You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

265 lines
7.8 KiB

  1. SUBROUTINE DSPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
  2. * .. Scalar Arguments ..
  3. DOUBLE PRECISION ALPHA,BETA
  4. INTEGER INCX,INCY,N
  5. CHARACTER UPLO
  6. * ..
  7. * .. Array Arguments ..
  8. DOUBLE PRECISION AP(*),X(*),Y(*)
  9. * ..
  10. *
  11. * Purpose
  12. * =======
  13. *
  14. * DSPMV performs the matrix-vector operation
  15. *
  16. * y := alpha*A*x + beta*y,
  17. *
  18. * where alpha and beta are scalars, x and y are n element vectors and
  19. * A is an n by n symmetric matrix, supplied in packed form.
  20. *
  21. * Arguments
  22. * ==========
  23. *
  24. * UPLO - CHARACTER*1.
  25. * On entry, UPLO specifies whether the upper or lower
  26. * triangular part of the matrix A is supplied in the packed
  27. * array AP as follows:
  28. *
  29. * UPLO = 'U' or 'u' The upper triangular part of A is
  30. * supplied in AP.
  31. *
  32. * UPLO = 'L' or 'l' The lower triangular part of A is
  33. * supplied in AP.
  34. *
  35. * Unchanged on exit.
  36. *
  37. * N - INTEGER.
  38. * On entry, N specifies the order of the matrix A.
  39. * N must be at least zero.
  40. * Unchanged on exit.
  41. *
  42. * ALPHA - DOUBLE PRECISION.
  43. * On entry, ALPHA specifies the scalar alpha.
  44. * Unchanged on exit.
  45. *
  46. * AP - DOUBLE PRECISION array of DIMENSION at least
  47. * ( ( n*( n + 1 ) )/2 ).
  48. * Before entry with UPLO = 'U' or 'u', the array AP must
  49. * contain the upper triangular part of the symmetric matrix
  50. * packed sequentially, column by column, so that AP( 1 )
  51. * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
  52. * and a( 2, 2 ) respectively, and so on.
  53. * Before entry with UPLO = 'L' or 'l', the array AP must
  54. * contain the lower triangular part of the symmetric matrix
  55. * packed sequentially, column by column, so that AP( 1 )
  56. * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
  57. * and a( 3, 1 ) respectively, and so on.
  58. * Unchanged on exit.
  59. *
  60. * X - DOUBLE PRECISION array of dimension at least
  61. * ( 1 + ( n - 1 )*abs( INCX ) ).
  62. * Before entry, the incremented array X must contain the n
  63. * element vector x.
  64. * Unchanged on exit.
  65. *
  66. * INCX - INTEGER.
  67. * On entry, INCX specifies the increment for the elements of
  68. * X. INCX must not be zero.
  69. * Unchanged on exit.
  70. *
  71. * BETA - DOUBLE PRECISION.
  72. * On entry, BETA specifies the scalar beta. When BETA is
  73. * supplied as zero then Y need not be set on input.
  74. * Unchanged on exit.
  75. *
  76. * Y - DOUBLE PRECISION array of dimension at least
  77. * ( 1 + ( n - 1 )*abs( INCY ) ).
  78. * Before entry, the incremented array Y must contain the n
  79. * element vector y. On exit, Y is overwritten by the updated
  80. * vector y.
  81. *
  82. * INCY - INTEGER.
  83. * On entry, INCY specifies the increment for the elements of
  84. * Y. INCY must not be zero.
  85. * Unchanged on exit.
  86. *
  87. * Further Details
  88. * ===============
  89. *
  90. * Level 2 Blas routine.
  91. *
  92. * -- Written on 22-October-1986.
  93. * Jack Dongarra, Argonne National Lab.
  94. * Jeremy Du Croz, Nag Central Office.
  95. * Sven Hammarling, Nag Central Office.
  96. * Richard Hanson, Sandia National Labs.
  97. *
  98. * =====================================================================
  99. *
  100. * .. Parameters ..
  101. DOUBLE PRECISION ONE,ZERO
  102. PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
  103. * ..
  104. * .. Local Scalars ..
  105. DOUBLE PRECISION TEMP1,TEMP2
  106. INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
  107. * ..
  108. * .. External Functions ..
  109. LOGICAL LSAME
  110. EXTERNAL LSAME
  111. * ..
  112. * .. External Subroutines ..
  113. EXTERNAL XERBLA
  114. * ..
  115. *
  116. * Test the input parameters.
  117. *
  118. INFO = 0
  119. IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  120. INFO = 1
  121. ELSE IF (N.LT.0) THEN
  122. INFO = 2
  123. ELSE IF (INCX.EQ.0) THEN
  124. INFO = 6
  125. ELSE IF (INCY.EQ.0) THEN
  126. INFO = 9
  127. END IF
  128. IF (INFO.NE.0) THEN
  129. CALL XERBLA('DSPMV ',INFO)
  130. RETURN
  131. END IF
  132. *
  133. * Quick return if possible.
