNondeterministicChoiceIndices.at(outerIndex + 1) = sccSubNondeterministicChoiceIndices.at(outerIndex) + (nondeterministicChoiceIndices[state + 1] - nondeterministicChoiceIndices[state]);
for (auto rowGroupIt = nondeterministicChoiceIndices[state]; rowGroupIt != nondeterministicChoiceIndices[state + 1]; ++rowGroupIt) {
typename storm::storage::SparseMatrix<ValueType>::const_rows row = A.getRow(rowGroupIt);
for (auto rowIt = row.begin(); rowIt != row.end(); ++rowIt) {
if (!subMatrixIndices.get(rowIt->getColumn())) {
// This is an outgoing transition of a state in the SCC to a state not included in the SCC
// Subtracting Pr(tau) * x_other from b fixes that
sccSubB.at(innerIndex) = sccSubB.at(innerIndex) + (rowIt->getValue() * x.at(rowIt->getColumn()));
}
}
++innerIndex;
}
++outerIndex;
}
// For the current SCC, we need to perform value iteration until convergence.
if (useGpu) {
#ifdef STORM_HAVE_CUDAFORSTORM
if (!resetCudaDevice()) {
LOG4CPLUS_ERROR(logger, "Could not reset CUDA Device, can not use CUDA Equation Solver.");
throw storm::exceptions::InvalidStateException() << "Could not reset CUDA Device, can not use CUDA Equation Solver.";
}
//LOG4CPLUS_INFO(logger, "Device has " << getTotalCudaMemory() << " Bytes of Memory with " << getFreeCudaMemory() << "Bytes free (" << (static_cast<double>(getFreeCudaMemory()) / static_cast<double>(getTotalCudaMemory())) * 100 << "%).");
//LOG4CPLUS_INFO(logger, "We will allocate " << (sizeof(uint_fast64_t)* sccSubmatrix.rowIndications.size() + sizeof(uint_fast64_t)* sccSubmatrix.columnsAndValues.size() * 2 + sizeof(double)* sccSubX.size() + sizeof(double)* sccSubX.size() + sizeof(double)* sccSubB.size() + sizeof(double)* sccSubB.size() + sizeof(uint_fast64_t)* sccSubNondeterministicChoiceIndices.size()) << " Bytes.");
//LOG4CPLUS_INFO(logger, "The CUDA Runtime Version is " << getRuntimeCudaVersion());
bool result = false;
localIterations = 0;
if (minimize) {
result = __basicValueIteration_mvReduce_uint64_minimize<ValueType>(this->maximalNumberOfIterations, this->precision, this->relative, sccSubmatrix.rowIndications, sccSubmatrix.columnsAndValues, *currentX, sccSubB, sccSubNondeterministicChoiceIndices, localIterations);
} else {
result = __basicValueIteration_mvReduce_uint64_maximize<ValueType>(this->maximalNumberOfIterations, this->precision, this->relative, sccSubmatrix.rowIndications, sccSubmatrix.columnsAndValues, *currentX, sccSubB, sccSubNondeterministicChoiceIndices, localIterations);
}
LOG4CPLUS_INFO(logger, "Executed " << localIterations << " of max. " << maximalNumberOfIterations << " Iterations on GPU.");
if (!result) {
converged = false;
LOG4CPLUS_ERROR(logger, "An error occurred in the CUDA Plugin. Can not continue.");
throw storm::exceptions::InvalidStateException() << "An error occurred in the CUDA Plugin. Can not continue.";
} else {
converged = true;
}
// As the "number of iterations" of the full method is the maximum of the local iterations, we need to keep
// track of the maximum.
if (localIterations > currentMaxLocalIterations) {
currentMaxLocalIterations = localIterations;
}
globalIterations += localIterations;
#else
LOG4CPLUS_ERROR(logger, "The useGpu Flag of a SCC was set, but this version of StoRM does not support CUDA acceleration. Internal Error!");
throw storm::exceptions::InvalidStateException() << "The useGpu Flag of a SCC was set, but this version of StoRM does not support CUDA acceleration. Internal Error!";
#endif
} else {
std::cout << "WARNING: Using CPU based TopoSolver! (double)" << std::endl;
localIterations = 0;
converged = false;
while (!converged && localIterations < this->maximalNumberOfIterations) {
// Compute x' = A*x + b.
sccSubmatrix.multiplyWithVector(*currentX, sccMultiplyResult);
storm::utility::vector::addVectorsInPlace<ValueType>(sccMultiplyResult, sccSubB);
//A.multiplyWithVector(scc, nondeterministicChoiceIndices, *currentX, multiplyResult);
//storm::utility::addVectors(scc, nondeterministicChoiceIndices, multiplyResult, b);
/*
Versus:
A.multiplyWithVector(*currentX, *multiplyResult);
storm::utility::vector::addVectorsInPlace(*multiplyResult, b);
*/
// Reduce the vector x' by applying min/max for all non-deterministic choices.
if (minimize) {
storm::utility::vector::reduceVectorMin<ValueType>(sccMultiplyResult, *swap, sccSubNondeterministicChoiceIndices);
} else {
storm::utility::vector::reduceVectorMax<ValueType>(sccMultiplyResult, *swap, sccSubNondeterministicChoiceIndices);
}
// Determine whether the method converged.
// TODO: It seems that the equalModuloPrecision call that compares all values should have a higher
// running time. In fact, it is faster. This has to be investigated.
// converged = storm::utility::equalModuloPrecision(*currentX, *newX, scc, precision, relative);
converged = storm::utility::vector::equalModuloPrecision<ValueType>(*currentX, *swap, this->precision, this->relative);
// Update environment variables.
std::swap(currentX, swap);
++localIterations;
++globalIterations;
}
LOG4CPLUS_INFO(logger, "Executed " << localIterations << " of max. " << maximalNumberOfIterations << " Iterations.");
}
// The Result of this SCC has to be taken back into the main result vector
innerIndex = 0;
for (uint_fast64_t state : scc) {
x.at(state) = currentX->at(innerIndex);
++innerIndex;
}
// Since the pointers for swapping in the calculation point to temps they should not be valid anymore
currentX = nullptr;
swap = nullptr;
// As the "number of iterations" of the full method is the maximum of the local iterations, we need to keep
// track of the maximum.
if (localIterations > currentMaxLocalIterations) {
currentMaxLocalIterations = localIterations;
}
}
std::cout << "Used a total of " << globalIterations << " iterations with a maximum of " << localIterations << " iterations in a single block." << std::endl;
// Check if the solver converged and issue a warning otherwise.
