|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
// using namespace Eigen;
template<typename Scalar> bool areApprox(const Scalar* a, const Scalar* b, int size) { for (int i=0; i<size; ++i) if (!ei_isApprox(a[i],b[i])) return false; return true; }
#define CHECK_CWISE(REFOP, POP) { \
for (int i=0; i<PacketSize; ++i) \ ref[i] = REFOP(data1[i], data1[i+PacketSize]); \ ei_pstore(data2, POP(ei_pload(data1), ei_pload(data1+PacketSize))); \ VERIFY(areApprox(ref, data2, PacketSize) && #POP); \ }
#define REF_ADD(a,b) ((a)+(b))
#define REF_SUB(a,b) ((a)-(b))
#define REF_MUL(a,b) ((a)*(b))
#define REF_DIV(a,b) ((a)/(b))
namespace std {
template<> const complex<float>& min(const complex<float>& a, const complex<float>& b) { return a.real() < b.real() ? a : b; }
template<> const complex<float>& max(const complex<float>& a, const complex<float>& b) { return a.real() < b.real() ? b : a; }
}
template<typename Scalar> void packetmath() { typedef typename ei_packet_traits<Scalar>::type Packet; const int PacketSize = ei_packet_traits<Scalar>::size;
const int size = PacketSize*4; EIGEN_ALIGN_128 Scalar data1[ei_packet_traits<Scalar>::size*4]; EIGEN_ALIGN_128 Scalar data2[ei_packet_traits<Scalar>::size*4]; EIGEN_ALIGN_128 Packet packets[PacketSize*2]; EIGEN_ALIGN_128 Scalar ref[ei_packet_traits<Scalar>::size*4]; for (int i=0; i<size; ++i) { data1[i] = ei_random<Scalar>(); data2[i] = ei_random<Scalar>(); }
ei_pstore(data2, ei_pload(data1)); VERIFY(areApprox(data1, data2, PacketSize) && "aligned load/store");
for (int offset=0; offset<PacketSize; ++offset) { ei_pstore(data2, ei_ploadu(data1+offset)); VERIFY(areApprox(data1+offset, data2, PacketSize) && "ei_ploadu"); }
for (int offset=0; offset<PacketSize; ++offset) { ei_pstoreu(data2+offset, ei_pload(data1)); VERIFY(areApprox(data1, data2+offset, PacketSize) && "ei_pstoreu"); }
for (int offset=0; offset<PacketSize; ++offset) { packets[0] = ei_pload(data1); packets[1] = ei_pload(data1+PacketSize); if (offset==0) ei_palign<0>(packets[0], packets[1]); else if (offset==1) ei_palign<1>(packets[0], packets[1]); else if (offset==2) ei_palign<2>(packets[0], packets[1]); else if (offset==3) ei_palign<3>(packets[0], packets[1]); ei_pstore(data2, packets[0]);
for (int i=0; i<PacketSize; ++i) ref[i] = data1[i+offset];
typedef Matrix<Scalar, PacketSize, 1> Vector; VERIFY(areApprox(ref, data2, PacketSize) && "ei_palign"); }
CHECK_CWISE(REF_ADD, ei_padd); CHECK_CWISE(REF_SUB, ei_psub); CHECK_CWISE(REF_MUL, ei_pmul); #ifndef EIGEN_VECTORIZE_ALTIVEC
if (!ei_is_same_type<Scalar,int>::ret) CHECK_CWISE(REF_DIV, ei_pdiv); #endif
CHECK_CWISE(std::min, ei_pmin); CHECK_CWISE(std::max, ei_pmax);
for (int i=0; i<PacketSize; ++i) ref[i] = data1[0]; ei_pstore(data2, ei_pset1(data1[0])); VERIFY(areApprox(ref, data2, PacketSize) && "ei_pset1");
VERIFY(ei_isApprox(data1[0], ei_pfirst(ei_pload(data1))) && "ei_pfirst");
ref[0] = 0; for (int i=0; i<PacketSize; ++i) ref[0] += data1[i]; VERIFY(ei_isApprox(ref[0], ei_predux(ei_pload(data1))) && "ei_predux");
for (int j=0; j<PacketSize; ++j) { ref[j] = 0; for (int i=0; i<PacketSize; ++i) ref[j] += data1[i+j*PacketSize]; packets[j] = ei_pload(data1+j*PacketSize); } ei_pstore(data2, ei_preduxp(packets)); VERIFY(areApprox(ref, data2, PacketSize) && "ei_preduxp"); }
void test_eigen2_packetmath() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( packetmath<float>() ); CALL_SUBTEST_2( packetmath<double>() ); CALL_SUBTEST_3( packetmath<int>() ); CALL_SUBTEST_4( packetmath<std::complex<float> >() ); } }
|