|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Ilya Baran <ibaran@mit.edu>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/StdVector>
#include <Eigen/Geometry>
#include <unsupported/Eigen/BVH>
namespace Eigen {
template<typename Scalar, int Dim> AlignedBox<Scalar, Dim> bounding_box(const Matrix<Scalar, Dim, 1> &v) { return AlignedBox<Scalar, Dim>(v); }
}
template<int Dim> struct Ball { EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(double, Dim)
typedef Matrix<double, Dim, 1> VectorType;
Ball() {} Ball(const VectorType &c, double r) : center(c), radius(r) {}
VectorType center; double radius; }; template<int Dim> AlignedBox<double, Dim> bounding_box(const Ball<Dim> &b) { return AlignedBox<double, Dim>(b.center.array() - b.radius, b.center.array() + b.radius); }
inline double SQR(double x) { return x * x; }
template<int Dim> struct BallPointStuff //this class provides functions to be both an intersector and a minimizer, both for a ball and a point and for two trees
{ typedef double Scalar; typedef Matrix<double, Dim, 1> VectorType; typedef Ball<Dim> BallType; typedef AlignedBox<double, Dim> BoxType;
BallPointStuff() : calls(0), count(0) {} BallPointStuff(const VectorType &inP) : p(inP), calls(0), count(0) {}
bool intersectVolume(const BoxType &r) { ++calls; return r.contains(p); } bool intersectObject(const BallType &b) { ++calls; if((b.center - p).squaredNorm() < SQR(b.radius)) ++count; return false; //continue
}
bool intersectVolumeVolume(const BoxType &r1, const BoxType &r2) { ++calls; return !(r1.intersection(r2)).isNull(); } bool intersectVolumeObject(const BoxType &r, const BallType &b) { ++calls; return r.squaredExteriorDistance(b.center) < SQR(b.radius); } bool intersectObjectVolume(const BallType &b, const BoxType &r) { ++calls; return r.squaredExteriorDistance(b.center) < SQR(b.radius); } bool intersectObjectObject(const BallType &b1, const BallType &b2){ ++calls; if((b1.center - b2.center).norm() < b1.radius + b2.radius) ++count; return false; } bool intersectVolumeObject(const BoxType &r, const VectorType &v) { ++calls; return r.contains(v); } bool intersectObjectObject(const BallType &b, const VectorType &v){ ++calls; if((b.center - v).squaredNorm() < SQR(b.radius)) ++count; return false; }
double minimumOnVolume(const BoxType &r) { ++calls; return r.squaredExteriorDistance(p); } double minimumOnObject(const BallType &b) { ++calls; return (std::max)(0., (b.center - p).squaredNorm() - SQR(b.radius)); } double minimumOnVolumeVolume(const BoxType &r1, const BoxType &r2) { ++calls; return r1.squaredExteriorDistance(r2); } double minimumOnVolumeObject(const BoxType &r, const BallType &b) { ++calls; return SQR((std::max)(0., r.exteriorDistance(b.center) - b.radius)); } double minimumOnObjectVolume(const BallType &b, const BoxType &r) { ++calls; return SQR((std::max)(0., r.exteriorDistance(b.center) - b.radius)); } double minimumOnObjectObject(const BallType &b1, const BallType &b2){ ++calls; return SQR((std::max)(0., (b1.center - b2.center).norm() - b1.radius - b2.radius)); } double minimumOnVolumeObject(const BoxType &r, const VectorType &v) { ++calls; return r.squaredExteriorDistance(v); } double minimumOnObjectObject(const BallType &b, const VectorType &v){ ++calls; return SQR((std::max)(0., (b.center - v).norm() - b.radius)); }