if (converged) {
LOG4CPLUS_INFO(logger, "Iterative solver converged after " << currentMaxLocalIterations << " iterations.");
} else {
LOG4CPLUS_WARN(logger, "Iterative solver did not converged after " << currentMaxLocalIterations << " iterations.");
}
std::chrono::high_resolution_clock::time_point calcEndTime = std::chrono::high_resolution_clock::now();
std::cout << "Obtaining the fixpoint solution took " << std::chrono::duration_cast<std::chrono::milliseconds>(calcEndTime - calcStartTime).count() << "ms." << std::endl;
}
}
template<typename ValueType>
std::vector<std::pair<bool, storm::storage::StateBlock>>
TopologicalValueIterationNondeterministicLinearEquationSolver<ValueType>::getOptimalGroupingFromTopologicalSccDecomposition(storm::storage::StronglyConnectedComponentDecomposition<ValueType> const& sccDecomposition, std::vector<uint_fast64_t> const& topologicalSort, storm::storage::SparseMatrix<ValueType> const& matrix) const {
std::vector<std::pair<bool, storm::storage::StateBlock>> result;
#ifdef STORM_HAVE_CUDAFORSTORM
// 95% to have a bit of padding
size_t const cudaFreeMemory = static_cast<size_t>(getFreeCudaMemory() * 0.95);
size_t lastResultIndex = 0;
std::vector<uint_fast64_t> const& rowGroupIndices = matrix.getRowGroupIndices();
size_t const gpuSizeOfCompleteSystem = basicValueIteration_mvReduce_uint64_double_calculateMemorySize(static_cast<size_t>(matrix.getRowCount()), rowGroupIndices.size(), static_cast<size_t>(matrix.getEntryCount()));
size_t const gpuSizePerRowGroup = std::max(static_cast<size_t>(gpuSizeOfCompleteSystem / rowGroupIndices.size()), static_cast<size_t>(1));
size_t const maxRowGroupsPerMemory = cudaFreeMemory / gpuSizePerRowGroup;
size_t currentSize = 0;
size_t neededReserveSize = 0;
size_t startIndex = 0;
for (size_t i = 0; i < topologicalSort.size(); ++i) {
storm::storage::StateBlock const& scc = sccDecomposition[topologicalSort[i]];
size_t const currentSccSize = scc.size();
uint_fast64_t rowCount = 0;
uint_fast64_t entryCount = 0;
for (auto sccIt = scc.cbegin(); sccIt != scc.cend(); ++sccIt) {
rowCount += matrix.getRowGroupSize(*sccIt);
entryCount += matrix.getRowGroupEntryCount(*sccIt);
}
size_t sccSize = basicValueIteration_mvReduce_uint64_double_calculateMemorySize(static_cast<size_t>(rowCount), scc.size(), static_cast<size_t>(entryCount));
if ((currentSize + sccSize) <= cudaFreeMemory) {
// There is enough space left in the current group
neededReserveSize += currentSccSize;
currentSize += sccSize;
} else {
// This would make the last open group to big for the GPU
if (startIndex < i) {
if ((startIndex + 1) < i) {
// More than one component
std::vector<uint_fast64_t> tempGroups;
tempGroups.reserve(neededReserveSize);
// Copy the first group to make inplace_merge possible
storm::storage::StateBlock const& scc_first = sccDecomposition[topologicalSort[startIndex]];
tempGroups.insert(tempGroups.cend(), scc_first.cbegin(), scc_first.cend());
if (((startIndex + 1) + 80) >= i) {
size_t lastSize = 0;
for (size_t j = startIndex + 1; j < topologicalSort.size(); ++j) {
storm::storage::StateBlock const& scc = sccDecomposition[topologicalSort[j]];
lastSize = tempGroups.size();
tempGroups.insert(tempGroups.cend(), scc.cbegin(), scc.cend());
std::vector<uint_fast64_t>::iterator middleIterator = tempGroups.begin();
std::advance(middleIterator, lastSize);
std::inplace_merge(tempGroups.begin(), middleIterator, tempGroups.end());
}
} else {
// Use std::sort
for (size_t j = startIndex + 1; j < i; ++j) {
storm::storage::StateBlock const& scc = sccDecomposition[topologicalSort[j]];
tempGroups.insert(tempGroups.cend(), scc.cbegin(), scc.cend());
}
std::sort(tempGroups.begin(), tempGroups.end());
}
result.push_back(std::make_pair(true, storm::storage::StateBlock(boost::container::ordered_unique_range, tempGroups.cbegin(), tempGroups.cend())));
} else {
// Only one group, copy construct.
result.push_back(std::make_pair(true, storm::storage::StateBlock(std::move(sccDecomposition[topologicalSort[startIndex]]))));
}
++lastResultIndex;
}
if (sccSize <= cudaFreeMemory) {
currentSize = sccSize;
neededReserveSize = currentSccSize;
startIndex = i;
} else {
// This group is too big to fit into the CUDA Memory by itself
result.push_back(std::make_pair(false, storm::storage::StateBlock(std::move(sccDecomposition[topologicalSort[i]]))));
++lastResultIndex;
currentSize = 0;
neededReserveSize = 0;
startIndex = i + 1;
}
}
}
size_t const topologicalSortSize = topologicalSort.size();
if (startIndex < topologicalSortSize) {
if ((startIndex + 1) < topologicalSortSize) {
// More than one component
std::vector<uint_fast64_t> tempGroups;
tempGroups.reserve(neededReserveSize);
// Copy the first group to make inplace_merge possible
storm::storage::StateBlock const& scc_first = sccDecomposition[topologicalSort[startIndex]];
tempGroups.insert(tempGroups.cend(), scc_first.cbegin(), scc_first.cend());
// For set counts <= 80, Inplace Merge is faster
if (((startIndex + 1) + 80) >= topologicalSortSize) {
size_t lastSize = 0;
for (size_t j = startIndex + 1; j < topologicalSort.size(); ++j) {
storm::storage::StateBlock const& scc = sccDecomposition[topologicalSort[j]];
lastSize = tempGroups.size();
tempGroups.insert(tempGroups.cend(), scc.cbegin(), scc.cend());
std::vector<uint_fast64_t>::iterator middleIterator = tempGroups.begin();
std::advance(middleIterator, lastSize);
std::inplace_merge(tempGroups.begin(), middleIterator, tempGroups.end());
}
} else {
// Use std::sort
for (size_t j = startIndex + 1; j < topologicalSort.size(); ++j) {
storm::storage::StateBlock const& scc = sccDecomposition[topologicalSort[j]];
tempGroups.insert(tempGroups.cend(), scc.cbegin(), scc.cend());
}
std::sort(tempGroups.begin(), tempGroups.end());
}
result.push_back(std::make_pair(true, storm::storage::StateBlock(boost::container::ordered_unique_range, tempGroups.cbegin(), tempGroups.cend())));
}
else {
// Only one group, copy construct.
result.push_back(std::make_pair(true, storm::storage::StateBlock(std::move(sccDecomposition[topologicalSort[startIndex]]))));
}
++lastResultIndex;
}
#else
for (auto sccIndexIt = topologicalSort.cbegin(); sccIndexIt != topologicalSort.cend(); ++sccIndexIt) {
storm::storage::StateBlock const& scc = sccDecomposition[*sccIndexIt];
result.push_back(std::make_pair(false, scc));
}
#endif
return result;
}
// Explicitly instantiate the solver.
template class TopologicalValueIterationNondeterministicLinearEquationSolver<double>;
template class TopologicalValueIterationNondeterministicLinearEquationSolver<float>;
} // namespace solver
} // namespace storm

97
src/solver/TopologicalValueIterationNondeterministicLinearEquationSolver.h

@ -0,0 +1,97 @@
#ifndef STORM_SOLVER_TOPOLOGICALVALUEITERATIONNONDETERMINISTICLINEAREQUATIONSOLVER_H_
#define STORM_SOLVER_TOPOLOGICALVALUEITERATIONNONDETERMINISTICLINEAREQUATIONSOLVER_H_
#include "src/solver/NativeNondeterministicLinearEquationSolver.h"
#include "src/storage/StronglyConnectedComponentDecomposition.h"
#include "src/storage/SparseMatrix.h"
#include <utility>
#include <vector>
#include "storm-config.h"
#ifdef STORM_HAVE_CUDAFORSTORM
# include "cudaForStorm.h"
#endif
namespace storm {
namespace solver {
/*!
* A class that uses SCC Decompositions to solve a linear equation system
*/
template<class ValueType>
class TopologicalValueIterationNondeterministicLinearEquationSolver : public NativeNondeterministicLinearEquationSolver<ValueType> {
public:
/*!
* Constructs a nondeterministic linear equation solver with parameters being set according to the settings
* object.
*/
TopologicalValueIterationNondeterministicLinearEquationSolver();
/*!
