|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
// using namespace Eigen;
namespace Eigen { namespace internal { template<typename T> T negate(const T& x) { return -x; } } }
// NOTE: we disbale inlining for this function to workaround a GCC issue when using -O3 and the i387 FPU.
template<typename Scalar> EIGEN_DONT_INLINE bool isApproxAbs(const Scalar& a, const Scalar& b, const typename NumTraits<Scalar>::Real& refvalue) { return internal::isMuchSmallerThan(a-b, refvalue); }
template<typename Scalar> bool areApproxAbs(const Scalar* a, const Scalar* b, int size, const typename NumTraits<Scalar>::Real& refvalue) { for (int i=0; i<size; ++i) { if (!isApproxAbs(a[i],b[i],refvalue)) { std::cout << "ref: [" << Map<const Matrix<Scalar,1,Dynamic> >(a,size) << "]" << " != vec: [" << Map<const Matrix<Scalar,1,Dynamic> >(b,size) << "]\n"; return false; } } return true; }
template<typename Scalar> bool areApprox(const Scalar* a, const Scalar* b, int size) { for (int i=0; i<size; ++i) { if (a[i]!=b[i] && !internal::isApprox(a[i],b[i])) { std::cout << "ref: [" << Map<const Matrix<Scalar,1,Dynamic> >(a,size) << "]" << " != vec: [" << Map<const Matrix<Scalar,1,Dynamic> >(b,size) << "]\n"; return false; } } return true; }
#define CHECK_CWISE1(REFOP, POP) { \
for (int i=0; i<PacketSize; ++i) \ ref[i] = REFOP(data1[i]); \ internal::pstore(data2, POP(internal::pload<Packet>(data1))); \ VERIFY(areApprox(ref, data2, PacketSize) && #POP); \ }
template<bool Cond,typename Packet> struct packet_helper { template<typename T> inline Packet load(const T* from) const { return internal::pload<Packet>(from); }
template<typename T> inline void store(T* to, const Packet& x) const { internal::pstore(to,x); } };
template<typename Packet> struct packet_helper<false,Packet> { template<typename T> inline T load(const T* from) const { return *from; }
template<typename T> inline void store(T* to, const T& x) const { *to = x; } };
#define CHECK_CWISE1_IF(COND, REFOP, POP) if(COND) { \
packet_helper<COND,Packet> h; \ for (int i=0; i<PacketSize; ++i) \ ref[i] = REFOP(data1[i]); \ h.store(data2, POP(h.load(data1))); \ VERIFY(areApprox(ref, data2, PacketSize) && #POP); \ }
#define CHECK_CWISE2_IF(COND, REFOP, POP) if(COND) { \
packet_helper<COND,Packet> h; \ for (int i=0; i<PacketSize; ++i) \ ref[i] = REFOP(data1[i], data1[i+PacketSize]); \ h.store(data2, POP(h.load(data1),h.load(data1+PacketSize))); \ VERIFY(areApprox(ref, data2, PacketSize) && #POP); \ }
#define REF_ADD(a,b) ((a)+(b))
#define REF_SUB(a,b) ((a)-(b))
#define REF_MUL(a,b) ((a)*(b))
#define REF_DIV(a,b) ((a)/(b))
template<typename Scalar> void packetmath() { using std::abs; typedef internal::packet_traits<Scalar> PacketTraits; typedef typename PacketTraits::type Packet; const int PacketSize = PacketTraits::size; typedef typename NumTraits<Scalar>::Real RealScalar;
const int max_size = PacketSize > 4 ? PacketSize : 4; const int size = PacketSize*max_size; EIGEN_ALIGN_MAX Scalar data1[size]; EIGEN_ALIGN_MAX Scalar data2[size]; EIGEN_ALIGN_MAX Packet packets[PacketSize*2]; EIGEN_ALIGN_MAX Scalar ref[size]; RealScalar refvalue = 0; for (int i=0; i<size; ++i) { data1[i] = internal::random<Scalar>()/RealScalar(PacketSize); data2[i] = internal::random<Scalar>()/RealScalar(PacketSize); refvalue = (std::max)(refvalue,abs(data1[i])); }
