|
|
/* /////////////////////////////////////////////////////////////////////////
* File: stlsoft/containers/fixed_array.hpp * * Purpose: Contains the fixed_array_1d, fixed_array_2d, fixed_array_3d, * fixed_array_4d template classes. * * Created: 4th August 1998 * Updated: 10th August 2009 * * Thanks to: Neal Becker for suggesting the uninitialised mode, * requesting the function call operator, and for requesting * the with-allocator constructor overloads. * * Thorsten Ottosen for suggesting swap() and mutating data(), * and for providing suggested implementations. * * Home: http://stlsoft.org/
* * Copyright (c) 1998-2009, Matthew Wilson and Synesis Software * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - Neither the name(s) of Matthew Wilson and Synesis Software nor the * names of any contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * ////////////////////////////////////////////////////////////////////// */
/** \file stlsoft/containers/fixed_array.hpp
* * \brief [C++ only] Definition of the stlsoft::fixed_array_1d, * stlsoft::fixed_array_2d, stlsoft::fixed_array_3d, and * stlsoft::fixed_array_4d multidimensional array class templates * (\ref group__library__containers "Containers" Library). */
#ifndef STLSOFT_INCL_STLSOFT_CONTAINERS_HPP_FIXED_ARRAY
#define STLSOFT_INCL_STLSOFT_CONTAINERS_HPP_FIXED_ARRAY
#ifndef STLSOFT_DOCUMENTATION_SKIP_SECTION
# define STLSOFT_VER_STLSOFT_CONTAINERS_HPP_FIXED_ARRAY_MAJOR 4
# define STLSOFT_VER_STLSOFT_CONTAINERS_HPP_FIXED_ARRAY_MINOR 9
# define STLSOFT_VER_STLSOFT_CONTAINERS_HPP_FIXED_ARRAY_REVISION 5
# define STLSOFT_VER_STLSOFT_CONTAINERS_HPP_FIXED_ARRAY_EDIT 191
#endif /* !STLSOFT_DOCUMENTATION_SKIP_SECTION */
/* /////////////////////////////////////////////////////////////////////////
* Compatibility */
/*
[Incompatibilies-start] STLSOFT_COMPILER_IS_MSVC: _MSC_VER<1200 STLSOFT_COMPILER_IS_WATCOM: [Incompatibilies-end] */
/* /////////////////////////////////////////////////////////////////////////
* Includes */
#ifndef STLSOFT_INCL_STLSOFT_H_STLSOFT
# include <stlsoft/stlsoft.h>
#endif /* !STLSOFT_INCL_STLSOFT_H_STLSOFT */
#if defined(STLSOFT_COMPILER_IS_MSVC) && \
_MSC_VER < 1200 # error stlsoft/containers/fixed_array.hpp is not compatible with Visual C++ 5.0 or earlier
#endif /* compiler */
#ifndef STLSOFT_INCL_STLSOFT_MEMORY_HPP_ALLOCATOR_SELECTOR
# include <stlsoft/memory/allocator_selector.hpp>
#endif /* !STLSOFT_INCL_STLSOFT_MEMORY_HPP_ALLOCATOR_SELECTOR */
#ifndef STLSOFT_INCL_STLSOFT_UTIL_STD_HPP_ITERATOR_HELPER
# include <stlsoft/util/std/iterator_helper.hpp>
#endif /* !STLSOFT_INCL_STLSOFT_UTIL_STD_HPP_ITERATOR_HELPER */
#ifndef STLSOFT_INCL_STLSOFT_CONTAINERS_UTIL_HPP_ARRAY_POLICIES
# include <stlsoft/containers/util/array_policies.hpp> // for stlsoft::do_construction()
#endif /* !STLSOFT_INCL_STLSOFT_CONTAINERS_UTIL_HPP_ARRAY_POLICIES */
#ifndef STLSOFT_INCL_STLSOFT_META_HPP_CAPABILITIES
# include <stlsoft/meta/capabilities.hpp>
#endif /* !STLSOFT_INCL_STLSOFT_META_HPP_CAPABILITIES */
#ifndef STLSOFT_INCL_STLSOFT_COLLECTIONS_UTIL_HPP_COLLECTIONS
# include <stlsoft/collections/util/collections.hpp>
#endif /* !STLSOFT_INCL_STLSOFT_COLLECTIONS_UTIL_HPP_COLLECTIONS */
#ifndef STLSOFT_INCL_STLSOFT_UTIL_HPP_STD_SWAP
# include <stlsoft/util/std_swap.hpp>
#endif /* !STLSOFT_INCL_STLSOFT_UTIL_HPP_STD_SWAP */
#if defined(STLSOFT_COMPILER_IS_MSVC) && \
defined(STLSOFT_CF_STD_LIBRARY_IS_STLPORT) # ifndef STLSOFT_INCL_STRING
# define STLSOFT_INCL_STRING
# include <string> // for std::string - sigh!
# endif /* !STLSOFT_INCL_STRING */
#endif /* compiler */
#ifndef STLSOFT_INCL_STDEXCEPT
# define STLSOFT_INCL_STDEXCEPT
# include <stdexcept> // for std::out_of_range
#endif /* !STLSOFT_INCL_STDEXCEPT */
/* /////////////////////////////////////////////////////////////////////////
* Namespace */
#ifndef _STLSOFT_NO_NAMESPACE
namespace stlsoft { #endif /* _STLSOFT_NO_NAMESPACE */
/* /////////////////////////////////////////////////////////////////////////
* Forward declarations */
#ifndef STLSOFT_DOCUMENTATION_SKIP_SECTION
template< ss_typename_param_k T , ss_typename_param_k A , ss_typename_param_k P , ss_bool_t R > class fixed_array_1d;
template< ss_typename_param_k T , ss_typename_param_k A , ss_typename_param_k P , ss_bool_t R > class fixed_array_2d;
template< ss_typename_param_k T , ss_typename_param_k A , ss_typename_param_k P , ss_bool_t R > class fixed_array_3d;
template< ss_typename_param_k T , ss_typename_param_k A , ss_typename_param_k P , ss_bool_t R > class fixed_array_4d;
template< ss_typename_param_k T , ss_typename_param_k A , ss_typename_param_k P , ss_bool_t R > class fixed_array_5d;
#endif /* !STLSOFT_DOCUMENTATION_SKIP_SECTION */
/* /////////////////////////////////////////////////////////////////////////
* Classes */
/** \brief 1 dimensional fixed array
* * \ingroup group__library__containers * * \param T The value type * \param A The allocator type * \param P The construction policy type */ template< ss_typename_param_k T #ifdef STLSOFT_CF_TEMPLATE_CLASS_DEFAULT_CLASS_ARGUMENT_SUPPORT
, ss_typename_param_k A = ss_typename_type_def_k allocator_selector<T>::allocator_type , ss_typename_param_k P = do_construction<T> , ss_bool_t R = true #else /* ? STLSOFT_CF_TEMPLATE_CLASS_DEFAULT_CLASS_ARGUMENT_SUPPORT */
, ss_typename_param_k A , ss_typename_param_k P , ss_typename_param_k R #endif /* STLSOFT_CF_TEMPLATE_CLASS_DEFAULT_CLASS_ARGUMENT_SUPPORT */
> // class fixed_array_1d
class fixed_array_1d : protected A , public stl_collection_tag { public: typedef fixed_array_1d<T, A, P, R> class_type; typedef T dimension_element_type; typedef /* const */ dimension_element_type const_dimension_element_type; typedef A allocator_type; typedef T value_type; typedef value_type& reference; typedef value_type const& const_reference; typedef value_type* pointer; typedef value_type const* const_pointer; typedef ss_size_t size_type; typedef ss_size_t index_type; typedef ss_ptrdiff_t difference_type; typedef ss_bool_t bool_type; typedef #if !defined(STLSOFT_COMPILER_IS_BORLAND)
ss_typename_type_k #endif /* compiler */
pointer_iterator < value_type , pointer , reference >::type iterator; typedef #if !defined(STLSOFT_COMPILER_IS_BORLAND)
ss_typename_type_k #endif /* compiler */
pointer_iterator < value_type const , const_pointer , const_reference >::type const_iterator; #if defined(STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT)
typedef reverse_iterator_base < iterator , value_type , reference , pointer , difference_type > reverse_iterator; typedef const_reverse_iterator_base < const_iterator , value_type const , const_reference , const_pointer , difference_type > const_reverse_iterator; #endif /* STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT */
// Construction
private: fixed_array_1d(T *data, index_type d0); public: ss_explicit_k fixed_array_1d(index_type d0); fixed_array_1d(index_type d0, allocator_type const& ator); fixed_array_1d(index_type d0, value_type const& t); fixed_array_1d(index_type d0, value_type const& t, allocator_type const& ator); fixed_array_1d(class_type const& rhs); ~fixed_array_1d() stlsoft_throw_0();
allocator_type get_allocator() const;
void swap(class_type& rhs) stlsoft_throw_0();
// Access
public: reference at(index_type i0); const_reference at(index_type i0) const;
reference at_unchecked(index_type i0); const_reference at_unchecked(index_type i0) const;
#ifndef STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP
reference operator ()(index_type i0); const_reference operator ()(index_type i0) const; #endif /* !STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP */
reference operator [](index_type i0); const_reference operator [](index_type i0) const;
/// Providing the evil operator, in order to support &ar[0]
// pointer operator &();
/// Providing the evil operator, in order to support &ar[0]
// const_pointer operator &() const;
reference front(); reference back(); const_reference front() const; const_reference back() const;
// State
public: index_type dimension0() const; index_type size() const; bool_type empty() const; static size_type max_size();
// Iteration
public: iterator begin(); iterator end(); const_iterator begin() const; const_iterator end() const;
#if defined(STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT)
reverse_iterator rbegin(); reverse_iterator rend(); const_reverse_iterator rbegin() const; const_reverse_iterator rend() const; #endif /* STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT */
// Access
public: pointer data(); const_pointer data() const;