* Constructs a nondeterminstic linear equation solver with the given parameters.
*
* @param precision The precision to use for convergence detection.
* @param maximalNumberOfIterations The maximal number of iterations do perform before iteration is aborted.
* @param relative If set, the relative error rather than the absolute error is considered for convergence
* detection.
*/
TopologicalValueIterationNondeterministicLinearEquationSolver(double precision, uint_fast64_t maximalNumberOfIterations, bool relative = true);
virtual NondeterministicLinearEquationSolver<ValueType>* clone() const override;
virtual void solveEquationSystem(bool minimize, storm::storage::SparseMatrix<ValueType> const& A, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<ValueType>* multiplyResult = nullptr, std::vector<ValueType>* newX = nullptr) const override;
private:
/*!
* Given a topological sort of a SCC Decomposition, this will calculate the optimal grouping of SCCs with respect to the size of the GPU memory.
*/
std::vector<std::pair<bool, storm::storage::StateBlock>> getOptimalGroupingFromTopologicalSccDecomposition(storm::storage::StronglyConnectedComponentDecomposition<ValueType> const& sccDecomposition, std::vector<uint_fast64_t> const& topologicalSort, storm::storage::SparseMatrix<ValueType> const& matrix) const;
};
template <typename ValueType>
bool __basicValueIteration_mvReduce_uint64_minimize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<ValueType>> const& columnIndicesAndValues, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
//
throw;
}
template <>
inline bool __basicValueIteration_mvReduce_uint64_minimize<double>(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<double>> const& columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
#ifdef STORM_HAVE_CUDAFORSTORM
return basicValueIteration_mvReduce_uint64_double_minimize(maxIterationCount, precision, relativePrecisionCheck, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
#else
throw;
#endif
}
template <>
inline bool __basicValueIteration_mvReduce_uint64_minimize<float>(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<float>> const& columnIndicesAndValues, std::vector<float>& x, std::vector<float> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
#ifdef STORM_HAVE_CUDAFORSTORM
return basicValueIteration_mvReduce_uint64_float_minimize(maxIterationCount, precision, relativePrecisionCheck, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
#else
throw;
#endif
}
template <typename ValueType>
bool __basicValueIteration_mvReduce_uint64_maximize(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<ValueType>> const& columnIndicesAndValues, std::vector<ValueType>& x, std::vector<ValueType> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
//
throw;
}
template <>
inline bool __basicValueIteration_mvReduce_uint64_maximize<double>(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<double>> const& columnIndicesAndValues, std::vector<double>& x, std::vector<double> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
#ifdef STORM_HAVE_CUDAFORSTORM
return basicValueIteration_mvReduce_uint64_double_maximize(maxIterationCount, precision, relativePrecisionCheck, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
#else
throw;
#endif
}
template <>
inline bool __basicValueIteration_mvReduce_uint64_maximize<float>(uint_fast64_t const maxIterationCount, double const precision, bool const relativePrecisionCheck, std::vector<uint_fast64_t> const& matrixRowIndices, std::vector<storm::storage::MatrixEntry<float>> const& columnIndicesAndValues, std::vector<float>& x, std::vector<float> const& b, std::vector<uint_fast64_t> const& nondeterministicChoiceIndices, size_t& iterationCount) {
#ifdef STORM_HAVE_CUDAFORSTORM
return basicValueIteration_mvReduce_uint64_float_maximize(maxIterationCount, precision, relativePrecisionCheck, matrixRowIndices, columnIndicesAndValues, x, b, nondeterministicChoiceIndices, iterationCount);
#else
throw;
#endif
}
} // namespace solver
} // namespace storm
#endif /* STORM_SOLVER_NATIVENONDETERMINISTICLINEAREQUATIONSOLVER_H_ */

10
src/utility/graph.h

@ -128,7 +128,7 @@ namespace storm {
uint_fast64_t numberOfStates = phiStates.size();
storm::storage::BitVector statesWithProbabilityGreater0(numberOfStates);
// Add all psi states as the already satisfy the condition.
// Add all psi states as they already satisfy the condition.
statesWithProbabilityGreater0 |= psiStates;
// Initialize the stack used for the DFS with the states.
@ -667,7 +667,7 @@ namespace storm {
LOG4CPLUS_ERROR(logger, "Provided matrix is required to be square.");
throw storm::exceptions::InvalidArgumentException() << "Provided matrix is required to be square.";
}
uint_fast64_t numberOfStates = matrix.getRowCount();
// Prepare the result. This relies on the matrix being square.
@ -696,12 +696,12 @@ namespace storm {
recursionStepBackward:
for (; successorIterator != matrix.end(currentState); ++successorIterator) {
if (!visitedStates.get(successorIterator.first)) {
if (!visitedStates.get(successorIterator->getColumn())) {
// Put unvisited successor on top of our recursion stack and remember that.
recursionStack.push_back(successorIterator.first);
recursionStack.push_back(successorIterator->getColumn());
// Also, put initial value for iterator on corresponding recursion stack.
iteratorRecursionStack.push_back(matrix.begin(successorIterator.first));
iteratorRecursionStack.push_back(matrix.begin(successorIterator->getColumn()));
goto recursionStepForward;
}

19
src/utility/vector.h

@ -329,7 +329,10 @@ namespace storm {
template<class T>
bool equalModuloPrecision(T const& val1, T const& val2, T precision, bool relativeError = true) {
if (relativeError) {
if (std::abs(val1 - val2)/val2 > precision) return false;
if (val2 == 0) {
return (std::abs(val1) <= precision);
}
if (std::abs((val1 - val2)/val2) > precision) return false;
} else {
if (std::abs(val1 - val2) > precision) return false;
}
@ -419,6 +422,20 @@ namespace storm {
return subVector;
}
/*!