internal::pstore(data2, internal::pload<Packet>(data1)); VERIFY(areApprox(data1, data2, PacketSize) && "aligned load/store");
for (int offset=0; offset<PacketSize; ++offset) { internal::pstore(data2, internal::ploadu<Packet>(data1+offset)); VERIFY(areApprox(data1+offset, data2, PacketSize) && "internal::ploadu"); }
for (int offset=0; offset<PacketSize; ++offset) { internal::pstoreu(data2+offset, internal::pload<Packet>(data1)); VERIFY(areApprox(data1, data2+offset, PacketSize) && "internal::pstoreu"); }
for (int offset=0; offset<PacketSize; ++offset) { packets[0] = internal::pload<Packet>(data1); packets[1] = internal::pload<Packet>(data1+PacketSize); if (offset==0) internal::palign<0>(packets[0], packets[1]); else if (offset==1) internal::palign<1>(packets[0], packets[1]); else if (offset==2) internal::palign<2>(packets[0], packets[1]); else if (offset==3) internal::palign<3>(packets[0], packets[1]); else if (offset==4) internal::palign<4>(packets[0], packets[1]); else if (offset==5) internal::palign<5>(packets[0], packets[1]); else if (offset==6) internal::palign<6>(packets[0], packets[1]); else if (offset==7) internal::palign<7>(packets[0], packets[1]); internal::pstore(data2, packets[0]);
for (int i=0; i<PacketSize; ++i) ref[i] = data1[i+offset];
VERIFY(areApprox(ref, data2, PacketSize) && "internal::palign"); }
VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasAdd); VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasSub); VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMul); VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasNegate); VERIFY((internal::is_same<Scalar,int>::value) || (!PacketTraits::Vectorizable) || PacketTraits::HasDiv);
CHECK_CWISE2_IF(PacketTraits::HasAdd, REF_ADD, internal::padd); CHECK_CWISE2_IF(PacketTraits::HasSub, REF_SUB, internal::psub); CHECK_CWISE2_IF(PacketTraits::HasMul, REF_MUL, internal::pmul); CHECK_CWISE2_IF(PacketTraits::HasDiv, REF_DIV, internal::pdiv);
CHECK_CWISE1(internal::negate, internal::pnegate); CHECK_CWISE1(numext::conj, internal::pconj);
for(int offset=0;offset<3;++offset) { for (int i=0; i<PacketSize; ++i) ref[i] = data1[offset]; internal::pstore(data2, internal::pset1<Packet>(data1[offset])); VERIFY(areApprox(ref, data2, PacketSize) && "internal::pset1"); } { for (int i=0; i<PacketSize*4; ++i) ref[i] = data1[i/PacketSize]; Packet A0, A1, A2, A3; internal::pbroadcast4<Packet>(data1, A0, A1, A2, A3); internal::pstore(data2+0*PacketSize, A0); internal::pstore(data2+1*PacketSize, A1); internal::pstore(data2+2*PacketSize, A2); internal::pstore(data2+3*PacketSize, A3); VERIFY(areApprox(ref, data2, 4*PacketSize) && "internal::pbroadcast4"); } { for (int i=0; i<PacketSize*2; ++i) ref[i] = data1[i/PacketSize]; Packet A0, A1; internal::pbroadcast2<Packet>(data1, A0, A1); internal::pstore(data2+0*PacketSize, A0); internal::pstore(data2+1*PacketSize, A1); VERIFY(areApprox(ref, data2, 2*PacketSize) && "internal::pbroadcast2"); } VERIFY(internal::isApprox(data1[0], internal::pfirst(internal::pload<Packet>(data1))) && "internal::pfirst"); if(PacketSize>1) { for(int offset=0;offset<4;++offset) { for(int i=0;i<PacketSize/2;++i) ref[2*i+0] = ref[2*i+1] = data1[offset+i]; internal::pstore(data2,internal::ploaddup<Packet>(data1+offset)); VERIFY(areApprox(ref, data2, PacketSize) && "ploaddup"); } } if(PacketSize>2) { for(int offset=0;offset<4;++offset) { for(int i=0;i<PacketSize/4;++i) ref[4*i+0] = ref[4*i+1] = ref[4*i+2] = ref[4*i+3] = data1[offset+i]; internal::pstore(data2,internal::ploadquad<Packet>(data1+offset)); VERIFY(areApprox(ref, data2, PacketSize) && "ploadquad"); } }