// Implementation
private: pointer allocate_(size_type n); void deallocate_(pointer p, size_type n);
pointer data_(); index_type calc_index_(index_type i0) const; void range_check_(index_type i0) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) );
allocator_type& get_allocator_();
// Members
private: T* m_data; index_type m_d0;
friend class fixed_array_2d<T, A, P, true>; friend class fixed_array_2d<T, A, P, false>;
// Not to be implemented
private: class_type const& operator =(class_type const& rhs); };
/** \brief 2 dimensional fixed array
* * \ingroup group__library__containers * * \param T The value type * \param A The allocator type * \param P The construction policy type */ template< ss_typename_param_k T #ifdef STLSOFT_CF_TEMPLATE_CLASS_DEFAULT_CLASS_ARGUMENT_SUPPORT
, ss_typename_param_k A = ss_typename_type_def_k allocator_selector<T>::allocator_type , ss_typename_param_k P = do_construction<T> , ss_bool_t R = true #else /* ? STLSOFT_CF_TEMPLATE_CLASS_DEFAULT_CLASS_ARGUMENT_SUPPORT */
, ss_typename_param_k A , ss_typename_param_k P , ss_bool_t R #endif /* STLSOFT_CF_TEMPLATE_CLASS_DEFAULT_CLASS_ARGUMENT_SUPPORT */
> // class fixed_array_2d
class fixed_array_2d : protected A , public stl_collection_tag { public: typedef fixed_array_2d<T, A, P, R> class_type; typedef fixed_array_1d<T, A, P, false> dimension_element_type; typedef /* const */ dimension_element_type const_dimension_element_type; typedef A allocator_type; typedef T value_type; typedef value_type& reference; typedef value_type const& const_reference; typedef value_type* pointer; typedef value_type const* const_pointer; typedef ss_size_t size_type; typedef ss_size_t index_type; typedef ss_ptrdiff_t difference_type; typedef ss_bool_t bool_type; typedef #if !defined(STLSOFT_COMPILER_IS_BORLAND)
ss_typename_type_k #endif /* compiler */
pointer_iterator < value_type , pointer , reference >::type iterator; typedef #if !defined(STLSOFT_COMPILER_IS_BORLAND)
ss_typename_type_k #endif /* compiler */
pointer_iterator < value_type const , const_pointer , const_reference >::type const_iterator; #if defined(STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT)
typedef reverse_iterator_base < iterator , value_type , reference , pointer , difference_type > reverse_iterator; typedef const_reverse_iterator_base < const_iterator , value_type const , const_reference , const_pointer , difference_type > const_reverse_iterator; #endif /* STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT */
// Construction
private: fixed_array_2d(T *data, index_type d0, index_type d1); public: fixed_array_2d(index_type d0, index_type d1); fixed_array_2d(index_type d0, index_type d1, allocator_type const& ator); fixed_array_2d(index_type d0, index_type d1, value_type const& t); fixed_array_2d(index_type d0, index_type d1, value_type const& t, allocator_type const& ator); fixed_array_2d(class_type const& rhs); ~fixed_array_2d() stlsoft_throw_0();
allocator_type get_allocator() const;
void swap(class_type& rhs) stlsoft_throw_0();
// Access
public: reference at(index_type i0, index_type i1); const_reference at(index_type i0, index_type i1) const;
reference at_unchecked(index_type i0, index_type i1); const_reference at_unchecked(index_type i0, index_type i1) const;
#ifndef STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP
reference operator ()(index_type i0, index_type i1); const_reference operator ()(index_type i0, index_type i1) const; #endif /* !STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP */
dimension_element_type at(index_type i0); const_dimension_element_type at(index_type i0) const;
dimension_element_type at_unchecked(index_type i0); const_dimension_element_type at_unchecked(index_type i0) const;
dimension_element_type operator [](index_type i0); const_dimension_element_type operator [](index_type i0) const;
/// A reference to the first element in the array
reference front(); reference back(); const_reference front() const; const_reference back() const;
// State
public: index_type dimension0() const; index_type dimension1() const; index_type size() const; bool_type empty() const; static size_type max_size();
// Iteration
public: iterator begin(); iterator end(); const_iterator begin() const; const_iterator end() const;
#if defined(STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT)
reverse_iterator rbegin(); reverse_iterator rend(); const_reverse_iterator rbegin() const; const_reverse_iterator rend() const; #endif /* STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT */
// Access
public: pointer data(); const_pointer data() const;
// Implementation
private: pointer allocate_(size_type n); void deallocate_(pointer p, size_type n);
pointer data_(); index_type calc_index_(index_type i0, index_type i1) const; void range_check_(index_type i0, index_type i1) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) ); void range_check_(index_type i0) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) );
allocator_type& get_allocator_();
// Members
private: T* m_data; index_type m_d0; index_type m_d1; size_type m_size;
friend class fixed_array_3d<T, A, P, true>; friend class fixed_array_3d<T, A, P, false>;
// Not to be implemented
private: class_type const& operator =(class_type const& rhs); };
/** \brief 3 dimensional fixed array
* * \ingroup group__library__containers * * \param T The value type * \param A The allocator type * \param P The construction policy type */ template< ss_typename_param_k T #ifdef STLSOFT_CF_TEMPLATE_CLASS_DEFAULT_CLASS_ARGUMENT_SUPPORT
, ss_typename_param_k A = ss_typename_type_def_k allocator_selector<T>::allocator_type , ss_typename_param_k P = do_construction<T> , ss_bool_t R = true #else /* ? STLSOFT_CF_TEMPLATE_CLASS_DEFAULT_CLASS_ARGUMENT_SUPPORT */
, ss_typename_param_k A , ss_typename_param_k P , ss_bool_t R #endif /* STLSOFT_CF_TEMPLATE_CLASS_DEFAULT_CLASS_ARGUMENT_SUPPORT */
> // class fixed_array_3d
class fixed_array_3d : protected A , public stl_collection_tag { public: typedef fixed_array_3d<T, A, P, R> class_type; typedef fixed_array_2d<T, A, P, false> dimension_element_type; typedef /* const */ dimension_element_type const_dimension_element_type; typedef A allocator_type; typedef T value_type; typedef value_type& reference; typedef value_type const& const_reference; typedef value_type* pointer; typedef value_type const* const_pointer; typedef ss_size_t size_type; typedef ss_size_t index_type; typedef ss_ptrdiff_t difference_type; typedef ss_bool_t bool_type; typedef #if !defined(STLSOFT_COMPILER_IS_BORLAND)
ss_typename_type_k #endif /* compiler */
pointer_iterator < value_type , pointer , reference >::type iterator; typedef #if !defined(STLSOFT_COMPILER_IS_BORLAND)
ss_typename_type_k #endif /* compiler */
pointer_iterator < value_type const , const_pointer , const_reference >::type const_iterator; #if defined(STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT)
typedef reverse_iterator_base < iterator , value_type , reference , pointer , difference_type > reverse_iterator; typedef const_reverse_iterator_base < const_iterator , value_type const , const_reference , const_pointer , difference_type > const_reverse_iterator; #endif /* STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT */
// Construction
private: fixed_array_3d(pointer data, index_type d0, index_type d1, index_type d2); public: fixed_array_3d(index_type d0, index_type d1, index_type d2); fixed_array_3d(index_type d0, index_type d1, index_type d2, allocator_type const& ator); fixed_array_3d(index_type d0, index_type d1, index_type d2, value_type const& t); fixed_array_3d(index_type d0, index_type d1, index_type d2, value_type const& t, allocator_type const& ator); fixed_array_3d(class_type const& rhs); ~fixed_array_3d() stlsoft_throw_0();
allocator_type get_allocator() const;
void swap(class_type& rhs) stlsoft_throw_0();
// Access
public: reference at(index_type i0, index_type i1, index_type i2); const_reference at(index_type i0, index_type i1, index_type i3) const;
reference at_unchecked(index_type i0, index_type i1, index_type i2); const_reference at_unchecked(index_type i0, index_type i1, index_type i2) const;
#ifndef STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP
reference operator ()(index_type i0, index_type i1, index_type i2); const_reference operator ()(index_type i0, index_type i1, index_type i2) const; #endif /* !STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP */
dimension_element_type at(index_type i0); const_dimension_element_type at(index_type i0) const;