* Converts the given vector to the given ValueType
*/
template<typename NewValueType, typename ValueType>
std::vector<NewValueType> toValueType(std::vector<ValueType> const& oldVector) {
std::vector<NewValueType> resultVector;
resultVector.resize(oldVector.size());
for (size_t i = 0, size = oldVector.size(); i < size; ++i) {
resultVector.at(i) = static_cast<NewValueType>(oldVector.at(i));
}
return resultVector;
}
} // namespace vector
} // namespace utility
} // namespace storm

3
storm-config.h.in

@ -23,6 +23,9 @@
// Whether GLPK is available and to be used (define/undef)
#@STORM_CPP_GLPK_DEF@ STORM_HAVE_GLPK
// Whether CudaForStorm is available and to be used (define/undef)
#@STORM_CPP_CUDAFORSTORM_DEF@ STORM_HAVE_CUDAFORSTORM
// Whether Z3 is available and to be used (define/undef)
#@STORM_CPP_Z3_DEF@ STORM_HAVE_Z3

240
test/functional/modelchecker/TopologicalValueIterationMdpPrctlModelCheckerTest.cpp

@ -0,0 +1,240 @@
#include "gtest/gtest.h"
#include "storm-config.h"
#include "src/solver/NativeNondeterministicLinearEquationSolver.h"
#include "src/settings/Settings.h"
#include "src/modelchecker/prctl/SparseMdpPrctlModelChecker.h"
#include "src/modelchecker/prctl/TopologicalValueIterationMdpPrctlModelChecker.h"
#include "src/parser/AutoParser.h"
#include "storm-config.h"
TEST(TopologicalValueIterationMdpPrctlModelCheckerTest, Dice) {
storm::settings::Settings* s = storm::settings::Settings::getInstance();
std::shared_ptr<storm::models::Mdp<double>> mdp = storm::parser::AutoParser::parseModel(STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.tra", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.lab", "", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.flip.trans.rew")->as<storm::models::Mdp<double>>();
ASSERT_EQ(mdp->getNumberOfStates(), 169ull);
ASSERT_EQ(mdp->getNumberOfTransitions(), 436ull);
storm::modelchecker::prctl::TopologicalValueIterationMdpPrctlModelChecker<double> mc(*mdp);
storm::property::prctl::Ap<double>* apFormula = new storm::property::prctl::Ap<double>("two");
storm::property::prctl::Eventually<double>* eventuallyFormula = new storm::property::prctl::Eventually<double>(apFormula);
storm::property::prctl::ProbabilisticNoBoundOperator<double>* probFormula = new storm::property::prctl::ProbabilisticNoBoundOperator<double>(eventuallyFormula, true);
std::vector<double> result = mc.checkNoBoundOperator(*probFormula);
ASSERT_LT(std::abs(result[0] - 0.0277777612209320068), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
delete probFormula;
apFormula = new storm::property::prctl::Ap<double>("two");
eventuallyFormula = new storm::property::prctl::Eventually<double>(apFormula);
probFormula = new storm::property::prctl::ProbabilisticNoBoundOperator<double>(eventuallyFormula, false);
result = mc.checkNoBoundOperator(*probFormula);
ASSERT_LT(std::abs(result[0] - 0.0277777612209320068), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
delete probFormula;
apFormula = new storm::property::prctl::Ap<double>("three");
eventuallyFormula = new storm::property::prctl::Eventually<double>(apFormula);
probFormula = new storm::property::prctl::ProbabilisticNoBoundOperator<double>(eventuallyFormula, true);
result = mc.checkNoBoundOperator(*probFormula);
ASSERT_LT(std::abs(result[0] - 0.0555555224418640136), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
delete probFormula;
apFormula = new storm::property::prctl::Ap<double>("three");
eventuallyFormula = new storm::property::prctl::Eventually<double>(apFormula);
probFormula = new storm::property::prctl::ProbabilisticNoBoundOperator<double>(eventuallyFormula, false);
result = mc.checkNoBoundOperator(*probFormula);
ASSERT_LT(std::abs(result[0] - 0.0555555224418640136), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
delete probFormula;
apFormula = new storm::property::prctl::Ap<double>("four");
eventuallyFormula = new storm::property::prctl::Eventually<double>(apFormula);
probFormula = new storm::property::prctl::ProbabilisticNoBoundOperator<double>(eventuallyFormula, true);
result = mc.checkNoBoundOperator(*probFormula);
ASSERT_LT(std::abs(result[0] - 0.083333283662796020508), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
delete probFormula;
apFormula = new storm::property::prctl::Ap<double>("four");
eventuallyFormula = new storm::property::prctl::Eventually<double>(apFormula);
probFormula = new storm::property::prctl::ProbabilisticNoBoundOperator<double>(eventuallyFormula, false);
result = mc.checkNoBoundOperator(*probFormula);
ASSERT_LT(std::abs(result[0] - 0.083333283662796020508), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
delete probFormula;
apFormula = new storm::property::prctl::Ap<double>("done");
storm::property::prctl::ReachabilityReward<double>* reachabilityRewardFormula = new storm::property::prctl::ReachabilityReward<double>(apFormula);
storm::property::prctl::RewardNoBoundOperator<double>* rewardFormula = new storm::property::prctl::RewardNoBoundOperator<double>(reachabilityRewardFormula, true);
result = mc.checkNoBoundOperator(*rewardFormula);
#ifdef STORM_HAVE_CUDAFORSTORM
ASSERT_LT(std::abs(result[0] - 7.333329499), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
#else
ASSERT_LT(std::abs(result[0] - 7.33332904), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
#endif
delete rewardFormula;
apFormula = new storm::property::prctl::Ap<double>("done");
reachabilityRewardFormula = new storm::property::prctl::ReachabilityReward<double>(apFormula);
rewardFormula = new storm::property::prctl::RewardNoBoundOperator<double>(reachabilityRewardFormula, false);
result = mc.checkNoBoundOperator(*rewardFormula);;
#ifdef STORM_HAVE_CUDAFORSTORM
ASSERT_LT(std::abs(result[0] - 7.333329499), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
#else
ASSERT_LT(std::abs(result[0] - 7.33333151), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
#endif
delete rewardFormula;
std::shared_ptr<storm::models::Mdp<double>> stateRewardMdp = storm::parser::AutoParser::parseModel(STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.tra", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.lab", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.flip.state.rew", "")->as<storm::models::Mdp<double>>();
storm::modelchecker::prctl::TopologicalValueIterationMdpPrctlModelChecker<double> stateRewardModelChecker(*stateRewardMdp);
apFormula = new storm::property::prctl::Ap<double>("done");
reachabilityRewardFormula = new storm::property::prctl::ReachabilityReward<double>(apFormula);
rewardFormula = new storm::property::prctl::RewardNoBoundOperator<double>(reachabilityRewardFormula, true);
result = stateRewardModelChecker.checkNoBoundOperator(*rewardFormula);
#ifdef STORM_HAVE_CUDAFORSTORM
ASSERT_LT(std::abs(result[0] - 7.333329499), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
#else