ref[0] = 0; for (int i=0; i<PacketSize; ++i) ref[0] += data1[i]; VERIFY(isApproxAbs(ref[0], internal::predux(internal::pload<Packet>(data1)), refvalue) && "internal::predux"); { for (int i=0; i<4; ++i) ref[i] = 0; for (int i=0; i<PacketSize; ++i) ref[i%4] += data1[i]; internal::pstore(data2, internal::predux4(internal::pload<Packet>(data1))); VERIFY(areApprox(ref, data2, PacketSize>4?PacketSize/2:PacketSize) && "internal::predux4"); }
ref[0] = 1; for (int i=0; i<PacketSize; ++i) ref[0] *= data1[i]; VERIFY(internal::isApprox(ref[0], internal::predux_mul(internal::pload<Packet>(data1))) && "internal::predux_mul");
for (int j=0; j<PacketSize; ++j) { ref[j] = 0; for (int i=0; i<PacketSize; ++i) ref[j] += data1[i+j*PacketSize]; packets[j] = internal::pload<Packet>(data1+j*PacketSize); } internal::pstore(data2, internal::preduxp(packets)); VERIFY(areApproxAbs(ref, data2, PacketSize, refvalue) && "internal::preduxp");
for (int i=0; i<PacketSize; ++i) ref[i] = data1[PacketSize-i-1]; internal::pstore(data2, internal::preverse(internal::pload<Packet>(data1))); VERIFY(areApprox(ref, data2, PacketSize) && "internal::preverse");
internal::PacketBlock<Packet> kernel; for (int i=0; i<PacketSize; ++i) { kernel.packet[i] = internal::pload<Packet>(data1+i*PacketSize); } ptranspose(kernel); for (int i=0; i<PacketSize; ++i) { internal::pstore(data2, kernel.packet[i]); for (int j = 0; j < PacketSize; ++j) { VERIFY(isApproxAbs(data2[j], data1[i+j*PacketSize], refvalue) && "ptranspose"); } }
if (PacketTraits::HasBlend) { Packet thenPacket = internal::pload<Packet>(data1); Packet elsePacket = internal::pload<Packet>(data2); EIGEN_ALIGN_MAX internal::Selector<PacketSize> selector; for (int i = 0; i < PacketSize; ++i) { selector.select[i] = i; }
Packet blend = internal::pblend(selector, thenPacket, elsePacket); EIGEN_ALIGN_MAX Scalar result[size]; internal::pstore(result, blend); for (int i = 0; i < PacketSize; ++i) { VERIFY(isApproxAbs(result[i], (selector.select[i] ? data1[i] : data2[i]), refvalue)); } } }
template<typename Scalar> void packetmath_real() { using std::abs; typedef internal::packet_traits<Scalar> PacketTraits; typedef typename PacketTraits::type Packet; const int PacketSize = PacketTraits::size;
const int size = PacketSize*4; EIGEN_ALIGN_MAX Scalar data1[PacketTraits::size*4]; EIGEN_ALIGN_MAX Scalar data2[PacketTraits::size*4]; EIGEN_ALIGN_MAX Scalar ref[PacketTraits::size*4];
for (int i=0; i<size; ++i) { data1[i] = internal::random<Scalar>(-1,1) * std::pow(Scalar(10), internal::random<Scalar>(-3,3)); data2[i] = internal::random<Scalar>(-1,1) * std::pow(Scalar(10), internal::random<Scalar>(-3,3)); } CHECK_CWISE1_IF(PacketTraits::HasSin, std::sin, internal::psin); CHECK_CWISE1_IF(PacketTraits::HasCos, std::cos, internal::pcos); CHECK_CWISE1_IF(PacketTraits::HasTan, std::tan, internal::ptan);
CHECK_CWISE1_IF(PacketTraits::HasRound, numext::round, internal::pround); CHECK_CWISE1_IF(PacketTraits::HasCeil, numext::ceil, internal::pceil); CHECK_CWISE1_IF(PacketTraits::HasFloor, numext::floor, internal::pfloor); for (int i=0; i<size; ++i) { data1[i] = internal::random<Scalar>(-1,1); data2[i] = internal::random<Scalar>(-1,1); } CHECK_CWISE1_IF(PacketTraits::HasASin, std::asin, internal::pasin); CHECK_CWISE1_IF(PacketTraits::HasACos, std::acos, internal::pacos);