  134. *
  135. IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
  136. *
  137. * Set up the start points in X and Y.
  138. *
  139. IF (INCX.GT.0) THEN
  140. KX = 1
  141. ELSE
  142. KX = 1 - (N-1)*INCX
  143. END IF
  144. IF (INCY.GT.0) THEN
  145. KY = 1
  146. ELSE
  147. KY = 1 - (N-1)*INCY
  148. END IF
  149. *
  150. * Start the operations. In this version the elements of the array AP
  151. * are accessed sequentially with one pass through AP.
  152. *
  153. * First form y := beta*y.
  154. *
  155. IF (BETA.NE.ONE) THEN
  156. IF (INCY.EQ.1) THEN
  157. IF (BETA.EQ.ZERO) THEN
  158. DO 10 I = 1,N
  159. Y(I) = ZERO
  160. 10 CONTINUE
  161. ELSE
  162. DO 20 I = 1,N
  163. Y(I) = BETA*Y(I)
  164. 20 CONTINUE
  165. END IF
  166. ELSE
  167. IY = KY
  168. IF (BETA.EQ.ZERO) THEN
  169. DO 30 I = 1,N
  170. Y(IY) = ZERO
  171. IY = IY + INCY
  172. 30 CONTINUE
  173. ELSE
  174. DO 40 I = 1,N
  175. Y(IY) = BETA*Y(IY)
  176. IY = IY + INCY
  177. 40 CONTINUE
  178. END IF
  179. END IF
  180. END IF
  181. IF (ALPHA.EQ.ZERO) RETURN
  182. KK = 1
  183. IF (LSAME(UPLO,'U')) THEN
  184. *
  185. * Form y when AP contains the upper triangle.
  186. *
  187. IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  188. DO 60 J = 1,N
  189. TEMP1 = ALPHA*X(J)
  190. TEMP2 = ZERO
  191. K = KK
  192. DO 50 I = 1,J - 1
  193. Y(I) = Y(I) + TEMP1*AP(K)
  194. TEMP2 = TEMP2 + AP(K)*X(I)
  195. K = K + 1
  196. 50 CONTINUE
  197. Y(J) = Y(J) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2
  198. KK = KK + J
  199. 60 CONTINUE
  200. ELSE
  201. JX = KX
  202. JY = KY
  203. DO 80 J = 1,N
  204. TEMP1 = ALPHA*X(JX)
  205. TEMP2 = ZERO
  206. IX = KX
  207. IY = KY
  208. DO 70 K = KK,KK + J - 2
  209. Y(IY) = Y(IY) + TEMP1*AP(K)
  210. TEMP2 = TEMP2 + AP(K)*X(IX)
  211. IX = IX + INCX
  212. IY = IY + INCY
  213. 70 CONTINUE
  214. Y(JY) = Y(JY) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2
  215. JX = JX + INCX
  216. JY = JY + INCY
  217. KK = KK + J
  218. 80 CONTINUE
  219. END IF
  220. ELSE
  221. *
  222. * Form y when AP contains the lower triangle.
  223. *
  224. IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  225. DO 100 J = 1,N
  226. TEMP1 = ALPHA*X(J)
  227. TEMP2 = ZERO
  228. Y(J) = Y(J) + TEMP1*AP(KK)
  229. K = KK + 1
  230. DO 90 I = J + 1,N
  231. Y(I) = Y(I) + TEMP1*AP(K)
  232. TEMP2 = TEMP2 + AP(K)*X(I)
  233. K = K + 1
  234. 90 CONTINUE
  235. Y(J) = Y(J) + ALPHA*TEMP2
  236. KK = KK + (N-J+1)
  237. 100 CONTINUE
  238. ELSE
  239. JX = KX
  240. JY = KY
  241. DO 120 J = 1,N
  242. TEMP1 = ALPHA*X(JX)
  243. TEMP2 = ZERO
  244. Y(JY) = Y(JY) + TEMP1*AP(KK)
  245. IX = JX
  246. IY = JY
  247. DO 110 K = KK + 1,KK + N - J
  248. IX = IX + INCX
  249. IY = IY + INCY
  250. Y(IY) = Y(IY) + TEMP1*AP(K)
  251. TEMP2 = TEMP2 + AP(K)*X(IX)
  252. 110 CONTINUE
  253. Y(JY) = Y(JY) + ALPHA*TEMP2
  254. JX = JX + INCX
  255. JY = JY + INCY
  256. KK = KK + (N-J+1)
  257. 120 CONTINUE
  258. END IF
  259. END IF
  260. *
  261. RETURN
  262. *
  263. * End of DSPMV .
  264. *
  265. END