ASSERT_LT(std::abs(result[0] - 7.33332904), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
#endif
delete rewardFormula;
apFormula = new storm::property::prctl::Ap<double>("done");
reachabilityRewardFormula = new storm::property::prctl::ReachabilityReward<double>(apFormula);
rewardFormula = new storm::property::prctl::RewardNoBoundOperator<double>(reachabilityRewardFormula, false);
result = stateRewardModelChecker.checkNoBoundOperator(*rewardFormula);
#ifdef STORM_HAVE_CUDAFORSTORM
ASSERT_LT(std::abs(result[0] - 7.333329499), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
#else
ASSERT_LT(std::abs(result[0] - 7.33333151), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
#endif
delete rewardFormula;
std::shared_ptr<storm::models::Mdp<double>> stateAndTransitionRewardMdp = storm::parser::AutoParser::parseModel(STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.tra", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.lab", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.flip.state.rew", STORM_CPP_BASE_PATH "/examples/mdp/two_dice/two_dice.flip.trans.rew")->as<storm::models::Mdp<double>>();
storm::modelchecker::prctl::TopologicalValueIterationMdpPrctlModelChecker<double> stateAndTransitionRewardModelChecker(*stateAndTransitionRewardMdp);
apFormula = new storm::property::prctl::Ap<double>("done");
reachabilityRewardFormula = new storm::property::prctl::ReachabilityReward<double>(apFormula);
rewardFormula = new storm::property::prctl::RewardNoBoundOperator<double>(reachabilityRewardFormula, true);
result = stateAndTransitionRewardModelChecker.checkNoBoundOperator(*rewardFormula);
#ifdef STORM_HAVE_CUDAFORSTORM
ASSERT_LT(std::abs(result[0] - 14.666658998), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
#else
ASSERT_LT(std::abs(result[0] - 14.6666581), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
#endif
delete rewardFormula;
apFormula = new storm::property::prctl::Ap<double>("done");
reachabilityRewardFormula = new storm::property::prctl::ReachabilityReward<double>(apFormula);
rewardFormula = new storm::property::prctl::RewardNoBoundOperator<double>(reachabilityRewardFormula, false);
result = stateAndTransitionRewardModelChecker.checkNoBoundOperator(*rewardFormula);
#ifdef STORM_HAVE_CUDAFORSTORM
ASSERT_LT(std::abs(result[0] - 14.666658998), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
#else
ASSERT_LT(std::abs(result[0] - 14.666663), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
#endif
delete rewardFormula;
}
TEST(TopologicalValueIterationMdpPrctlModelCheckerTest, AsynchronousLeader) {
storm::settings::Settings* s = storm::settings::Settings::getInstance();
std::shared_ptr<storm::models::Mdp<double>> mdp = storm::parser::AutoParser::parseModel(STORM_CPP_BASE_PATH "/examples/mdp/asynchronous_leader/leader4.tra", STORM_CPP_BASE_PATH "/examples/mdp/asynchronous_leader/leader4.lab", "", STORM_CPP_BASE_PATH "/examples/mdp/asynchronous_leader/leader4.trans.rew")->as<storm::models::Mdp<double>>();
ASSERT_EQ(mdp->getNumberOfStates(), 3172ull);
ASSERT_EQ(mdp->getNumberOfTransitions(), 7144ull);
storm::modelchecker::prctl::TopologicalValueIterationMdpPrctlModelChecker<double> mc(*mdp);
storm::property::prctl::Ap<double>* apFormula = new storm::property::prctl::Ap<double>("elected");
storm::property::prctl::Eventually<double>* eventuallyFormula = new storm::property::prctl::Eventually<double>(apFormula);
storm::property::prctl::ProbabilisticNoBoundOperator<double>* probFormula = new storm::property::prctl::ProbabilisticNoBoundOperator<double>(eventuallyFormula, true);
std::vector<double> result = mc.checkNoBoundOperator(*probFormula);
ASSERT_LT(std::abs(result[0] - 1), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
delete probFormula;
apFormula = new storm::property::prctl::Ap<double>("elected");
eventuallyFormula = new storm::property::prctl::Eventually<double>(apFormula);
probFormula = new storm::property::prctl::ProbabilisticNoBoundOperator<double>(eventuallyFormula, false);
result = mc.checkNoBoundOperator(*probFormula);
ASSERT_LT(std::abs(result[0] - 1), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
delete probFormula;
apFormula = new storm::property::prctl::Ap<double>("elected");
storm::property::prctl::BoundedEventually<double>* boundedEventuallyFormula = new storm::property::prctl::BoundedEventually<double>(apFormula, 25);
probFormula = new storm::property::prctl::ProbabilisticNoBoundOperator<double>(boundedEventuallyFormula, false);
result = mc.checkNoBoundOperator(*probFormula);
ASSERT_LT(std::abs(result[0] - 0.0625), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
delete probFormula;
apFormula = new storm::property::prctl::Ap<double>("elected");
boundedEventuallyFormula = new storm::property::prctl::BoundedEventually<double>(apFormula, 25);
probFormula = new storm::property::prctl::ProbabilisticNoBoundOperator<double>(boundedEventuallyFormula, true);
result = mc.checkNoBoundOperator(*probFormula);
ASSERT_LT(std::abs(result[0] - 0.0625), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
delete probFormula;
apFormula = new storm::property::prctl::Ap<double>("elected");
storm::property::prctl::ReachabilityReward<double>* reachabilityRewardFormula = new storm::property::prctl::ReachabilityReward<double>(apFormula);
storm::property::prctl::RewardNoBoundOperator<double>* rewardFormula = new storm::property::prctl::RewardNoBoundOperator<double>(reachabilityRewardFormula, true);
result = mc.checkNoBoundOperator(*rewardFormula);
#ifdef STORM_HAVE_CUDAFORSTORM
ASSERT_LT(std::abs(result[0] - 4.285689611), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
#else
ASSERT_LT(std::abs(result[0] - 4.285701547), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
#endif
delete rewardFormula;
apFormula = new storm::property::prctl::Ap<double>("elected");
reachabilityRewardFormula = new storm::property::prctl::ReachabilityReward<double>(apFormula);
rewardFormula = new storm::property::prctl::RewardNoBoundOperator<double>(reachabilityRewardFormula, false);
result = mc.checkNoBoundOperator(*rewardFormula);
#ifdef STORM_HAVE_CUDAFORSTORM
ASSERT_LT(std::abs(result[0] - 4.285689611), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
#else
ASSERT_LT(std::abs(result[0] - 4.285703591), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
#endif
delete rewardFormula;
}

354
test/functional/solver/CudaPluginTest.cpp

@ -0,0 +1,354 @@
#include "gtest/gtest.h"
#include "src/storage/SparseMatrix.h"
#include "src/exceptions/InvalidStateException.h"
#include "src/exceptions/OutOfRangeException.h"
#include "storm-config.h"
#ifdef STORM_HAVE_CUDAFORSTORM
#include "cudaForStorm.h"
TEST(CudaPlugin, SpMV_4x4) {
storm::storage::SparseMatrixBuilder<double> matrixBuilder(4, 4, 10);
ASSERT_NO_THROW(matrixBuilder.addNextValue(0, 1, 1.0));