VectorType p; int calls; int count; };
template<int Dim> struct TreeTest { typedef Matrix<double, Dim, 1> VectorType; typedef std::vector<VectorType, aligned_allocator<VectorType> > VectorTypeList; typedef Ball<Dim> BallType; typedef std::vector<BallType, aligned_allocator<BallType> > BallTypeList; typedef AlignedBox<double, Dim> BoxType;
void testIntersect1() { BallTypeList b; for(int i = 0; i < 500; ++i) { b.push_back(BallType(VectorType::Random(), 0.5 * internal::random(0., 1.))); } KdBVH<double, Dim, BallType> tree(b.begin(), b.end());
VectorType pt = VectorType::Random(); BallPointStuff<Dim> i1(pt), i2(pt);
for(int i = 0; i < (int)b.size(); ++i) i1.intersectObject(b[i]);
BVIntersect(tree, i2);
VERIFY(i1.count == i2.count); }
void testMinimize1() { BallTypeList b; for(int i = 0; i < 500; ++i) { b.push_back(BallType(VectorType::Random(), 0.01 * internal::random(0., 1.))); } KdBVH<double, Dim, BallType> tree(b.begin(), b.end());
VectorType pt = VectorType::Random(); BallPointStuff<Dim> i1(pt), i2(pt);
double m1 = (std::numeric_limits<double>::max)(), m2 = m1;
for(int i = 0; i < (int)b.size(); ++i) m1 = (std::min)(m1, i1.minimumOnObject(b[i]));
m2 = BVMinimize(tree, i2);
VERIFY_IS_APPROX(m1, m2); }
void testIntersect2() { BallTypeList b; VectorTypeList v;
for(int i = 0; i < 50; ++i) { b.push_back(BallType(VectorType::Random(), 0.5 * internal::random(0., 1.))); for(int j = 0; j < 3; ++j) v.push_back(VectorType::Random()); }
KdBVH<double, Dim, BallType> tree(b.begin(), b.end()); KdBVH<double, Dim, VectorType> vTree(v.begin(), v.end());
BallPointStuff<Dim> i1, i2;
for(int i = 0; i < (int)b.size(); ++i) for(int j = 0; j < (int)v.size(); ++j) i1.intersectObjectObject(b[i], v[j]);
BVIntersect(tree, vTree, i2);
VERIFY(i1.count == i2.count); }
void testMinimize2() { BallTypeList b; VectorTypeList v;
for(int i = 0; i < 50; ++i) { b.push_back(BallType(VectorType::Random(), 1e-7 + 1e-6 * internal::random(0., 1.))); for(int j = 0; j < 3; ++j) v.push_back(VectorType::Random()); }
KdBVH<double, Dim, BallType> tree(b.begin(), b.end()); KdBVH<double, Dim, VectorType> vTree(v.begin(), v.end());
BallPointStuff<Dim> i1, i2;
double m1 = (std::numeric_limits<double>::max)(), m2 = m1;
for(int i = 0; i < (int)b.size(); ++i) for(int j = 0; j < (int)v.size(); ++j) m1 = (std::min)(m1, i1.minimumOnObjectObject(b[i], v[j]));
m2 = BVMinimize(tree, vTree, i2);
VERIFY_IS_APPROX(m1, m2); } };
void test_BVH() { for(int i = 0; i < g_repeat; i++) { #ifdef EIGEN_TEST_PART_1
TreeTest<2> test2; CALL_SUBTEST(test2.testIntersect1()); CALL_SUBTEST(test2.testMinimize1()); CALL_SUBTEST(test2.testIntersect2()); CALL_SUBTEST(test2.testMinimize2()); #endif
#ifdef EIGEN_TEST_PART_2
TreeTest<3> test3; CALL_SUBTEST(test3.testIntersect1()); CALL_SUBTEST(test3.testMinimize1()); CALL_SUBTEST(test3.testIntersect2()); CALL_SUBTEST(test3.testMinimize2()); #endif
#ifdef EIGEN_TEST_PART_3
TreeTest<4> test4; CALL_SUBTEST(test4.testIntersect1()); CALL_SUBTEST(test4.testMinimize1()); CALL_SUBTEST(test4.testIntersect2()); CALL_SUBTEST(test4.testMinimize2()); #endif
} }
|