for (int i=0; i<size; ++i) { data1[i] = internal::random<Scalar>(-87,88); data2[i] = internal::random<Scalar>(-87,88); } CHECK_CWISE1_IF(PacketTraits::HasExp, std::exp, internal::pexp); if(PacketTraits::HasExp && PacketTraits::size>=2) { data1[0] = std::numeric_limits<Scalar>::quiet_NaN(); data1[1] = std::numeric_limits<Scalar>::epsilon(); packet_helper<PacketTraits::HasExp,Packet> h; h.store(data2, internal::pexp(h.load(data1))); VERIFY((numext::isnan)(data2[0])); VERIFY_IS_EQUAL(std::exp(std::numeric_limits<Scalar>::epsilon()), data2[1]);
data1[0] = -std::numeric_limits<Scalar>::epsilon(); data1[1] = 0; h.store(data2, internal::pexp(h.load(data1))); VERIFY_IS_EQUAL(std::exp(-std::numeric_limits<Scalar>::epsilon()), data2[0]); VERIFY_IS_EQUAL(std::exp(Scalar(0)), data2[1]);
data1[0] = (std::numeric_limits<Scalar>::min)(); data1[1] = -(std::numeric_limits<Scalar>::min)(); h.store(data2, internal::pexp(h.load(data1))); VERIFY_IS_EQUAL(std::exp((std::numeric_limits<Scalar>::min)()), data2[0]); VERIFY_IS_EQUAL(std::exp(-(std::numeric_limits<Scalar>::min)()), data2[1]);
data1[0] = std::numeric_limits<Scalar>::denorm_min(); data1[1] = -std::numeric_limits<Scalar>::denorm_min(); h.store(data2, internal::pexp(h.load(data1))); VERIFY_IS_EQUAL(std::exp(std::numeric_limits<Scalar>::denorm_min()), data2[0]); VERIFY_IS_EQUAL(std::exp(-std::numeric_limits<Scalar>::denorm_min()), data2[1]); }
#ifdef EIGEN_HAS_C99_MATH
{ data1[0] = std::numeric_limits<Scalar>::quiet_NaN(); packet_helper<internal::packet_traits<Scalar>::HasLGamma,Packet> h; h.store(data2, internal::plgamma(h.load(data1))); VERIFY((numext::isnan)(data2[0])); } { data1[0] = std::numeric_limits<Scalar>::quiet_NaN(); packet_helper<internal::packet_traits<Scalar>::HasErf,Packet> h; h.store(data2, internal::perf(h.load(data1))); VERIFY((numext::isnan)(data2[0])); } { data1[0] = std::numeric_limits<Scalar>::quiet_NaN(); packet_helper<internal::packet_traits<Scalar>::HasErfc,Packet> h; h.store(data2, internal::perfc(h.load(data1))); VERIFY((numext::isnan)(data2[0])); } #endif // EIGEN_HAS_C99_MATH
for (int i=0; i<size; ++i) { data1[i] = internal::random<Scalar>(0,1) * std::pow(Scalar(10), internal::random<Scalar>(-6,6)); data2[i] = internal::random<Scalar>(0,1) * std::pow(Scalar(10), internal::random<Scalar>(-6,6)); }
if(internal::random<float>(0,1)<0.1) data1[internal::random<int>(0, PacketSize)] = 0; CHECK_CWISE1_IF(PacketTraits::HasSqrt, std::sqrt, internal::psqrt); CHECK_CWISE1_IF(PacketTraits::HasLog, std::log, internal::plog); #if defined(EIGEN_HAS_C99_MATH) && (__cplusplus > 199711L)
CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasLGamma, std::lgamma, internal::plgamma); CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasErf, std::erf, internal::perf); CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasErfc, std::erfc, internal::perfc); #endif
if(PacketTraits::HasLog && PacketTraits::size>=2) { data1[0] = std::numeric_limits<Scalar>::quiet_NaN(); data1[1] = std::numeric_limits<Scalar>::epsilon(); packet_helper<PacketTraits::HasLog,Packet> h; h.store(data2, internal::plog(h.load(data1))); VERIFY((numext::isnan)(data2[0])); VERIFY_IS_EQUAL(std::log(std::numeric_limits<Scalar>::epsilon()), data2[1]);
