|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/SVD>
template<typename MatrixType> void svd(const MatrixType& m) { /* this test covers the following files:
SVD.h */ int rows = m.rows(); int cols = m.cols();
typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; MatrixType a = MatrixType::Random(rows,cols); Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> b = Matrix<Scalar, MatrixType::RowsAtCompileTime, 1>::Random(rows,1); Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> x(cols,1), x2(cols,1);
RealScalar largerEps = test_precision<RealScalar>(); if (ei_is_same_type<RealScalar,float>::ret) largerEps = 1e-3f;
{ SVD<MatrixType> svd(a); MatrixType sigma = MatrixType::Zero(rows,cols); MatrixType matU = MatrixType::Zero(rows,rows); sigma.block(0,0,cols,cols) = svd.singularValues().asDiagonal(); matU.block(0,0,rows,cols) = svd.matrixU(); VERIFY_IS_APPROX(a, matU * sigma * svd.matrixV().transpose()); }
if (rows==cols) { if (ei_is_same_type<RealScalar,float>::ret) { MatrixType a1 = MatrixType::Random(rows,cols); a += a * a.adjoint() + a1 * a1.adjoint(); } SVD<MatrixType> svd(a); svd.solve(b, &x); VERIFY_IS_APPROX(a * x,b); }
if(rows==cols) { SVD<MatrixType> svd(a); MatrixType unitary, positive; svd.computeUnitaryPositive(&unitary, &positive); VERIFY_IS_APPROX(unitary * unitary.adjoint(), MatrixType::Identity(unitary.rows(),unitary.rows())); VERIFY_IS_APPROX(positive, positive.adjoint()); for(int i = 0; i < rows; i++) VERIFY(positive.diagonal()[i] >= 0); // cheap necessary (not sufficient) condition for positivity
VERIFY_IS_APPROX(unitary*positive, a);
svd.computePositiveUnitary(&positive, &unitary); VERIFY_IS_APPROX(unitary * unitary.adjoint(), MatrixType::Identity(unitary.rows(),unitary.rows())); VERIFY_IS_APPROX(positive, positive.adjoint()); for(int i = 0; i < rows; i++) VERIFY(positive.diagonal()[i] >= 0); // cheap necessary (not sufficient) condition for positivity
VERIFY_IS_APPROX(positive*unitary, a); } }
void test_eigen2_svd() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( svd(Matrix3f()) ); CALL_SUBTEST_2( svd(Matrix4d()) ); CALL_SUBTEST_3( svd(MatrixXf(7,7)) ); CALL_SUBTEST_4( svd(MatrixXd(14,7)) ); // complex are not implemented yet
// CALL_SUBTEST( svd(MatrixXcd(6,6)) );
// CALL_SUBTEST( svd(MatrixXcf(3,3)) );
SVD<MatrixXf> s; MatrixXf m = MatrixXf::Random(10,1); s.compute(m); } }
|