ASSERT_NO_THROW(matrixBuilder.addNextValue(0, 3, -1.0));
ASSERT_NO_THROW(matrixBuilder.addNextValue(1, 0, 8.0));
ASSERT_NO_THROW(matrixBuilder.addNextValue(1, 1, 7.0));
ASSERT_NO_THROW(matrixBuilder.addNextValue(1, 2, -5.0));
ASSERT_NO_THROW(matrixBuilder.addNextValue(1, 3, 2.0));
ASSERT_NO_THROW(matrixBuilder.addNextValue(2, 0, 2.0));
ASSERT_NO_THROW(matrixBuilder.addNextValue(2, 1, 2.0));
ASSERT_NO_THROW(matrixBuilder.addNextValue(2, 2, 4.0));
ASSERT_NO_THROW(matrixBuilder.addNextValue(2, 3, 4.0));
storm::storage::SparseMatrix<double> matrix;
ASSERT_NO_THROW(matrix = matrixBuilder.build());
ASSERT_EQ(4, matrix.getRowCount());
ASSERT_EQ(4, matrix.getColumnCount());
ASSERT_EQ(10, matrix.getEntryCount());
std::vector<double> x({0, 4, 1, 1});
std::vector<double> b({0, 0, 0, 0});
ASSERT_NO_THROW(basicValueIteration_spmv_uint64_double(matrix.getColumnCount(), matrix.__internal_getRowIndications(), matrix.__internal_getColumnsAndValues(), x, b));
ASSERT_EQ(b.at(0), 3);
ASSERT_EQ(b.at(1), 25);
ASSERT_EQ(b.at(2), 16);
ASSERT_EQ(b.at(3), 0);
}
TEST(CudaPlugin, SpMV_4x4_float) {
storm::storage::SparseMatrixBuilder<float> matrixBuilder(4, 4, 10);
ASSERT_NO_THROW(matrixBuilder.addNextValue(0, 1, 1.0f));
ASSERT_NO_THROW(matrixBuilder.addNextValue(0, 3, -1.0f));
ASSERT_NO_THROW(matrixBuilder.addNextValue(1, 0, 8.0f));
ASSERT_NO_THROW(matrixBuilder.addNextValue(1, 1, 7.0f));
ASSERT_NO_THROW(matrixBuilder.addNextValue(1, 2, -5.0f));
ASSERT_NO_THROW(matrixBuilder.addNextValue(1, 3, 2.0f));
ASSERT_NO_THROW(matrixBuilder.addNextValue(2, 0, 2.0f));
ASSERT_NO_THROW(matrixBuilder.addNextValue(2, 1, 2.0f));
ASSERT_NO_THROW(matrixBuilder.addNextValue(2, 2, 4.0f));
ASSERT_NO_THROW(matrixBuilder.addNextValue(2, 3, 4.0f));
storm::storage::SparseMatrix<float> matrix;
ASSERT_NO_THROW(matrix = matrixBuilder.build());
ASSERT_EQ(4, matrix.getRowCount());
ASSERT_EQ(4, matrix.getColumnCount());
ASSERT_EQ(10, matrix.getEntryCount());
std::vector<float> x({ 0.f, 4.f, 1.f, 1.f });
std::vector<float> b({ 0.f, 0.f, 0.f, 0.f });
ASSERT_NO_THROW(basicValueIteration_spmv_uint64_float(matrix.getColumnCount(), matrix.__internal_getRowIndications(), matrix.__internal_getColumnsAndValues(), x, b));
ASSERT_EQ(b.at(0), 3);
ASSERT_EQ(b.at(1), 25);
ASSERT_EQ(b.at(2), 16);
ASSERT_EQ(b.at(3), 0);
}
TEST(CudaPlugin, SpMV_VerySmall) {
storm::storage::SparseMatrixBuilder<double> matrixBuilder(2, 2, 2);
ASSERT_NO_THROW(matrixBuilder.addNextValue(0, 0, 1.0));
ASSERT_NO_THROW(matrixBuilder.addNextValue(1, 1, 2.0));
storm::storage::SparseMatrix<double> matrix;
ASSERT_NO_THROW(matrix = matrixBuilder.build());
ASSERT_EQ(2, matrix.getRowCount());
ASSERT_EQ(2, matrix.getColumnCount());
ASSERT_EQ(2, matrix.getEntryCount());
std::vector<double> x({ 4.0, 8.0 });
std::vector<double> b({ 0.0, 0.0 });
ASSERT_NO_THROW(basicValueIteration_spmv_uint64_double(matrix.getColumnCount(), matrix.__internal_getRowIndications(), matrix.__internal_getColumnsAndValues(), x, b));
ASSERT_EQ(b.at(0), 4.0);
ASSERT_EQ(b.at(1), 16.0);
}
TEST(CudaPlugin, SpMV_VerySmall_float) {
storm::storage::SparseMatrixBuilder<float> matrixBuilder(2, 2, 2);
ASSERT_NO_THROW(matrixBuilder.addNextValue(0, 0, 1.0));
ASSERT_NO_THROW(matrixBuilder.addNextValue(1, 1, 2.0));
storm::storage::SparseMatrix<float> matrix;
ASSERT_NO_THROW(matrix = matrixBuilder.build());
ASSERT_EQ(2, matrix.getRowCount());
ASSERT_EQ(2, matrix.getColumnCount());
ASSERT_EQ(2, matrix.getEntryCount());
std::vector<float> x({ 4.0, 8.0 });
std::vector<float> b({ 0.0, 0.0 });
ASSERT_NO_THROW(basicValueIteration_spmv_uint64_float(matrix.getColumnCount(), matrix.__internal_getRowIndications(), matrix.__internal_getColumnsAndValues(), x, b));
ASSERT_EQ(b.at(0), 4.0);
ASSERT_EQ(b.at(1), 16.0);
}
TEST(CudaPlugin, AddVectorsInplace) {
std::vector<double> vectorA_1 = { 0.0, 42.0, 21.4, 3.1415, 1.0, 7.3490390, 94093053905390.21, -0.000000000023 };
std::vector<double> vectorA_2 = { 0.0, 42.0, 21.4, 3.1415, 1.0, 7.3490390, 94093053905390.21, -0.000000000023 };
std::vector<double> vectorA_3 = { 0.0, 42.0, 21.4, 3.1415, 1.0, 7.3490390, 94093053905390.21, -0.000000000023 };
std::vector<double> vectorB = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
std::vector<double> vectorC = { -5000.0, -5000.0, -5000.0, -5000.0, -5000.0, -5000.0, -5000.0, -5000.0 };
ASSERT_EQ(vectorA_1.size(), 8);
ASSERT_EQ(vectorA_2.size(), 8);
ASSERT_EQ(vectorA_3.size(), 8);
ASSERT_EQ(vectorB.size(), 8);
ASSERT_EQ(vectorC.size(), 8);
ASSERT_NO_THROW(basicValueIteration_addVectorsInplace_double(vectorA_1, vectorB));
ASSERT_NO_THROW(basicValueIteration_addVectorsInplace_double(vectorA_2, vectorC));
ASSERT_EQ(vectorA_1.size(), 8);
ASSERT_EQ(vectorA_2.size(), 8);
ASSERT_EQ(vectorA_3.size(), 8);
ASSERT_EQ(vectorB.size(), 8);
ASSERT_EQ(vectorC.size(), 8);
for (size_t i = 0; i < vectorA_3.size(); ++i) {
double cpu_result_b = vectorA_3.at(i) + vectorB.at(i);
double cpu_result_c = vectorA_3.at(i) + vectorC.at(i);
ASSERT_EQ(cpu_result_b, vectorA_1.at(i));
ASSERT_EQ(cpu_result_c, vectorA_2.at(i));
}
}
TEST(CudaPlugin, AddVectorsInplace_float) {
std::vector<float> vectorA_1 = { 0.0f, 42.0f, 21.4f, 3.1415f, 1.0f, 7.3490390f, 94093053905390.21f, -0.000000000023f };
std::vector<float> vectorA_2 = { 0.0f, 42.0f, 21.4f, 3.1415f, 1.0f, 7.3490390f, 94093053905390.21f, -0.000000000023f };
std::vector<float> vectorA_3 = { 0.0f, 42.0f, 21.4f, 3.1415f, 1.0f, 7.3490390f, 94093053905390.21f, -0.000000000023f };
std::vector<float> vectorB = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
std::vector<float> vectorC = { -5000.0f, -5000.0f, -5000.0f, -5000.0f, -5000.0f, -5000.0f, -5000.0f, -5000.0f };
ASSERT_EQ(vectorA_1.size(), 8);
ASSERT_EQ(vectorA_2.size(), 8);
ASSERT_EQ(vectorA_3.size(), 8);
ASSERT_EQ(vectorB.size(), 8);
ASSERT_EQ(vectorC.size(), 8);
ASSERT_NO_THROW(basicValueIteration_addVectorsInplace_float(vectorA_1, vectorB));
ASSERT_NO_THROW(basicValueIteration_addVectorsInplace_float(vectorA_2, vectorC));
ASSERT_EQ(vectorA_1.size(), 8);
ASSERT_EQ(vectorA_2.size(), 8);
ASSERT_EQ(vectorA_3.size(), 8);
ASSERT_EQ(vectorB.size(), 8);
ASSERT_EQ(vectorC.size(), 8);
for (size_t i = 0; i < vectorA_3.size(); ++i) {
float cpu_result_b = vectorA_3.at(i) + vectorB.at(i);
float cpu_result_c = vectorA_3.at(i) + vectorC.at(i);
ASSERT_EQ(cpu_result_b, vectorA_1.at(i));
ASSERT_EQ(cpu_result_c, vectorA_2.at(i));
}
}
TEST(CudaPlugin, ReduceGroupedVector) {
std::vector<double> groupedVector = {
0.0, -1000.0, 0.000004, // Group 0
5.0, // Group 1
0.0, 1.0, 2.0, 3.0, // Group 2
-1000.0, -3.14, -0.0002,// Group 3 (neg only)
25.25, 25.25, 25.25, // Group 4
0.0, 0.0, 1.0, // Group 5
-0.000001, 0.000001 // Group 6
};
std::vector<uint_fast64_t> grouping = {
0, 3, 4, 8, 11, 14, 17, 19
};
std::vector<double> result_minimize = {
-1000.0, // Group 0
5.0,
0.0,
-1000.0,
25.25,
0.0,
-0.000001
};
