|
|
// This file is triangularView of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
template<typename MatrixType> void triangular_square(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
RealScalar largerEps = 10*test_precision<RealScalar>();
typename MatrixType::Index rows = m.rows(); typename MatrixType::Index cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), m4(rows, cols), r1(rows, cols), r2(rows, cols); VectorType v2 = VectorType::Random(rows);
MatrixType m1up = m1.template triangularView<Upper>(); MatrixType m2up = m2.template triangularView<Upper>();
if (rows*cols>1) { VERIFY(m1up.isUpperTriangular()); VERIFY(m2up.transpose().isLowerTriangular()); VERIFY(!m2.isLowerTriangular()); }
// VERIFY_IS_APPROX(m1up.transpose() * m2, m1.upper().transpose().lower() * m2);
// test overloaded operator+=
r1.setZero(); r2.setZero(); r1.template triangularView<Upper>() += m1; r2 += m1up; VERIFY_IS_APPROX(r1,r2);
// test overloaded operator=
m1.setZero(); m1.template triangularView<Upper>() = m2.transpose() + m2; m3 = m2.transpose() + m2; VERIFY_IS_APPROX(m3.template triangularView<Lower>().transpose().toDenseMatrix(), m1);
// test overloaded operator=
m1.setZero(); m1.template triangularView<Lower>() = m2.transpose() + m2; VERIFY_IS_APPROX(m3.template triangularView<Lower>().toDenseMatrix(), m1);
VERIFY_IS_APPROX(m3.template triangularView<Lower>().conjugate().toDenseMatrix(), m3.conjugate().template triangularView<Lower>().toDenseMatrix());
m1 = MatrixType::Random(rows, cols); for (int i=0; i<rows; ++i) while (internal::abs2(m1(i,i))<1e-1) m1(i,i) = internal::random<Scalar>();
Transpose<MatrixType> trm4(m4); // test back and forward subsitution with a vector as the rhs
m3 = m1.template triangularView<Upper>(); VERIFY(v2.isApprox(m3.adjoint() * (m1.adjoint().template triangularView<Lower>().solve(v2)), largerEps)); m3 = m1.template triangularView<Lower>(); VERIFY(v2.isApprox(m3.transpose() * (m1.transpose().template triangularView<Upper>().solve(v2)), largerEps)); m3 = m1.template triangularView<Upper>(); VERIFY(v2.isApprox(m3 * (m1.template triangularView<Upper>().solve(v2)), largerEps)); m3 = m1.template triangularView<Lower>(); VERIFY(v2.isApprox(m3.conjugate() * (m1.conjugate().template triangularView<Lower>().solve(v2)), largerEps));
// test back and forward subsitution with a matrix as the rhs
m3 = m1.template triangularView<Upper>(); VERIFY(m2.isApprox(m3.adjoint() * (m1.adjoint().template triangularView<Lower>().solve(m2)), largerEps)); m3 = m1.template triangularView<Lower>(); VERIFY(m2.isApprox(m3.transpose() * (m1.transpose().template triangularView<Upper>().solve(m2)), largerEps)); m3 = m1.template triangularView<Upper>(); VERIFY(m2.isApprox(m3 * (m1.template triangularView<Upper>().solve(m2)), largerEps)); m3 = m1.template triangularView<Lower>(); VERIFY(m2.isApprox(m3.conjugate() * (m1.conjugate().template triangularView<Lower>().solve(m2)), largerEps));
// check M * inv(L) using in place API
m4 = m3; m1.transpose().template triangularView<Eigen::Upper>().solveInPlace(trm4); VERIFY_IS_APPROX(m4 * m1.template triangularView<Eigen::Lower>(), m3);
// check M * inv(U) using in place API
m3 = m1.template triangularView<Upper>(); m4 = m3; m3.transpose().template triangularView<Eigen::Lower>().solveInPlace(trm4); VERIFY_IS_APPROX(m4 * m1.template triangularView<Eigen::Upper>(), m3);
// check solve with unit diagonal
m3 = m1.template triangularView<UnitUpper>(); VERIFY(m2.isApprox(m3 * (m1.template triangularView<UnitUpper>().solve(m2)), largerEps));
// VERIFY(( m1.template triangularView<Upper>()
// * m2.template triangularView<Upper>()).isUpperTriangular());