data1[0] = -std::numeric_limits<Scalar>::epsilon(); data1[1] = 0; h.store(data2, internal::plog(h.load(data1))); VERIFY((numext::isnan)(data2[0])); VERIFY_IS_EQUAL(std::log(Scalar(0)), data2[1]);
data1[0] = (std::numeric_limits<Scalar>::min)(); data1[1] = -(std::numeric_limits<Scalar>::min)(); h.store(data2, internal::plog(h.load(data1))); VERIFY_IS_EQUAL(std::log((std::numeric_limits<Scalar>::min)()), data2[0]); VERIFY((numext::isnan)(data2[1]));
data1[0] = std::numeric_limits<Scalar>::denorm_min(); data1[1] = -std::numeric_limits<Scalar>::denorm_min(); h.store(data2, internal::plog(h.load(data1))); // VERIFY_IS_EQUAL(std::log(std::numeric_limits<Scalar>::denorm_min()), data2[0]);
VERIFY((numext::isnan)(data2[1]));
data1[0] = -1.0f; h.store(data2, internal::plog(h.load(data1))); VERIFY((numext::isnan)(data2[0])); #if !EIGEN_FAST_MATH
h.store(data2, internal::psqrt(h.load(data1))); VERIFY((numext::isnan)(data2[0])); VERIFY((numext::isnan)(data2[1])); #endif
} }
template<typename Scalar> void packetmath_notcomplex() { using std::abs; typedef internal::packet_traits<Scalar> PacketTraits; typedef typename PacketTraits::type Packet; const int PacketSize = PacketTraits::size;
EIGEN_ALIGN_MAX Scalar data1[PacketTraits::size*4]; EIGEN_ALIGN_MAX Scalar data2[PacketTraits::size*4]; EIGEN_ALIGN_MAX Scalar ref[PacketTraits::size*4]; Array<Scalar,Dynamic,1>::Map(data1, PacketTraits::size*4).setRandom();
ref[0] = data1[0]; for (int i=0; i<PacketSize; ++i) ref[0] = (std::min)(ref[0],data1[i]); VERIFY(internal::isApprox(ref[0], internal::predux_min(internal::pload<Packet>(data1))) && "internal::predux_min");
VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMin); VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMax);
CHECK_CWISE2_IF(PacketTraits::HasMin, (std::min), internal::pmin); CHECK_CWISE2_IF(PacketTraits::HasMax, (std::max), internal::pmax); CHECK_CWISE1(abs, internal::pabs);
ref[0] = data1[0]; for (int i=0; i<PacketSize; ++i) ref[0] = (std::max)(ref[0],data1[i]); VERIFY(internal::isApprox(ref[0], internal::predux_max(internal::pload<Packet>(data1))) && "internal::predux_max"); for (int i=0; i<PacketSize; ++i) ref[i] = data1[0]+Scalar(i); internal::pstore(data2, internal::plset<Packet>(data1[0])); VERIFY(areApprox(ref, data2, PacketSize) && "internal::plset"); }
template<typename Scalar,bool ConjLhs,bool ConjRhs> void test_conj_helper(Scalar* data1, Scalar* data2, Scalar* ref, Scalar* pval) { typedef internal::packet_traits<Scalar> PacketTraits; typedef typename PacketTraits::type Packet; const int PacketSize = PacketTraits::size; internal::conj_if<ConjLhs> cj0; internal::conj_if<ConjRhs> cj1; internal::conj_helper<Scalar,Scalar,ConjLhs,ConjRhs> cj; internal::conj_helper<Packet,Packet,ConjLhs,ConjRhs> pcj; for(int i=0;i<PacketSize;++i) { ref[i] = cj0(data1[i]) * cj1(data2[i]); VERIFY(internal::isApprox(ref[i], cj.pmul(data1[i],data2[i])) && "conj_helper pmul"); } internal::pstore(pval,pcj.pmul(internal::pload<Packet>(data1),internal::pload<Packet>(data2))); VERIFY(areApprox(ref, pval, PacketSize) && "conj_helper pmul"); for(int i=0;i<PacketSize;++i) { Scalar tmp = ref[i]; ref[i] += cj0(data1[i]) * cj1(data2[i]); VERIFY(internal::isApprox(ref[i], cj.pmadd(data1[i],data2[i],tmp)) && "conj_helper pmadd"); } internal::pstore(pval,pcj.pmadd(internal::pload<Packet>(data1),internal::pload<Packet>(data2),internal::pload<Packet>(pval))); VERIFY(areApprox(ref, pval, PacketSize) && "conj_helper pmadd"); }