dimension_element_type at_unchecked(index_type i0); const_dimension_element_type at_unchecked(index_type i0) const;
dimension_element_type operator [](index_type i0); const_dimension_element_type operator [](index_type i0) const;
reference front(); reference back(); const_reference front() const; const_reference back() const;
// State
public: index_type dimension0() const; index_type dimension1() const; index_type dimension2() const; index_type size() const; bool_type empty() const; static size_type max_size();
// Iteration
public: iterator begin(); iterator end(); const_iterator begin() const; const_iterator end() const;
#if defined(STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT)
reverse_iterator rbegin(); reverse_iterator rend(); const_reverse_iterator rbegin() const; const_reverse_iterator rend() const; #endif /* STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT */
// Access
public: pointer data(); const_pointer data() const;
// Implementation
private: pointer allocate_(size_type n); void deallocate_(pointer p, size_type n);
pointer data_(); index_type calc_index_(index_type i0, index_type i1, index_type i2) const; void range_check_(index_type i0, index_type i1, index_type i2) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) ); void range_check_(index_type i0) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) );
allocator_type& get_allocator_();
// Members
private: T* m_data; index_type m_d0; index_type m_d1; index_type m_d2;
friend class fixed_array_4d<T, A, P, true>; friend class fixed_array_4d<T, A, P, false>;
// Not to be implemented
private: class_type const& operator =(class_type const& rhs); };
/** \brief 4 dimensional fixed array
* * \ingroup group__library__containers * * \param T The value type * \param A The allocator type * \param P The construction policy type */ template< ss_typename_param_k T #ifdef STLSOFT_CF_TEMPLATE_CLASS_DEFAULT_CLASS_ARGUMENT_SUPPORT
, ss_typename_param_k A = ss_typename_type_def_k allocator_selector<T>::allocator_type , ss_typename_param_k P = do_construction<T> , ss_bool_t R = true #else /* ? STLSOFT_CF_TEMPLATE_CLASS_DEFAULT_CLASS_ARGUMENT_SUPPORT */
, ss_typename_param_k A , ss_typename_param_k P , ss_bool_t R #endif /* STLSOFT_CF_TEMPLATE_CLASS_DEFAULT_CLASS_ARGUMENT_SUPPORT */
> // class fixed_array_4d
class fixed_array_4d : protected A , public stl_collection_tag { public: typedef fixed_array_4d<T, A, P, R> class_type; typedef fixed_array_3d<T, A, P, false> dimension_element_type; typedef /* const */ dimension_element_type const_dimension_element_type; typedef A allocator_type; typedef T value_type; typedef value_type& reference; typedef value_type const& const_reference; typedef value_type* pointer; typedef value_type const* const_pointer; typedef ss_size_t size_type; typedef ss_size_t index_type; typedef ss_ptrdiff_t difference_type; typedef ss_bool_t bool_type; typedef #if !defined(STLSOFT_COMPILER_IS_BORLAND)
ss_typename_type_k #endif /* compiler */
pointer_iterator < value_type , pointer , reference >::type iterator; typedef #if !defined(STLSOFT_COMPILER_IS_BORLAND)
ss_typename_type_k #endif /* compiler */
pointer_iterator < value_type const , const_pointer , const_reference >::type const_iterator; #if defined(STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT)
typedef reverse_iterator_base < iterator , value_type , reference , pointer , difference_type > reverse_iterator; typedef const_reverse_iterator_base < const_iterator , value_type const , const_reference , const_pointer , difference_type > const_reverse_iterator; #endif /* STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT */
// Construction
private: fixed_array_4d(T *data, index_type d0, index_type d1, index_type d2, index_type d3); public: fixed_array_4d(index_type d0, index_type d1, index_type d2, index_type d3); fixed_array_4d(index_type d0, index_type d1, index_type d2, index_type d3, allocator_type const& ator); fixed_array_4d(index_type d0, index_type d1, index_type d2, index_type d3, value_type const& t); fixed_array_4d(index_type d0, index_type d1, index_type d2, index_type d3, value_type const& t, allocator_type const& ator); fixed_array_4d(class_type const& rhs); ~fixed_array_4d() stlsoft_throw_0();
allocator_type get_allocator() const;
void swap(class_type& rhs) stlsoft_throw_0();
// Access
public: reference at(index_type i0, index_type i1, index_type i2, index_type i3); const_reference at(index_type i0, index_type i1, index_type i2, index_type i3) const;
reference at_unchecked(index_type i0, index_type i1, index_type i2, index_type i3); const_reference at_unchecked(index_type i0, index_type i1, index_type i2, index_type i3) const;
#ifndef STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP
reference operator ()(index_type i0, index_type i1, index_type i2, index_type i3); const_reference operator ()(index_type i0, index_type i1, index_type i2, index_type i3) const; #endif /* !STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP */
dimension_element_type at(index_type i0); const_dimension_element_type at(index_type i0) const;
dimension_element_type at_unchecked(index_type i0); const_dimension_element_type at_unchecked(index_type i0) const;
dimension_element_type operator [](index_type i0); const_dimension_element_type operator [](index_type i0) const;
reference front(); reference back(); const_reference front() const; const_reference back() const;
// State
public: index_type dimension0() const; index_type dimension1() const; index_type dimension2() const; index_type dimension3() const; index_type size() const; bool_type empty() const; static size_type max_size();
// Iteration
public: iterator begin(); iterator end(); const_iterator begin() const; const_iterator end() const;
#if defined(STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT)
reverse_iterator rbegin(); reverse_iterator rend(); const_reverse_iterator rbegin() const; const_reverse_iterator rend() const; #endif /* STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT */
// Access
public: pointer data(); const_pointer data() const;
// Implementation
private: pointer allocate_(size_type n); void deallocate_(pointer p, size_type n);
pointer data_(); index_type calc_index_(index_type i0, index_type i1, index_type i2, index_type i3) const; void range_check_(index_type i0, index_type i1, index_type i2, index_type i3) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) ); void range_check_(index_type i0) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) );
allocator_type& get_allocator_();
// Members
private: T* m_data; index_type m_d0; index_type m_d1; index_type m_d2; index_type m_d3;
friend class fixed_array_5d<T, A, P, true>; friend class fixed_array_5d<T, A, P, false>;
// Not to be implemented
private: class_type const& operator =(class_type const& rhs); };
////////////////////////////////////////////////////////////////////////////
// Unit-testing
#ifdef STLSOFT_UNITTEST
# include "./unittest/fixed_array_unittest_.h"
#endif /* STLSOFT_UNITTEST */
/* /////////////////////////////////////////////////////////////////////////
* Implementation */
#ifndef STLSOFT_DOCUMENTATION_SKIP_SECTION
// fixed_array_1d
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::pointer fixed_array_1d<T, A, P, R>::allocate_(ss_typename_type_k fixed_array_1d<T, A, P, R>::size_type n) { allocator_type &ator = *this;
return ator.allocate(n, NULL); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline void fixed_array_1d<T, A, P, R>::deallocate_(ss_typename_type_k fixed_array_1d<T, A, P, R>::pointer p, ss_typename_type_k fixed_array_1d<T, A, P, R>::size_type n) { allocator_type &ator = *this;
ator.deallocate(p, n); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::pointer fixed_array_1d<T, A, P, R>::data_() { return m_data; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::index_type fixed_array_1d<T, A, P, R>::calc_index_(ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type i0) const { return i0; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline void fixed_array_1d<T, A, P, R>::range_check_(ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type i0) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) ) { #ifdef STLSOFT_CF_EXCEPTION_SUPPORT
if(!(i0 < m_d0)) { STLSOFT_THROW_X(stlsoft_ns_qual_std(out_of_range)("fixed array index out of range")); } #else
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0); #endif /* STLSOFT_CF_EXCEPTION_SUPPORT */
