|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
template<typename MatrixType> void basicStuff(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
int rows = m.rows(); int cols = m.cols();
// this test relies a lot on Random.h, and there's not much more that we can do
// to test it, hence I consider that we will have tested Random.h
MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), mzero = MatrixType::Zero(rows, cols), identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> ::Identity(rows, rows), square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows); VectorType v1 = VectorType::Random(rows), v2 = VectorType::Random(rows), vzero = VectorType::Zero(rows);
Scalar x = ei_random<Scalar>();
int r = ei_random<int>(0, rows-1), c = ei_random<int>(0, cols-1);
m1.coeffRef(r,c) = x; VERIFY_IS_APPROX(x, m1.coeff(r,c)); m1(r,c) = x; VERIFY_IS_APPROX(x, m1(r,c)); v1.coeffRef(r) = x; VERIFY_IS_APPROX(x, v1.coeff(r)); v1(r) = x; VERIFY_IS_APPROX(x, v1(r)); v1[r] = x; VERIFY_IS_APPROX(x, v1[r]);
VERIFY_IS_APPROX( v1, v1); VERIFY_IS_NOT_APPROX( v1, 2*v1); VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1); if(NumTraits<Scalar>::HasFloatingPoint) VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1.norm()); VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1, v1); VERIFY_IS_APPROX( vzero, v1-v1); VERIFY_IS_APPROX( m1, m1); VERIFY_IS_NOT_APPROX( m1, 2*m1); VERIFY_IS_MUCH_SMALLER_THAN( mzero, m1); VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1, m1); VERIFY_IS_APPROX( mzero, m1-m1);
// always test operator() on each read-only expression class,
// in order to check const-qualifiers.
// indeed, if an expression class (here Zero) is meant to be read-only,
// hence has no _write() method, the corresponding MatrixBase method (here zero())
// should return a const-qualified object so that it is the const-qualified
// operator() that gets called, which in turn calls _read().
VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast<Scalar>(1));
// now test copying a row-vector into a (column-)vector and conversely.
square.col(r) = square.row(r).eval(); Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows); Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows); rv = square.row(r); cv = square.col(r); VERIFY_IS_APPROX(rv, cv.transpose());
if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic) { VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1))); }
VERIFY_IS_APPROX(m3 = m1,m1); MatrixType m4; VERIFY_IS_APPROX(m4 = m1,m1);
// test swap
m3 = m1; m1.swap(m2); VERIFY_IS_APPROX(m3, m2); if(rows*cols>=3) { VERIFY_IS_NOT_APPROX(m3, m1); } }
void test_eigen2_basicstuff() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( basicStuff(Matrix<float, 1, 1>()) ); CALL_SUBTEST_2( basicStuff(Matrix4d()) ); CALL_SUBTEST_3( basicStuff(MatrixXcf(3, 3)) ); CALL_SUBTEST_4( basicStuff(MatrixXi(8, 12)) ); CALL_SUBTEST_5( basicStuff(MatrixXcd(20, 20)) ); CALL_SUBTEST_6( basicStuff(Matrix<float, 100, 100>()) ); CALL_SUBTEST_7( basicStuff(Matrix<long double,Dynamic,Dynamic>(10,10)) ); } }
|