template<typename Scalar> void packetmath_complex() { typedef internal::packet_traits<Scalar> PacketTraits; typedef typename PacketTraits::type Packet; const int PacketSize = PacketTraits::size;
const int size = PacketSize*4; EIGEN_ALIGN_MAX Scalar data1[PacketSize*4]; EIGEN_ALIGN_MAX Scalar data2[PacketSize*4]; EIGEN_ALIGN_MAX Scalar ref[PacketSize*4]; EIGEN_ALIGN_MAX Scalar pval[PacketSize*4];
for (int i=0; i<size; ++i) { data1[i] = internal::random<Scalar>() * Scalar(1e2); data2[i] = internal::random<Scalar>() * Scalar(1e2); } test_conj_helper<Scalar,false,false> (data1,data2,ref,pval); test_conj_helper<Scalar,false,true> (data1,data2,ref,pval); test_conj_helper<Scalar,true,false> (data1,data2,ref,pval); test_conj_helper<Scalar,true,true> (data1,data2,ref,pval); { for(int i=0;i<PacketSize;++i) ref[i] = Scalar(std::imag(data1[i]),std::real(data1[i])); internal::pstore(pval,internal::pcplxflip(internal::pload<Packet>(data1))); VERIFY(areApprox(ref, pval, PacketSize) && "pcplxflip"); } }
template<typename Scalar> void packetmath_scatter_gather() { typedef internal::packet_traits<Scalar> PacketTraits; typedef typename PacketTraits::type Packet; typedef typename NumTraits<Scalar>::Real RealScalar; const int PacketSize = PacketTraits::size; EIGEN_ALIGN_MAX Scalar data1[PacketSize]; RealScalar refvalue = 0; for (int i=0; i<PacketSize; ++i) { data1[i] = internal::random<Scalar>()/RealScalar(PacketSize); } int stride = internal::random<int>(1,20); EIGEN_ALIGN_MAX Scalar buffer[PacketSize*20]; memset(buffer, 0, 20*sizeof(Packet)); Packet packet = internal::pload<Packet>(data1); internal::pscatter<Scalar, Packet>(buffer, packet, stride);
for (int i = 0; i < PacketSize*20; ++i) { if ((i%stride) == 0 && i<stride*PacketSize) { VERIFY(isApproxAbs(buffer[i], data1[i/stride], refvalue) && "pscatter"); } else { VERIFY(isApproxAbs(buffer[i], Scalar(0), refvalue) && "pscatter"); } }
for (int i=0; i<PacketSize*7; ++i) { buffer[i] = internal::random<Scalar>()/RealScalar(PacketSize); } packet = internal::pgather<Scalar, Packet>(buffer, 7); internal::pstore(data1, packet); for (int i = 0; i < PacketSize; ++i) { VERIFY(isApproxAbs(data1[i], buffer[i*7], refvalue) && "pgather"); } }
void test_packetmath() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( packetmath<float>() ); CALL_SUBTEST_2( packetmath<double>() ); CALL_SUBTEST_3( packetmath<int>() ); CALL_SUBTEST_4( packetmath<std::complex<float> >() ); CALL_SUBTEST_5( packetmath<std::complex<double> >() );
CALL_SUBTEST_1( packetmath_notcomplex<float>() ); CALL_SUBTEST_2( packetmath_notcomplex<double>() ); CALL_SUBTEST_3( packetmath_notcomplex<int>() ); CALL_SUBTEST_1( packetmath_real<float>() ); CALL_SUBTEST_2( packetmath_real<double>() );
CALL_SUBTEST_4( packetmath_complex<std::complex<float> >() ); CALL_SUBTEST_5( packetmath_complex<std::complex<double> >() );
CALL_SUBTEST_1( packetmath_scatter_gather<float>() ); CALL_SUBTEST_2( packetmath_scatter_gather<double>() ); CALL_SUBTEST_3( packetmath_scatter_gather<int>() ); CALL_SUBTEST_4( packetmath_scatter_gather<std::complex<float> >() ); CALL_SUBTEST_5( packetmath_scatter_gather<std::complex<double> >() ); } }
|