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_k fixed_array_1d<T, A, P, R>::allocator_type& fixed_array_1d<T, A, P, R>::get_allocator_() { return *this; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_1d<T, A, P, R>::fixed_array_1d(T* src, ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type d0) : m_data(src) , m_d0(d0) { STLSOFT_STATIC_ASSERT(!R); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_1d<T, A, P, R>::fixed_array_1d(ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type d0) : m_data(allocate_(d0)) , m_d0(d0) { STLSOFT_STATIC_ASSERT(R); array_range_initialiser<T, A, P>::construct(*this, data_(), size()); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_1d<T, A, P, R>::fixed_array_1d(ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type d0, ss_typename_type_k fixed_array_1d<T, A, P, R>::allocator_type const& ator) : allocator_type(ator) , m_data(allocate_(d0)) , m_d0(d0) { STLSOFT_STATIC_ASSERT(R); array_range_initialiser<T, A, P>::construct(*this, data_(), size()); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_1d<T, A, P, R>::fixed_array_1d(ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type d0, value_type const& t) : m_data(allocate_(d0)) , m_d0(d0) { STLSOFT_STATIC_ASSERT(R); array_range_initialiser<T, A, P>::construct(*this, data_(), size(), t); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_1d<T, A, P, R>::fixed_array_1d(ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type d0, value_type const& t, ss_typename_type_k fixed_array_1d<T, A, P, R>::allocator_type const& ator) : allocator_type(ator) , m_data(allocate_(d0)) , m_d0(d0) { STLSOFT_STATIC_ASSERT(R); array_range_initialiser<T, A, P>::construct(*this, data_(), size(), t); }
#ifdef STLSOFT_MULTIDIM_ARRAY_FEATURE_REQUIRES_COPY_CTOR_WITH_RVO
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_1d<T, A, P, R>::fixed_array_1d(fixed_array_1d<T, A, P, R> const& rhs) : m_data(R ? allocate_(rhs.dimension0()) : rhs.m_data) , m_d0(rhs.dimension0()) { if(R) { array_range_initialiser<T, A, P>::copy_construct(*this, data_(), rhs.data(), size()); } }
#else /* ? STLSOFT_MULTIDIM_ARRAY_FEATURE_REQUIRES_COPY_CTOR_WITH_RVO */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_1d<T, A, P, R>::fixed_array_1d(fixed_array_1d<T, A, P, R> const& rhs) : m_data(allocate_(rhs.dimension0())) , m_d0(rhs.dimension0()) { STLSOFT_STATIC_ASSERT(R); array_range_initialiser<T, A, P>::copy_construct(*this, data_(), rhs.data(), size()); }
#endif /* STLSOFT_MULTIDIM_ARRAY_FEATURE_REQUIRES_COPY_CTOR_WITH_RVO */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_1d<T, A, P, R>::~fixed_array_1d() stlsoft_throw_0() { if(R) { array_range_initialiser<T, A, P>::destroy(*this, data_(), size()); deallocate_(m_data, size()); } }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_k fixed_array_1d<T, A, P, R>::allocator_type fixed_array_1d<T, A, P, R>::get_allocator() const { return *this; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline void fixed_array_1d<T, A, P, R>::swap(ss_typename_type_k fixed_array_1d<T, A, P, R>::class_type& rhs) stlsoft_throw_0() { // We don't need to do any construct and swap here, because all the
// variables that are being swapped are simple types (integers and
// pointers).
std_swap(get_allocator_(), rhs.get_allocator_()); std_swap(m_data, rhs.m_data); std_swap(m_d0, rhs.m_d0); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::reference fixed_array_1d<T, A, P, R>::at(ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type i0) { range_check_(i0);
return m_data[i0]; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::const_reference fixed_array_1d<T, A, P, R>::at(ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type i0) const { range_check_(i0);
return m_data[i0]; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::reference fixed_array_1d<T, A, P, R>::at_unchecked(ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type i0) { STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return m_data[i0]; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::const_reference fixed_array_1d<T, A, P, R>::at_unchecked(ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type i0) const { STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return m_data[i0]; }
#ifndef STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::reference fixed_array_1d<T, A, P, R>::operator ()(ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type i0) { return at_unchecked(i0); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::const_reference fixed_array_1d<T, A, P, R>::operator ()(ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type i0) const { return at_unchecked(i0); } #endif /* !STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::reference fixed_array_1d<T, A, P, R>::operator [](ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type i0) { return at_unchecked(i0); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::const_reference fixed_array_1d<T, A, P, R>::operator [](ss_typename_type_k fixed_array_1d<T, A, P, R>::index_type i0) const { return at_unchecked(i0); }
#if 0
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::pointer fixed_array_1d<T, A, P, R>::operator &() { return &m_data[0]; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::const_pointer fixed_array_1d<T, A, P, R>::operator &() const { return &m_data[0]; } #endif /* 0 */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::reference fixed_array_1d<T, A, P, R>::front() { return at(0); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::reference fixed_array_1d<T, A, P, R>::back() { return at(m_d0 - 1); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::const_reference fixed_array_1d<T, A, P, R>::front() const { return at(0); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::const_reference fixed_array_1d<T, A, P, R>::back() const { return at(m_d0 - 1); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::index_type fixed_array_1d<T, A, P, R>::dimension0() const { return m_d0; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::index_type fixed_array_1d<T, A, P, R>::size() const { return m_d0; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::bool_type fixed_array_1d<T, A, P, R>::empty() const { return 0 == size(); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline /* static */ ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::size_type fixed_array_1d<T, A, P, R>::max_size() { return static_cast<size_type>(-1) / sizeof(T); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::iterator fixed_array_1d<T, A, P, R>::begin() { return m_data; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::iterator fixed_array_1d<T, A, P, R>::end() { return m_data + size(); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::const_iterator fixed_array_1d<T, A, P, R>::begin() const { return m_data; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::const_iterator fixed_array_1d<T, A, P, R>::end() const { return m_data + size(); }
#if defined(STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT)
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::reverse_iterator fixed_array_1d<T, A, P, R>::rbegin() { return reverse_iterator(end()); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::reverse_iterator fixed_array_1d<T, A, P, R>::rend() { return reverse_iterator(begin()); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::const_reverse_iterator fixed_array_1d<T, A, P, R>::rbegin() const { return const_reverse_iterator(end()); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::const_reverse_iterator fixed_array_1d<T, A, P, R>::rend() const { return const_reverse_iterator(begin()); }
#endif /* STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::pointer fixed_array_1d<T, A, P, R>::data() { return m_data; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_1d<T, A, P, R>::const_pointer fixed_array_1d<T, A, P, R>::data() const { return m_data; }
// fixed_array_2d
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::pointer fixed_array_2d<T, A, P, R>::allocate_(ss_typename_type_k fixed_array_2d<T, A, P, R>::size_type n) { allocator_type &ator = *this;
return ator.allocate(n, NULL); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline void fixed_array_2d<T, A, P, R>::deallocate_(ss_typename_type_k fixed_array_2d<T, A, P, R>::pointer p, ss_typename_type_k fixed_array_2d<T, A, P, R>::size_type n) { allocator_type &ator = *this;
