|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/Geometry>
#include <Eigen/LU>
#include <Eigen/SVD>
/* this test covers the following files:
Geometry/OrthoMethods.h */
template<typename Scalar> void orthomethods_3() { typedef typename NumTraits<Scalar>::Real RealScalar; typedef Matrix<Scalar,3,3> Matrix3; typedef Matrix<Scalar,3,1> Vector3;
typedef Matrix<Scalar,4,1> Vector4;
Vector3 v0 = Vector3::Random(), v1 = Vector3::Random(), v2 = Vector3::Random();
// cross product
VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).dot(v1), Scalar(1)); VERIFY_IS_MUCH_SMALLER_THAN(v1.dot(v1.cross(v2)), Scalar(1)); VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).dot(v2), Scalar(1)); VERIFY_IS_MUCH_SMALLER_THAN(v2.dot(v1.cross(v2)), Scalar(1)); Matrix3 mat3; mat3 << v0.normalized(), (v0.cross(v1)).normalized(), (v0.cross(v1).cross(v0)).normalized(); VERIFY(mat3.isUnitary());
// colwise/rowwise cross product
mat3.setRandom(); Vector3 vec3 = Vector3::Random(); Matrix3 mcross; int i = internal::random<int>(0,2); mcross = mat3.colwise().cross(vec3); VERIFY_IS_APPROX(mcross.col(i), mat3.col(i).cross(vec3)); mcross = mat3.rowwise().cross(vec3); VERIFY_IS_APPROX(mcross.row(i), mat3.row(i).cross(vec3));
// cross3
Vector4 v40 = Vector4::Random(), v41 = Vector4::Random(), v42 = Vector4::Random(); v40.w() = v41.w() = v42.w() = 0; v42.template head<3>() = v40.template head<3>().cross(v41.template head<3>()); VERIFY_IS_APPROX(v40.cross3(v41), v42); // check mixed product
typedef Matrix<RealScalar, 3, 1> RealVector3; RealVector3 rv1 = RealVector3::Random(); VERIFY_IS_APPROX(v1.cross(rv1.template cast<Scalar>()), v1.cross(rv1)); VERIFY_IS_APPROX(rv1.template cast<Scalar>().cross(v1), rv1.cross(v1)); }
template<typename Scalar, int Size> void orthomethods(int size=Size) { typedef typename NumTraits<Scalar>::Real RealScalar; typedef Matrix<Scalar,Size,1> VectorType; typedef Matrix<Scalar,3,Size> Matrix3N; typedef Matrix<Scalar,Size,3> MatrixN3; typedef Matrix<Scalar,3,1> Vector3;
VectorType v0 = VectorType::Random(size);
// unitOrthogonal
VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().dot(v0), Scalar(1)); VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), RealScalar(1));
if (size>=3) { v0.template head<2>().setZero(); v0.tail(size-2).setRandom();
VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().dot(v0), Scalar(1)); VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), RealScalar(1)); }
// colwise/rowwise cross product
Vector3 vec3 = Vector3::Random(); int i = internal::random<int>(0,size-1);
Matrix3N mat3N(3,size), mcross3N(3,size); mat3N.setRandom(); mcross3N = mat3N.colwise().cross(vec3); VERIFY_IS_APPROX(mcross3N.col(i), mat3N.col(i).cross(vec3));
MatrixN3 matN3(size,3), mcrossN3(size,3); matN3.setRandom(); mcrossN3 = matN3.rowwise().cross(vec3); VERIFY_IS_APPROX(mcrossN3.row(i), matN3.row(i).cross(vec3)); }
void test_geo_orthomethods() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( orthomethods_3<float>() ); CALL_SUBTEST_2( orthomethods_3<double>() ); CALL_SUBTEST_4( orthomethods_3<std::complex<double> >() ); CALL_SUBTEST_1( (orthomethods<float,2>()) ); CALL_SUBTEST_2( (orthomethods<double,2>()) ); CALL_SUBTEST_1( (orthomethods<float,3>()) ); CALL_SUBTEST_2( (orthomethods<double,3>()) ); CALL_SUBTEST_3( (orthomethods<float,7>()) ); CALL_SUBTEST_4( (orthomethods<std::complex<double>,8>()) ); CALL_SUBTEST_5( (orthomethods<float,Dynamic>(36)) ); CALL_SUBTEST_6( (orthomethods<double,Dynamic>(35)) ); } }
|