// test swap
m1.setOnes(); m2.setZero(); m2.template triangularView<Upper>().swap(m1); m3.setZero(); m3.template triangularView<Upper>().setOnes(); VERIFY_IS_APPROX(m2,m3);
}
template<typename MatrixType> void triangular_rect(const MatrixType& m) { typedef const typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime }; typedef Matrix<Scalar, Rows, 1> VectorType; typedef Matrix<Scalar, Rows, Rows> RMatrixType;
Index rows = m.rows(); Index cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), m4(rows, cols), r1(rows, cols), r2(rows, cols);
MatrixType m1up = m1.template triangularView<Upper>(); MatrixType m2up = m2.template triangularView<Upper>();
if (rows>1 && cols>1) { VERIFY(m1up.isUpperTriangular()); VERIFY(m2up.transpose().isLowerTriangular()); VERIFY(!m2.isLowerTriangular()); }
// test overloaded operator+=
r1.setZero(); r2.setZero(); r1.template triangularView<Upper>() += m1; r2 += m1up; VERIFY_IS_APPROX(r1,r2);
// test overloaded operator=
m1.setZero(); m1.template triangularView<Upper>() = 3 * m2; m3 = 3 * m2; VERIFY_IS_APPROX(m3.template triangularView<Upper>().toDenseMatrix(), m1);
m1.setZero(); m1.template triangularView<Lower>() = 3 * m2; VERIFY_IS_APPROX(m3.template triangularView<Lower>().toDenseMatrix(), m1);
m1.setZero(); m1.template triangularView<StrictlyUpper>() = 3 * m2; VERIFY_IS_APPROX(m3.template triangularView<StrictlyUpper>().toDenseMatrix(), m1);
m1.setZero(); m1.template triangularView<StrictlyLower>() = 3 * m2; VERIFY_IS_APPROX(m3.template triangularView<StrictlyLower>().toDenseMatrix(), m1); m1.setRandom(); m2 = m1.template triangularView<Upper>(); VERIFY(m2.isUpperTriangular()); VERIFY(!m2.isLowerTriangular()); m2 = m1.template triangularView<StrictlyUpper>(); VERIFY(m2.isUpperTriangular()); VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1))); m2 = m1.template triangularView<UnitUpper>(); VERIFY(m2.isUpperTriangular()); m2.diagonal().array() -= Scalar(1); VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1))); m2 = m1.template triangularView<Lower>(); VERIFY(m2.isLowerTriangular()); VERIFY(!m2.isUpperTriangular()); m2 = m1.template triangularView<StrictlyLower>(); VERIFY(m2.isLowerTriangular()); VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1))); m2 = m1.template triangularView<UnitLower>(); VERIFY(m2.isLowerTriangular()); m2.diagonal().array() -= Scalar(1); VERIFY(m2.diagonal().isMuchSmallerThan(RealScalar(1))); // test swap
m1.setOnes(); m2.setZero(); m2.template triangularView<Upper>().swap(m1); m3.setZero(); m3.template triangularView<Upper>().setOnes(); VERIFY_IS_APPROX(m2,m3); }
void bug_159() { Matrix3d m = Matrix3d::Random().triangularView<Lower>(); EIGEN_UNUSED_VARIABLE(m) }
void test_triangular() { int maxsize = (std::min)(EIGEN_TEST_MAX_SIZE,20); for(int i = 0; i < g_repeat ; i++) { int r = internal::random<int>(2,maxsize); EIGEN_UNUSED_VARIABLE(r); int c = internal::random<int>(2,maxsize); EIGEN_UNUSED_VARIABLE(c);
CALL_SUBTEST_1( triangular_square(Matrix<float, 1, 1>()) ); CALL_SUBTEST_2( triangular_square(Matrix<float, 2, 2>()) ); CALL_SUBTEST_3( triangular_square(Matrix3d()) ); CALL_SUBTEST_4( triangular_square(Matrix<std::complex<float>,8, 8>()) ); CALL_SUBTEST_5( triangular_square(MatrixXcd(r,r)) ); CALL_SUBTEST_6( triangular_square(Matrix<float,Dynamic,Dynamic,RowMajor>(r, r)) );
CALL_SUBTEST_7( triangular_rect(Matrix<float, 4, 5>()) ); CALL_SUBTEST_8( triangular_rect(Matrix<double, 6, 2>()) ); CALL_SUBTEST_9( triangular_rect(MatrixXcf(r, c)) ); CALL_SUBTEST_5( triangular_rect(MatrixXcd(r, c)) ); CALL_SUBTEST_6( triangular_rect(Matrix<float,Dynamic,Dynamic,RowMajor>(r, c)) ); } CALL_SUBTEST_1( bug_159() ); }
|