ator.deallocate(p, n); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::pointer fixed_array_2d<T, A, P, R>::data_() { return m_data; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::index_type fixed_array_2d<T, A, P, R>::calc_index_(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i1) const { return (i0 * m_d1) + i1; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline void fixed_array_2d<T, A, P, R>::range_check_(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i1) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) ) { #ifdef STLSOFT_CF_EXCEPTION_SUPPORT
if( !(i0 < m_d0) || !(i1 < m_d1)) { STLSOFT_THROW_X(stlsoft_ns_qual_std(out_of_range)("fixed array index out of range")); } #else
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", (i0 < m_d0 && i1 < m_d1)); #endif /* STLSOFT_CF_EXCEPTION_SUPPORT */
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_k fixed_array_2d<T, A, P, R>::allocator_type& fixed_array_2d<T, A, P, R>::get_allocator_() { return *this; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline void fixed_array_2d<T, A, P, R>::range_check_(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) ) { #ifdef STLSOFT_CF_EXCEPTION_SUPPORT
if(!(i0 < m_d0)) { STLSOFT_THROW_X(stlsoft_ns_qual_std(out_of_range)("fixed array index out of range")); } #else
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0); #endif /* STLSOFT_CF_EXCEPTION_SUPPORT */
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_2d<T, A, P, R>::fixed_array_2d(T* src, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type d0, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type d1) : m_data(src) , m_d0(d0) , m_d1(d1) , m_size(d0 * d1) { STLSOFT_STATIC_ASSERT(!R); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_2d<T, A, P, R>::fixed_array_2d(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type d0, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type d1) : m_data(allocate_(d0 * d1)) , m_d0(d0) , m_d1(d1) , m_size(d0 * d1) { STLSOFT_STATIC_ASSERT(R); array_range_initialiser<T, A, P>::construct(*this, data_(), size()); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_2d<T, A, P, R>::fixed_array_2d(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type d0, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type d1, ss_typename_type_k fixed_array_2d<T, A, P, R>::allocator_type const& ator) : allocator_type(ator) , m_data(allocate_(d0 * d1)) , m_d0(d0) , m_d1(d1) , m_size(d0 * d1) { STLSOFT_STATIC_ASSERT(R); array_range_initialiser<T, A, P>::construct(*this, data_(), size()); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_2d<T, A, P, R>::fixed_array_2d(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type d0, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type d1, value_type const& t) : m_data(allocate_(d0 * d1)) , m_d0(d0) , m_d1(d1) , m_size(d0 * d1) { STLSOFT_STATIC_ASSERT(R); array_range_initialiser<T, A, P>::construct(*this, data_(), size(), t); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_2d<T, A, P, R>::fixed_array_2d(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type d0, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type d1, value_type const& t, ss_typename_type_k fixed_array_2d<T, A, P, R>::allocator_type const& ator) : allocator_type(ator) , m_data(allocate_(d0 * d1)) , m_d0(d0) , m_d1(d1) , m_size(d0 * d1) { STLSOFT_STATIC_ASSERT(R); array_range_initialiser<T, A, P>::construct(*this, data_(), size(), t); }
#ifdef STLSOFT_MULTIDIM_ARRAY_FEATURE_REQUIRES_COPY_CTOR_WITH_RVO
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_2d<T, A, P, R>::fixed_array_2d(fixed_array_2d<T, A, P, R> const& rhs) : m_data(R ? allocate_(rhs.dimension0() * rhs.dimension1()) : rhs.m_data) , m_d0(rhs.dimension0()) , m_d1(rhs.dimension1()) , m_size(rhs.dimension0() * rhs.dimension1()) { if(R) { array_range_initialiser<T, A, P>::copy_construct(*this, data_(), rhs.data(), size()); } }
#else /* ? STLSOFT_MULTIDIM_ARRAY_FEATURE_REQUIRES_COPY_CTOR_WITH_RVO */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_2d<T, A, P, R>::fixed_array_2d(fixed_array_2d<T, A, P, R> const& rhs) : m_data(allocate_(rhs.dimension0() * rhs.dimension1())) , m_d0(rhs.dimension0()) , m_d1(rhs.dimension1()) , m_size(rhs.dimension0() * rhs.dimension1()) { STLSOFT_STATIC_ASSERT(R); array_range_initialiser<T, A, P>::copy_construct(*this, data_(), rhs.data(), size()); }
#endif /* STLSOFT_MULTIDIM_ARRAY_FEATURE_REQUIRES_COPY_CTOR_WITH_RVO */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_2d<T, A, P, R>::~fixed_array_2d() stlsoft_throw_0() { if(R) { array_range_initialiser<T, A, P>::destroy(*this, data_(), size()); deallocate_(m_data, size()); } }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_k fixed_array_2d<T, A, P, R>::allocator_type fixed_array_2d<T, A, P, R>::get_allocator() const { return *this; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline void fixed_array_2d<T, A, P, R>::swap(ss_typename_type_k fixed_array_2d<T, A, P, R>::class_type& rhs) stlsoft_throw_0() { // We don't need to do any construct and swap here, because all the
// variables that are being swapped are simple types (integers and
// pointers).
std_swap(get_allocator_(), rhs.get_allocator_()); std_swap(m_data, rhs.m_data); std_swap(m_d0, rhs.m_d0); std_swap(m_d1, rhs.m_d1); std_swap(m_size, rhs.m_size); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::reference fixed_array_2d<T, A, P, R>::at(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i1) { range_check_(i0, i1);
return *(m_data + calc_index_(i0, i1)); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::const_reference fixed_array_2d<T, A, P, R>::at(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i1) const { range_check_(i0, i1);
return *(m_data + calc_index_(i0, i1)); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::reference fixed_array_2d<T, A, P, R>::at_unchecked(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i1) { STLSOFT_MESSAGE_ASSERT("fixed array index out of range", (i0 < m_d0 && i1 < m_d1));
return *(m_data + calc_index_(i0, i1)); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::const_reference fixed_array_2d<T, A, P, R>::at_unchecked(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i1) const { STLSOFT_MESSAGE_ASSERT("fixed array index out of range", (i0 < m_d0 && i1 < m_d1));
return *(m_data + calc_index_(i0, i1)); }
#ifndef STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::reference fixed_array_2d<T, A, P, R>::operator ()(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i1) { return at_unchecked(i0, i1); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::const_reference fixed_array_2d<T, A, P, R>::operator ()(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i1) const { return at_unchecked(i0, i1); } #endif /* !STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::dimension_element_type fixed_array_2d<T, A, P, R>::at(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0) { range_check_(i0);
return dimension_element_type(m_data + i0 * m_d1, m_d1); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::const_dimension_element_type fixed_array_2d<T, A, P, R>::at(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0) const { range_check_(i0);
return dimension_element_type(m_data + i0 * m_d1, m_d1); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::dimension_element_type fixed_array_2d<T, A, P, R>::at_unchecked(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0) { STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return dimension_element_type(m_data + i0 * m_d1, m_d1); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::const_dimension_element_type fixed_array_2d<T, A, P, R>::at_unchecked(ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0) const { STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return dimension_element_type(m_data + i0 * m_d1, m_d1); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::dimension_element_type fixed_array_2d<T, A, P, R>::operator [](ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0) { STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return dimension_element_type(m_data + i0 * m_d1, m_d1); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::const_dimension_element_type fixed_array_2d<T, A, P, R>::operator [](ss_typename_type_k fixed_array_2d<T, A, P, R>::index_type i0) const { STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return dimension_element_type(m_data + i0 * m_d1, m_d1); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::reference fixed_array_2d<T, A, P, R>::front() { return at(0, 0); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::reference fixed_array_2d<T, A, P, R>::back() { return at(m_d0 - 1, m_d1 - 1); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::const_reference fixed_array_2d<T, A, P, R>::front() const { return at(0, 0); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::const_reference fixed_array_2d<T, A, P, R>::back() const { return at(m_d0 - 1, m_d1 - 1); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::index_type fixed_array_2d<T, A, P, R>::dimension0() const { return m_d0; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::index_type fixed_array_2d<T, A, P, R>::dimension1() const { return m_d1; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::index_type fixed_array_2d<T, A, P, R>::size() const { STLSOFT_ASSERT(m_size == m_d0 * m_d1);