std::vector<double> result_maximize = {
0.000004,
5.0,
3.0,
-0.0002,
25.25,
1.0,
0.000001
};
std::vector<double> result_cuda_minimize = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
std::vector<double> result_cuda_maximize = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
ASSERT_NO_THROW(basicValueIteration_reduceGroupedVector_uint64_double_minimize(groupedVector, grouping, result_cuda_minimize));
ASSERT_NO_THROW(basicValueIteration_reduceGroupedVector_uint64_double_maximize(groupedVector, grouping, result_cuda_maximize));
for (size_t i = 0; i < result_minimize.size(); ++i) {
ASSERT_EQ(result_minimize.at(i), result_cuda_minimize.at(i));
ASSERT_EQ(result_maximize.at(i), result_cuda_maximize.at(i));
}
}
TEST(CudaPlugin, ReduceGroupedVector_float) {
std::vector<float> groupedVector = {
0.0f, -1000.0f, 0.000004f, // Group 0
5.0f, // Group 1
0.0f, 1.0f, 2.0f, 3.0f, // Group 2
-1000.0f, -3.14f, -0.0002f,// Group 3 (neg only)
25.25f, 25.25f, 25.25f, // Group 4
0.0f, 0.0f, 1.0f, // Group 5
-0.000001f, 0.000001f // Group 6
};
std::vector<uint_fast64_t> grouping = {
0, 3, 4, 8, 11, 14, 17, 19
};
std::vector<float> result_minimize = {
-1000.0f, // Group 0
5.0f,
0.0f,
-1000.0f,
25.25f,
0.0f,
-0.000001f
};
std::vector<float> result_maximize = {
0.000004f,
5.0f,
3.0f,
-0.0002f,
25.25f,
1.0f,
0.000001f
};
std::vector<float> result_cuda_minimize = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
std::vector<float> result_cuda_maximize = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
ASSERT_NO_THROW(basicValueIteration_reduceGroupedVector_uint64_float_minimize(groupedVector, grouping, result_cuda_minimize));
ASSERT_NO_THROW(basicValueIteration_reduceGroupedVector_uint64_float_maximize(groupedVector, grouping, result_cuda_maximize));
for (size_t i = 0; i < result_minimize.size(); ++i) {
ASSERT_EQ(result_minimize.at(i), result_cuda_minimize.at(i));
ASSERT_EQ(result_maximize.at(i), result_cuda_maximize.at(i));
}
}
TEST(CudaPlugin, equalModuloPrecision) {
std::vector<double> x = {
123.45, 67.8, 901.23, 456789.012, 3.456789, -4567890.12
};
std::vector<double> y1 = {
0.45, 0.8, 0.23, 0.012, 0.456789, -0.12
};
std::vector<double> y2 = {
0.45, 0.8, 0.23, 456789.012, 0.456789, -4567890.12
};
std::vector<double> x2;
std::vector<double> x3;
std::vector<double> y3;
std::vector<double> y4;
x2.reserve(1000);
x3.reserve(1000);
y3.reserve(1000);
y4.reserve(1000);
for (size_t i = 0; i < 1000; ++i) {
x2.push_back(static_cast<double>(i));
y3.push_back(1.0);
x3.push_back(-(1000.0 - static_cast<double>(i)));
y4.push_back(1.0);
}
double maxElement1 = 0.0;
double maxElement2 = 0.0;
double maxElement3 = 0.0;
double maxElement4 = 0.0;
ASSERT_NO_THROW(basicValueIteration_equalModuloPrecision_double_NonRelative(x, y1, maxElement1));
ASSERT_NO_THROW(basicValueIteration_equalModuloPrecision_double_NonRelative(x, y2, maxElement2));
ASSERT_NO_THROW(basicValueIteration_equalModuloPrecision_double_Relative(x2, y3, maxElement3));
ASSERT_NO_THROW(basicValueIteration_equalModuloPrecision_double_Relative(x3, y4, maxElement4));
ASSERT_DOUBLE_EQ(4567890.0, maxElement1);
ASSERT_DOUBLE_EQ(901.0, maxElement2);
ASSERT_DOUBLE_EQ(998.0, maxElement3);
ASSERT_DOUBLE_EQ(1001.0, maxElement4);
}
TEST(CudaPlugin, equalModuloPrecision_float) {
std::vector<float> x = {
123.45f, 67.8f, 901.23f, 456789.012f, 3.456789f, -4567890.12f
};
std::vector<float> y1 = {
0.45f, 0.8f, 0.23f, 0.012f, 0.456789f, -0.12f
};
std::vector<float> y2 = {
0.45f, 0.8f, 0.23f, 456789.012f, 0.456789f, -4567890.12f
};
std::vector<float> x2;
std::vector<float> x3;
std::vector<float> y3;
std::vector<float> y4;
x2.reserve(1000);
x3.reserve(1000);
y3.reserve(1000);
y4.reserve(1000);
for (size_t i = 0; i < 1000; ++i) {
x2.push_back(static_cast<float>(i));
y3.push_back(1.0f);
x3.push_back(-(1000.0f - static_cast<float>(i)));
y4.push_back(1.0f);
}
float maxElement1 = 0.0f;
float maxElement2 = 0.0f;
float maxElement3 = 0.0f;
float maxElement4 = 0.0f;
ASSERT_NO_THROW(basicValueIteration_equalModuloPrecision_float_NonRelative(x, y1, maxElement1));
ASSERT_NO_THROW(basicValueIteration_equalModuloPrecision_float_NonRelative(x, y2, maxElement2));
ASSERT_NO_THROW(basicValueIteration_equalModuloPrecision_float_Relative(x2, y3, maxElement3));
ASSERT_NO_THROW(basicValueIteration_equalModuloPrecision_float_Relative(x3, y4, maxElement4));
ASSERT_DOUBLE_EQ(4567890.0f, maxElement1);
ASSERT_DOUBLE_EQ(901.0f, maxElement2);
ASSERT_DOUBLE_EQ(998.0f, maxElement3);
ASSERT_DOUBLE_EQ(1001.0f, maxElement4);
}
#endif

163
test/performance/modelchecker/TopologicalValueIterationMdpPrctlModelCheckerTest.cpp

@ -0,0 +1,163 @@
#include "gtest/gtest.h"
#include "storm-config.h"
#include "src/settings/Settings.h"
#include "src/modelchecker/prctl/TopologicalValueIterationMdpPrctlModelChecker.h"
#include "src/solver/NativeNondeterministicLinearEquationSolver.h"
#include "src/parser/AutoParser.h"
TEST(TopologicalValueIterationMdpPrctlModelCheckerTest, AsynchronousLeader) {
storm::settings::Settings* s = storm::settings::Settings::getInstance();
std::shared_ptr<storm::models::Mdp<double>> mdp = storm::parser::AutoParser::parseModel(STORM_CPP_BASE_PATH "/examples/mdp/asynchronous_leader/leader7.tra", STORM_CPP_BASE_PATH "/examples/mdp/asynchronous_leader/leader7.lab", "", STORM_CPP_BASE_PATH "/examples/mdp/asynchronous_leader/leader7.trans.rew")->as<storm::models::Mdp<double>>();
ASSERT_EQ(mdp->getNumberOfStates(), 2095783ull);
ASSERT_EQ(mdp->getNumberOfTransitions(), 7714385ull);
storm::modelchecker::prctl::TopologicalValueIterationMdpPrctlModelChecker<double> mc(*mdp);
storm::property::prctl::Ap<double>* apFormula = new storm::property::prctl::Ap<double>("elected");
storm::property::prctl::Eventually<double>* eventuallyFormula = new storm::property::prctl::Eventually<double>(apFormula);
storm::property::prctl::ProbabilisticNoBoundOperator<double>* probFormula = new storm::property::prctl::ProbabilisticNoBoundOperator<double>(eventuallyFormula, true);
std::vector<double> result = mc.checkNoBoundOperator(*probFormula);
ASSERT_LT(std::abs(result[0] - 1.0), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
delete probFormula;
apFormula = new storm::property::prctl::Ap<double>("elected");
eventuallyFormula = new storm::property::prctl::Eventually<double>(apFormula);
probFormula = new storm::property::prctl::ProbabilisticNoBoundOperator<double>(eventuallyFormula, false);
result = mc.checkNoBoundOperator(*probFormula);
ASSERT_LT(std::abs(result[0] - 1.0), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
delete probFormula;
apFormula = new storm::property::prctl::Ap<double>("elected");
storm::property::prctl::BoundedEventually<double>* boundedEventuallyFormula = new storm::property::prctl::BoundedEventually<double>(apFormula, 25);
probFormula = new storm::property::prctl::ProbabilisticNoBoundOperator<double>(boundedEventuallyFormula, true);