return m_size; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::bool_type fixed_array_2d<T, A, P, R>::empty() const { return 0 == size(); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline /* static */ ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::size_type fixed_array_2d<T, A, P, R>::max_size() { return static_cast<size_type>(-1) / sizeof(T); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::iterator fixed_array_2d<T, A, P, R>::begin() { return m_data; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::iterator fixed_array_2d<T, A, P, R>::end() { return m_data + size(); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::const_iterator fixed_array_2d<T, A, P, R>::begin() const { return m_data; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::const_iterator fixed_array_2d<T, A, P, R>::end() const { return m_data + size(); }
#if defined(STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT)
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::reverse_iterator fixed_array_2d<T, A, P, R>::rbegin() { return reverse_iterator(end()); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::reverse_iterator fixed_array_2d<T, A, P, R>::rend() { return reverse_iterator(begin()); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::const_reverse_iterator fixed_array_2d<T, A, P, R>::rbegin() const { return const_reverse_iterator(end()); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::const_reverse_iterator fixed_array_2d<T, A, P, R>::rend() const { return const_reverse_iterator(begin()); }
#endif /* STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::pointer fixed_array_2d<T, A, P, R>::data() { return m_data; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_2d<T, A, P, R>::const_pointer fixed_array_2d<T, A, P, R>::data() const { return m_data; }
// fixed_array_3d
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::pointer fixed_array_3d<T, A, P, R>::allocate_(ss_typename_type_k fixed_array_3d<T, A, P, R>::size_type n) { allocator_type &ator = *this;
return ator.allocate(n, NULL); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline void fixed_array_3d<T, A, P, R>::deallocate_(ss_typename_type_k fixed_array_3d<T, A, P, R>::pointer p, ss_typename_type_k fixed_array_3d<T, A, P, R>::size_type n) { allocator_type &ator = *this;
ator.deallocate(p, n); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::pointer fixed_array_3d<T, A, P, R>::data_() { return m_data; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::index_type fixed_array_3d<T, A, P, R>::calc_index_(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i1, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i2) const { return ((i0 * m_d1) + i1) * m_d2 + i2; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline void fixed_array_3d<T, A, P, R>::range_check_(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i1, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i2) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) ) { #ifdef STLSOFT_CF_EXCEPTION_SUPPORT
if( !(i0 < m_d0) || !(i1 < m_d1) || !(i2 < m_d2)) { STLSOFT_THROW_X(stlsoft_ns_qual_std(out_of_range)("fixed array index out of range")); } #else
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", (i0 < m_d0 && i1 < m_d1 && i2 < m_d2)); #endif /* STLSOFT_CF_EXCEPTION_SUPPORT */
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_k fixed_array_3d<T, A, P, R>::allocator_type& fixed_array_3d<T, A, P, R>::get_allocator_() { return *this; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline void fixed_array_3d<T, A, P, R>::range_check_(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) ) { #ifdef STLSOFT_CF_EXCEPTION_SUPPORT
if(!(i0 < m_d0)) { STLSOFT_THROW_X(stlsoft_ns_qual_std(out_of_range)("fixed array index out of range")); } #else
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0); #endif /* STLSOFT_CF_EXCEPTION_SUPPORT */
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_3d<T, A, P, R>::fixed_array_3d(ss_typename_type_k fixed_array_3d<T, A, P, R>::pointer src, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d0, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d1, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d2) : m_data(src) , m_d0(d0) , m_d1(d1) , m_d2(d2) { STLSOFT_STATIC_ASSERT(!R); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_3d<T, A, P, R>::fixed_array_3d(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d0, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d1, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d2) : m_data(allocate_(d0 * d1 * d2)) , m_d0(d0) , m_d1(d1) , m_d2(d2) { STLSOFT_STATIC_ASSERT(R); array_range_initialiser<T, A, P>::construct(*this, data_(), size()); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_3d<T, A, P, R>::fixed_array_3d(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d0, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d1, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d2, ss_typename_type_k fixed_array_3d<T, A, P, R>::allocator_type const& ator) : allocator_type(ator) , m_data(allocate_(d0 * d1 * d2)) , m_d0(d0) , m_d1(d1) , m_d2(d2) { STLSOFT_STATIC_ASSERT(R); array_range_initialiser<T, A, P>::construct(*this, data_(), size()); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_3d<T, A, P, R>::fixed_array_3d(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d0, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d1, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d2, ss_typename_type_k fixed_array_3d<T, A, P, R>::value_type const& t) : m_data(allocate_(d0 * d1 * d2)) , m_d0(d0) , m_d1(d1) , m_d2(d2) { STLSOFT_STATIC_ASSERT(R); array_range_initialiser<T, A, P>::construct(*this, data_(), size(), t); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_3d<T, A, P, R>::fixed_array_3d(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d0, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d1, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type d2, ss_typename_type_k fixed_array_3d<T, A, P, R>::value_type const& t, ss_typename_type_k fixed_array_3d<T, A, P, R>::allocator_type const& ator) : allocator_type(ator) , m_data(allocate_(d0 * d1 * d2)) , m_d0(d0) , m_d1(d1) , m_d2(d2) { STLSOFT_STATIC_ASSERT(R); array_range_initialiser<T, A, P>::construct(*this, data_(), size(), t); }
#ifdef STLSOFT_MULTIDIM_ARRAY_FEATURE_REQUIRES_COPY_CTOR_WITH_RVO
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_3d<T, A, P, R>::fixed_array_3d(fixed_array_3d<T, A, P, R> const& rhs) : m_data(R ? allocate_(rhs.dimension0() * rhs.dimension1() * rhs.dimension2()) : rhs.m_data) , m_d0(rhs.dimension0()) , m_d1(rhs.dimension1()) , m_d2(rhs.dimension2()) { if(R) { array_range_initialiser<T, A, P>::copy_construct(*this, data_(), rhs.data(), size()); } }
#else /* ? STLSOFT_MULTIDIM_ARRAY_FEATURE_REQUIRES_COPY_CTOR_WITH_RVO */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_3d<T, A, P, R>::fixed_array_3d(fixed_array_3d<T, A, P, R> const& rhs) : m_data(allocate_(rhs.dimension0() * rhs.dimension1() * rhs.dimension2())) , m_d0(rhs.dimension0()) , m_d1(rhs.dimension1()) , m_d2(rhs.dimension2()) { STLSOFT_STATIC_ASSERT(R); array_range_initialiser<T, A, P>::copy_construct(*this, data_(), rhs.data(), size()); }
#endif /* STLSOFT_MULTIDIM_ARRAY_FEATURE_REQUIRES_COPY_CTOR_WITH_RVO */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_3d<T, A, P, R>::~fixed_array_3d() stlsoft_throw_0() { if(R) { array_range_initialiser<T, A, P>::destroy(*this, data_(), size()); deallocate_(m_data, size()); } }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_k fixed_array_3d<T, A, P, R>::allocator_type fixed_array_3d<T, A, P, R>::get_allocator() const { return *this; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline void fixed_array_3d<T, A, P, R>::swap(ss_typename_type_k fixed_array_3d<T, A, P, R>::class_type& rhs) stlsoft_throw_0() { // We don't need to do any construct and swap here, because all the
// variables that are being swapped are simple types (integers and
// pointers).
std_swap(get_allocator_(), rhs.get_allocator_()); std_swap(m_data, rhs.m_data); std_swap(m_d0, rhs.m_d0); std_swap(m_d1, rhs.m_d1); std_swap(m_d2, rhs.m_d2); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::reference fixed_array_3d<T, A, P, R>::at(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i1, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i2) { range_check_(i0, i1, i2);
return *(m_data + calc_index_(i0, i1, i2)); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::const_reference fixed_array_3d<T, A, P, R>::at(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i1, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i2) const { range_check_(i0, i1, i2);
return *(m_data + calc_index_(i0, i1, i2)); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::reference fixed_array_3d<T, A, P, R>::at_unchecked(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i1, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i2) { STLSOFT_MESSAGE_ASSERT("fixed array index out of range", (i0 < m_d0 && i1 < m_d1 && i2 < m_d2));
return *(m_data + calc_index_(i0, i1, i2)); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::const_reference fixed_array_3d<T, A, P, R>::at_unchecked(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i1, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i2) const { STLSOFT_MESSAGE_ASSERT("fixed array index out of range", (i0 < m_d0 && i1 < m_d1 && i2 < m_d2));
return *(m_data + calc_index_(i0, i1, i2)); }
#ifndef STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::reference fixed_array_3d<T, A, P, R>::operator ()(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i1, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i2) { return at_unchecked(i0, i1, i2); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::const_reference fixed_array_3d<T, A, P, R>::operator ()(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i1, ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i2) const { return at_unchecked(i0, i1, i2); } #endif /* !STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::dimension_element_type fixed_array_3d<T, A, P, R>::at(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0) { range_check_(i0);
return dimension_element_type(m_data + i0 * m_d1 * m_d2, m_d1, m_d2); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::const_dimension_element_type fixed_array_3d<T, A, P, R>::at(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0) const { range_check_(i0);
return dimension_element_type(m_data + i0 * m_d1 * m_d2, m_d1, m_d2); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::dimension_element_type fixed_array_3d<T, A, P, R>::at_unchecked(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0) { STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return dimension_element_type(m_data + i0 * m_d1 * m_d2, m_d1, m_d2); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::const_dimension_element_type fixed_array_3d<T, A, P, R>::at_unchecked(ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0) const { STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return dimension_element_type(m_data + i0 * m_d1 * m_d2, m_d1, m_d2); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::dimension_element_type fixed_array_3d<T, A, P, R>::operator [](ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0) { STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return dimension_element_type(m_data + i0 * m_d1 * m_d2, m_d1, m_d2); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::const_dimension_element_type fixed_array_3d<T, A, P, R>::operator [](ss_typename_type_k fixed_array_3d<T, A, P, R>::index_type i0) const { STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return dimension_element_type(m_data + i0 * m_d1 * m_d2, m_d1, m_d2); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::reference fixed_array_3d<T, A, P, R>::front() { return at(0, 0, 0); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::reference fixed_array_3d<T, A, P, R>::back() { return at(m_d0 - 1, m_d1 - 1, m_d2 - 1); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::const_reference fixed_array_3d<T, A, P, R>::front() const { return at(0, 0, 0); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::const_reference fixed_array_3d<T, A, P, R>::back() const { return at(m_d0 - 1, m_d1 - 1, m_d2 - 1); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::index_type fixed_array_3d<T, A, P, R>::dimension0() const { return m_d0; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::index_type fixed_array_3d<T, A, P, R>::dimension1() const { return m_d1; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::index_type fixed_array_3d<T, A, P, R>::dimension2() const { return m_d2; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::index_type fixed_array_3d<T, A, P, R>::size() const { return m_d0 * m_d1 * m_d2; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::bool_type fixed_array_3d<T, A, P, R>::empty() const { return 0 == size(); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline /* static */ ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::size_type fixed_array_3d<T, A, P, R>::max_size() { return static_cast<size_type>(-1) / sizeof(T); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::iterator fixed_array_3d<T, A, P, R>::begin() { return m_data; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::iterator fixed_array_3d<T, A, P, R>::end() { return m_data + size(); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::const_iterator fixed_array_3d<T, A, P, R>::begin() const { return m_data; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::const_iterator fixed_array_3d<T, A, P, R>::end() const { return m_data + size(); }
#if defined(STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT)
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::reverse_iterator fixed_array_3d<T, A, P, R>::rbegin() { return reverse_iterator(end()); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::reverse_iterator fixed_array_3d<T, A, P, R>::rend() { return reverse_iterator(begin()); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::const_reverse_iterator fixed_array_3d<T, A, P, R>::rbegin() const { return const_reverse_iterator(end()); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::const_reverse_iterator fixed_array_3d<T, A, P, R>::rend() const { return const_reverse_iterator(begin()); }
#endif /* STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::pointer fixed_array_3d<T, A, P, R>::data() { return m_data; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_3d<T, A, P, R>::const_pointer fixed_array_3d<T, A, P, R>::data() const { return m_data; }
// fixed_array_4d
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::pointer fixed_array_4d<T, A, P, R>::allocate_(ss_typename_type_k fixed_array_4d<T, A, P, R>::size_type n) { allocator_type &ator = *this;
return ator.allocate(n, NULL); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline void fixed_array_4d<T, A, P, R>::deallocate_(ss_typename_type_k fixed_array_4d<T, A, P, R>::pointer p, ss_typename_type_k fixed_array_4d<T, A, P, R>::size_type n) { allocator_type &ator = *this;
ator.deallocate(p, n); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::pointer fixed_array_4d<T, A, P, R>::data_() { return m_data; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::index_type fixed_array_4d<T, A, P, R>::calc_index_(ss_typename_type_k fixed_array_4d<T, A, P, R>::index_type i0, index_type i1, index_type i2, index_type i3) const { return (((i0 * m_d1) + i1) * m_d2 + i2) * m_d3 + i3; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline void fixed_array_4d<T, A, P, R>::range_check_(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i1, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i2, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i3) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) ) { #ifdef STLSOFT_CF_EXCEPTION_SUPPORT
if( !(i0 < m_d0) || !(i1 < m_d1) || !(i2 < m_d2) || !(i3 < m_d3)) { STLSOFT_THROW_X(stlsoft_ns_qual_std(out_of_range)("fixed array index out of range")); } #else
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", (i0 < m_d0 && i1 < m_d1 && i2 < m_d2 && i3 < m_d3)); #endif /* STLSOFT_CF_EXCEPTION_SUPPORT */
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_k fixed_array_4d<T, A, P, R>::allocator_type& fixed_array_4d<T, A, P, R>::get_allocator_() { return *this; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline void fixed_array_4d<T, A, P, R>::range_check_(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0) const stlsoft_throw_1(stlsoft_ns_qual_std(out_of_range) ) { #ifdef STLSOFT_CF_EXCEPTION_SUPPORT
if(!(i0 < m_d0)) { STLSOFT_THROW_X(stlsoft_ns_qual_std(out_of_range)("fixed array index out of range")); } #else
STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0); #endif /* STLSOFT_CF_EXCEPTION_SUPPORT */
}
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_4d<T, A, P, R>::fixed_array_4d(T* src, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d0, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d1, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d2, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d3) : m_data(src) , m_d0(d0) , m_d1(d1) , m_d2(d2) , m_d3(d3) { STLSOFT_STATIC_ASSERT(!R); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_4d<T, A, P, R>::fixed_array_4d(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d0, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d1, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d2, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d3) : m_data(allocate_(d0 * d1 * d2 * d3)) , m_d0(d0) , m_d1(d1) , m_d2(d2) , m_d3(d3) { STLSOFT_STATIC_ASSERT(R); array_range_initialiser<T, A, P>::construct(*this, data_(), size()); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_4d<T, A, P, R>::fixed_array_4d(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d0, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d1, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d2, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d3, ss_typename_param_k fixed_array_4d<T, A, P, R>::allocator_type const& ator) : allocator_type(ator) , m_data(allocate_(d0 * d1 * d2 * d3)) , m_d0(d0) , m_d1(d1) , m_d2(d2) , m_d3(d3) { STLSOFT_STATIC_ASSERT(R); array_range_initialiser<T, A, P>::construct(*this, data_(), size()); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_4d<T, A, P, R>::fixed_array_4d(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d0, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d1, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d2, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d3, ss_typename_param_k fixed_array_4d<T, A, P, R>::value_type const& t) : m_data(allocate_(d0 * d1 * d2 * d3)) , m_d0(d0) , m_d1(d1) , m_d2(d2) , m_d3(d3) { STLSOFT_STATIC_ASSERT(R); array_range_initialiser<T, A, P>::construct(*this, data_(), size(), t); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_4d<T, A, P, R>::fixed_array_4d(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d0, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d1, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d2, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type d3, ss_typename_param_k fixed_array_4d<T, A, P, R>::value_type const& t, ss_typename_param_k fixed_array_4d<T, A, P, R>::allocator_type const& ator) : allocator_type(ator) , m_data(allocate_(d0 * d1 * d2 * d3)) , m_d0(d0) , m_d1(d1) , m_d2(d2) , m_d3(d3) { STLSOFT_STATIC_ASSERT(R); array_range_initialiser<T, A, P>::construct(*this, data_(), size(), t); }
#ifdef STLSOFT_MULTIDIM_ARRAY_FEATURE_REQUIRES_COPY_CTOR_WITH_RVO
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_4d<T, A, P, R>::fixed_array_4d(fixed_array_4d<T, A, P, R> const& rhs) : m_data(R ? allocate_(rhs.dimension0() * rhs.dimension1() * rhs.dimension2() * rhs.dimension3()) : rhs.m_data) , m_d0(rhs.dimension0()) , m_d1(rhs.dimension1()) , m_d2(rhs.dimension2()) , m_d3(rhs.dimension3()) { if(R) { array_range_initialiser<T, A, P>::copy_construct(*this, data_(), rhs.data(), size()); } }
#else /* ? STLSOFT_MULTIDIM_ARRAY_FEATURE_REQUIRES_COPY_CTOR_WITH_RVO */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_4d<T, A, P, R>::fixed_array_4d(fixed_array_4d<T, A, P, R> const& rhs) : m_data(allocate_(rhs.dimension0() * rhs.dimension1() * rhs.dimension2() * rhs.dimension3())) , m_d0(rhs.dimension0()) , m_d1(rhs.dimension1()) , m_d2(rhs.dimension2()) , m_d3(rhs.dimension3()) { STLSOFT_STATIC_ASSERT(R); array_range_initialiser<T, A, P>::copy_construct(*this, data_(), rhs.data(), size()); }
#endif /* STLSOFT_MULTIDIM_ARRAY_FEATURE_REQUIRES_COPY_CTOR_WITH_RVO */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline fixed_array_4d<T, A, P, R>::~fixed_array_4d() stlsoft_throw_0() { if(R) { array_range_initialiser<T, A, P>::destroy(*this, data_(), size()); deallocate_(m_data, size()); } }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_k fixed_array_4d<T, A, P, R>::allocator_type fixed_array_4d<T, A, P, R>::get_allocator() const { return *this; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline void fixed_array_4d<T, A, P, R>::swap(ss_typename_type_k fixed_array_4d<T, A, P, R>::class_type& rhs) stlsoft_throw_0() { // We don't need to do any construct and swap here, because all the
// variables that are being swapped are simple types (integers and
// pointers).