result = mc.checkNoBoundOperator(*probFormula);
ASSERT_LT(std::abs(result[0] - 0.0), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
delete probFormula;
apFormula = new storm::property::prctl::Ap<double>("elected");
boundedEventuallyFormula = new storm::property::prctl::BoundedEventually<double>(apFormula, 25);
probFormula = new storm::property::prctl::ProbabilisticNoBoundOperator<double>(boundedEventuallyFormula, false);
result = mc.checkNoBoundOperator(*probFormula);
ASSERT_LT(std::abs(result[0] - 0.0), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
delete probFormula;
apFormula = new storm::property::prctl::Ap<double>("elected");
storm::property::prctl::ReachabilityReward<double>* reachabilityRewardFormula = new storm::property::prctl::ReachabilityReward<double>(apFormula);
storm::property::prctl::RewardNoBoundOperator<double>* rewardFormula = new storm::property::prctl::RewardNoBoundOperator<double>(reachabilityRewardFormula, true);
result = mc.checkNoBoundOperator(*rewardFormula);
ASSERT_LT(std::abs(result[0] - 6.172433512), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
delete rewardFormula;
apFormula = new storm::property::prctl::Ap<double>("elected");
reachabilityRewardFormula = new storm::property::prctl::ReachabilityReward<double>(apFormula);
rewardFormula = new storm::property::prctl::RewardNoBoundOperator<double>(reachabilityRewardFormula, false);
result = mc.checkNoBoundOperator(*rewardFormula);
ASSERT_LT(std::abs(result[0] - 6.1724344), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
delete rewardFormula;
}
TEST(TopologicalValueIterationMdpPrctlModelCheckerTest, Consensus) {
storm::settings::Settings* s = storm::settings::Settings::getInstance();
// Increase the maximal number of iterations, because the solver does not converge otherwise.
// This is done in the main cpp unit
std::shared_ptr<storm::models::Mdp<double>> mdp = storm::parser::AutoParser::parseModel(STORM_CPP_BASE_PATH "/examples/mdp/consensus/coin4_6.tra", STORM_CPP_BASE_PATH "/examples/mdp/consensus/coin4_6.lab", STORM_CPP_BASE_PATH "/examples/mdp/consensus/coin4_6.steps.state.rew", "")->as<storm::models::Mdp<double>>();
ASSERT_EQ(mdp->getNumberOfStates(), 63616ull);
ASSERT_EQ(mdp->getNumberOfTransitions(), 213472ull);
storm::modelchecker::prctl::TopologicalValueIterationMdpPrctlModelChecker<double> mc(*mdp);
storm::property::prctl::Ap<double>* apFormula = new storm::property::prctl::Ap<double>("finished");
storm::property::prctl::Eventually<double>* eventuallyFormula = new storm::property::prctl::Eventually<double>(apFormula);
storm::property::prctl::ProbabilisticNoBoundOperator<double>* probFormula = new storm::property::prctl::ProbabilisticNoBoundOperator<double>(eventuallyFormula, true);
std::vector<double> result = mc.checkNoBoundOperator(*probFormula);
ASSERT_LT(std::abs(result[31168] - 1.0), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
delete probFormula;
apFormula = new storm::property::prctl::Ap<double>("finished");
storm::property::prctl::Ap<double>* apFormula2 = new storm::property::prctl::Ap<double>("all_coins_equal_0");
storm::property::prctl::And<double>* andFormula = new storm::property::prctl::And<double>(apFormula, apFormula2);
eventuallyFormula = new storm::property::prctl::Eventually<double>(andFormula);
probFormula = new storm::property::prctl::ProbabilisticNoBoundOperator<double>(eventuallyFormula, true);
result = mc.checkNoBoundOperator(*probFormula);
ASSERT_LT(std::abs(result[31168] - 0.4374282832), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
delete probFormula;
apFormula = new storm::property::prctl::Ap<double>("finished");
apFormula2 = new storm::property::prctl::Ap<double>("all_coins_equal_1");
andFormula = new storm::property::prctl::And<double>(apFormula, apFormula2);
eventuallyFormula = new storm::property::prctl::Eventually<double>(andFormula);
probFormula = new storm::property::prctl::ProbabilisticNoBoundOperator<double>(eventuallyFormula, false);
result = mc.checkNoBoundOperator(*probFormula);
ASSERT_LT(std::abs(result[31168] - 0.5293286369), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
delete probFormula;
apFormula = new storm::property::prctl::Ap<double>("finished");
apFormula2 = new storm::property::prctl::Ap<double>("agree");
storm::property::prctl::Not<double>* notFormula = new storm::property::prctl::Not<double>(apFormula2);
andFormula = new storm::property::prctl::And<double>(apFormula, notFormula);
eventuallyFormula = new storm::property::prctl::Eventually<double>(andFormula);
probFormula = new storm::property::prctl::ProbabilisticNoBoundOperator<double>(eventuallyFormula, false);
result = mc.checkNoBoundOperator(*probFormula);
ASSERT_LT(std::abs(result[31168] - 0.10414097), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
delete probFormula;
apFormula = new storm::property::prctl::Ap<double>("finished");
storm::property::prctl::BoundedEventually<double>* boundedEventuallyFormula = new storm::property::prctl::BoundedEventually<double>(apFormula, 50ull);
probFormula = new storm::property::prctl::ProbabilisticNoBoundOperator<double>(boundedEventuallyFormula, true);
result = mc.checkNoBoundOperator(*probFormula);
ASSERT_LT(std::abs(result[31168] - 0.0), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
delete probFormula;
apFormula = new storm::property::prctl::Ap<double>("finished");
boundedEventuallyFormula = new storm::property::prctl::BoundedEventually<double>(apFormula, 50ull);
probFormula = new storm::property::prctl::ProbabilisticNoBoundOperator<double>(boundedEventuallyFormula, false);
result = mc.checkNoBoundOperator(*probFormula);
ASSERT_LT(std::abs(result[31168] - 0.0), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
delete probFormula;
apFormula = new storm::property::prctl::Ap<double>("finished");
storm::property::prctl::ReachabilityReward<double>* reachabilityRewardFormula = new storm::property::prctl::ReachabilityReward<double>(apFormula);
storm::property::prctl::RewardNoBoundOperator<double>* rewardFormula = new storm::property::prctl::RewardNoBoundOperator<double>(reachabilityRewardFormula, true);
result = mc.checkNoBoundOperator(*rewardFormula);
ASSERT_LT(std::abs(result[31168] - 1725.593313), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
delete rewardFormula;
apFormula = new storm::property::prctl::Ap<double>("finished");
reachabilityRewardFormula = new storm::property::prctl::ReachabilityReward<double>(apFormula);
rewardFormula = new storm::property::prctl::RewardNoBoundOperator<double>(reachabilityRewardFormula, false);
result = mc.checkNoBoundOperator(*rewardFormula);
ASSERT_LT(std::abs(result[31168] - 2183.142422), s->getOptionByLongName("precision").getArgument(0).getValueAsDouble());
delete rewardFormula;
}
Loading…
Cancel
Save