std_swap(get_allocator_(), rhs.get_allocator_()); std_swap(m_data, rhs.m_data); std_swap(m_d0, rhs.m_d0); std_swap(m_d1, rhs.m_d1); std_swap(m_d2, rhs.m_d2); std_swap(m_d3, rhs.m_d3); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::reference fixed_array_4d<T, A, P, R>::at(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i1, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i2, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i3) { range_check_(i0, i1, i2, i3);
return *(m_data + calc_index_(i0, i1, i2, i3)); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::const_reference fixed_array_4d<T, A, P, R>::at(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i1, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i2, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i3) const { range_check_(i0, i1, i2, i3);
return *(m_data + calc_index_(i0, i1, i2, i3)); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::reference fixed_array_4d<T, A, P, R>::at_unchecked(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i1, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i2, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i3) { STLSOFT_MESSAGE_ASSERT("fixed array index out of range", (i0 < m_d0 && i1 < m_d1 && i2 < m_d2 && i3 < m_d3));
return *(m_data + calc_index_(i0, i1, i2, i3)); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::const_reference fixed_array_4d<T, A, P, R>::at_unchecked(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i1, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i2, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i3) const { STLSOFT_MESSAGE_ASSERT("fixed array index out of range", (i0 < m_d0 && i1 < m_d1 && i2 < m_d2 && i3 < m_d3));
return *(m_data + calc_index_(i0, i1, i2, i3)); }
#ifndef STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::reference fixed_array_4d<T, A, P, R>::operator ()(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i1, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i2, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i3) { return at_unchecked(i0, i1, i2, i3); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::const_reference fixed_array_4d<T, A, P, R>::operator ()(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i1, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i2, ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i3) const { return at_unchecked(i0, i1, i2, i3); } #endif /* !STLSOFT_FIXED_ARRAY_NO_FUNCTION_OP */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::dimension_element_type fixed_array_4d<T, A, P, R>::at(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0) { range_check_(i0);
return dimension_element_type(m_data + i0 * m_d1 * m_d2 * m_d3, m_d1, m_d2, m_d3); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_k fixed_array_4d<T, A, P, R>::const_dimension_element_type fixed_array_4d<T, A, P, R>::at(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0) const { range_check_(i0);
return dimension_element_type(m_data + i0 * m_d1 * m_d2 * m_d3, m_d1, m_d2, m_d3); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::dimension_element_type fixed_array_4d<T, A, P, R>::at_unchecked(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0) { STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return dimension_element_type(m_data + i0 * m_d1 * m_d2 * m_d3, m_d1, m_d2, m_d3); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::const_dimension_element_type fixed_array_4d<T, A, P, R>::at_unchecked(ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0) const { STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return dimension_element_type(m_data + i0 * m_d1 * m_d2 * m_d3, m_d1, m_d2, m_d3); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::dimension_element_type fixed_array_4d<T, A, P, R>::operator [](ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0) { STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return dimension_element_type(m_data + i0 * m_d1 * m_d2 * m_d3, m_d1, m_d2, m_d3); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::const_dimension_element_type fixed_array_4d<T, A, P, R>::operator [](ss_typename_param_k fixed_array_4d<T, A, P, R>::index_type i0) const { STLSOFT_MESSAGE_ASSERT("fixed array index out of range", i0 < m_d0);
return dimension_element_type(m_data + i0 * m_d1 * m_d2 * m_d3, m_d1, m_d2, m_d3); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::reference fixed_array_4d<T, A, P, R>::front() { return at(0, 0, 0, 0); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::reference fixed_array_4d<T, A, P, R>::back() { return at(m_d0 - 1, m_d1 - 1, m_d2 - 1, m_d3 - 1); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::const_reference fixed_array_4d<T, A, P, R>::front() const { return at(0, 0, 0, 0); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::const_reference fixed_array_4d<T, A, P, R>::back() const { return at(m_d0 - 1, m_d1 - 1, m_d2 - 1, m_d3 - 1); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::index_type fixed_array_4d<T, A, P, R>::dimension0() const { return m_d0; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::index_type fixed_array_4d<T, A, P, R>::dimension1() const { return m_d1; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::index_type fixed_array_4d<T, A, P, R>::dimension2() const { return m_d2; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::index_type fixed_array_4d<T, A, P, R>::dimension3() const { return m_d3; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::index_type fixed_array_4d<T, A, P, R>::size() const { return m_d0 * m_d1 * m_d2 * m_d3; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::bool_type fixed_array_4d<T, A, P, R>::empty() const { return 0 == size(); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline /* static */ ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::size_type fixed_array_4d<T, A, P, R>::max_size() { return static_cast<size_type>(-1) / sizeof(T); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::iterator fixed_array_4d<T, A, P, R>::begin() { return m_data; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::iterator fixed_array_4d<T, A, P, R>::end() { return m_data + size(); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::const_iterator fixed_array_4d<T, A, P, R>::begin() const { return m_data; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::const_iterator fixed_array_4d<T, A, P, R>::end() const { return m_data + size(); }
#if defined(STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT)
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::reverse_iterator fixed_array_4d<T, A, P, R>::rbegin() { return reverse_iterator(end()); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::reverse_iterator fixed_array_4d<T, A, P, R>::rend() { return reverse_iterator(begin()); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::const_reverse_iterator fixed_array_4d<T, A, P, R>::rbegin() const { return const_reverse_iterator(end()); }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::const_reverse_iterator fixed_array_4d<T, A, P, R>::rend() const { return const_reverse_iterator(begin()); }
#endif /* STLSOFT_LF_BIDIRECTIONAL_ITERATOR_SUPPORT */
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::pointer fixed_array_4d<T, A, P, R>::data() { return m_data; }
template <ss_typename_param_k T, ss_typename_param_k A, ss_typename_param_k P, ss_bool_t R> inline ss_typename_type_ret_k fixed_array_4d<T, A, P, R>::const_pointer fixed_array_4d<T, A, P, R>::data() const { return m_data; }
#endif /* !STLSOFT_DOCUMENTATION_SKIP_SECTION */
/* /////////////////////////////////////////////////////////////////////////
* Shims */
template< ss_typename_param_k T , ss_typename_param_k A , ss_typename_param_k P , ss_bool_t R > inline ss_size_t array_size(fixed_array_1d<T, A, P, R> const& ar) { return ar.size(); }
template< ss_typename_param_k T , ss_typename_param_k A , ss_typename_param_k P , ss_bool_t R > inline ss_size_t array_size(fixed_array_2d<T, A, P, R> const& ar) { return ar.size(); }
template< ss_typename_param_k T , ss_typename_param_k A , ss_typename_param_k P , ss_bool_t R > inline ss_size_t array_size(fixed_array_3d<T, A, P, R> const& ar) { return ar.size(); }
template< ss_typename_param_k T , ss_typename_param_k A , ss_typename_param_k P , ss_bool_t R > inline ss_size_t array_size(fixed_array_4d<T, A, P, R> const& ar) { return ar.size(); }
#if 0
template< ss_typename_param_k T , ss_typename_param_k A , ss_typename_param_k P , ss_bool_t R > inline ss_size_t array_size(fixed_array_5d<T, A, P, R> const& ar) { return ar.size(); } #endif /* 0 */
/* ////////////////////////////////////////////////////////////////////// */
#ifndef _STLSOFT_NO_NAMESPACE
} // namespace stlsoft
#endif /* _STLSOFT_NO_NAMESPACE */
/* ////////////////////////////////////////////////////////////////////// */
#endif /* !STLSOFT_INCL_STLSOFT_CONTAINERS_HPP_FIXED_ARRAY */
/* ///////////////////////////// end of file //////////////////////////// */
|