|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "sparse.h"
template<typename SetterType,typename DenseType, typename Scalar, int Options> bool test_random_setter(SparseMatrix<Scalar,Options>& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords) { typedef SparseMatrix<Scalar,Options> SparseType; { sm.setZero(); SetterType w(sm); std::vector<Vector2i> remaining = nonzeroCoords; while(!remaining.empty()) { int i = ei_random<int>(0,remaining.size()-1); w(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y()); remaining[i] = remaining.back(); remaining.pop_back(); } } return sm.isApprox(ref); }
template<typename SetterType,typename DenseType, typename T> bool test_random_setter(DynamicSparseMatrix<T>& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords) { sm.setZero(); std::vector<Vector2i> remaining = nonzeroCoords; while(!remaining.empty()) { int i = ei_random<int>(0,remaining.size()-1); sm.coeffRef(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y()); remaining[i] = remaining.back(); remaining.pop_back(); } return sm.isApprox(ref); }
template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref) { const int rows = ref.rows(); const int cols = ref.cols(); typedef typename SparseMatrixType::Scalar Scalar; enum { Flags = SparseMatrixType::Flags }; double density = std::max(8./(rows*cols), 0.01); typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; typedef Matrix<Scalar,Dynamic,1> DenseVector; Scalar eps = 1e-6;
SparseMatrixType m(rows, cols); DenseMatrix refMat = DenseMatrix::Zero(rows, cols); DenseVector vec1 = DenseVector::Random(rows); Scalar s1 = ei_random<Scalar>();
std::vector<Vector2i> zeroCoords; std::vector<Vector2i> nonzeroCoords; initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords); if (zeroCoords.size()==0 || nonzeroCoords.size()==0) return;
// test coeff and coeffRef
for (int i=0; i<(int)zeroCoords.size(); ++i) { VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps ); if(ei_is_same_type<SparseMatrixType,SparseMatrix<Scalar,Flags> >::ret) VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 ); } VERIFY_IS_APPROX(m, refMat);
m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
VERIFY_IS_APPROX(m, refMat); /*
// test InnerIterators and Block expressions
for (int t=0; t<10; ++t) { int j = ei_random<int>(0,cols-1); int i = ei_random<int>(0,rows-1); int w = ei_random<int>(1,cols-j-1); int h = ei_random<int>(1,rows-i-1);
// VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w));
for(int c=0; c<w; c++) { VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c)); for(int r=0; r<h; r++) { // VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r));
} } // for(int r=0; r<h; r++)
// {
// VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r));
// for(int c=0; c<w; c++)
// {
// VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c));
// }
// }
}
for(int c=0; c<cols; c++) { VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c)); VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c)); }
for(int r=0; r<rows; r++) { VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r)); VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r)); } */
// test SparseSetters
// coherent setter
// TODO extend the MatrixSetter
// {
// m.setZero();
// VERIFY_IS_NOT_APPROX(m, refMat);
// SparseSetter<SparseMatrixType, FullyCoherentAccessPattern> w(m);
// for (int i=0; i<nonzeroCoords.size(); ++i)
// {
// w->coeffRef(nonzeroCoords[i].x(),nonzeroCoords[i].y()) = refMat.coeff(nonzeroCoords[i].x(),nonzeroCoords[i].y());
// }
// }
// VERIFY_IS_APPROX(m, refMat);
// random setter
// {
// m.setZero();
// VERIFY_IS_NOT_APPROX(m, refMat);
// SparseSetter<SparseMatrixType, RandomAccessPattern> w(m);
// std::vector<Vector2i> remaining = nonzeroCoords;
// while(!remaining.empty())
// {
// int i = ei_random<int>(0,remaining.size()-1);
// w->coeffRef(remaining[i].x(),remaining[i].y()) = refMat.coeff(remaining[i].x(),remaining[i].y());
// remaining[i] = remaining.back();
// remaining.pop_back();
// }
// }
// VERIFY_IS_APPROX(m, refMat);
VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdMapTraits> >(m,refMat,nonzeroCoords) )); #ifdef EIGEN_UNORDERED_MAP_SUPPORT
VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdUnorderedMapTraits> >(m,refMat,nonzeroCoords) )); #endif
#ifdef _DENSE_HASH_MAP_H_
VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleDenseHashMapTraits> >(m,refMat,nonzeroCoords) )); #endif
#ifdef _SPARSE_HASH_MAP_H_
VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleSparseHashMapTraits> >(m,refMat,nonzeroCoords) )); #endif
// test fillrand
{ DenseMatrix m1(rows,cols); m1.setZero(); SparseMatrixType m2(rows,cols); m2.startFill(); for (int j=0; j<cols; ++j) { for (int k=0; k<rows/2; ++k) { int i = ei_random<int>(0,rows-1); if (m1.coeff(i,j)==Scalar(0)) m2.fillrand(i,j) = m1(i,j) = ei_random<Scalar>(); } } m2.endFill(); VERIFY_IS_APPROX(m2,m1); } // test RandomSetter
/*{
SparseMatrixType m1(rows,cols), m2(rows,cols); DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); initSparse<Scalar>(density, refM1, m1); { Eigen::RandomSetter<SparseMatrixType > setter(m2); for (int j=0; j<m1.outerSize(); ++j) for (typename SparseMatrixType::InnerIterator i(m1,j); i; ++i) setter(i.index(), j) = i.value(); } VERIFY_IS_APPROX(m1, m2); }*/ // std::cerr << m.transpose() << "\n\n" << refMat.transpose() << "\n\n";
// VERIFY_IS_APPROX(m, refMat);
// test basic computations
{ DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); DenseMatrix refM2 = DenseMatrix::Zero(rows, rows); DenseMatrix refM3 = DenseMatrix::Zero(rows, rows); DenseMatrix refM4 = DenseMatrix::Zero(rows, rows); SparseMatrixType m1(rows, rows); SparseMatrixType m2(rows, rows); SparseMatrixType m3(rows, rows); SparseMatrixType m4(rows, rows); initSparse<Scalar>(density, refM1, m1); initSparse<Scalar>(density, refM2, m2); initSparse<Scalar>(density, refM3, m3); initSparse<Scalar>(density, refM4, m4);
VERIFY_IS_APPROX(m1+m2, refM1+refM2); VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3); VERIFY_IS_APPROX(m3.cwise()*(m1+m2), refM3.cwise()*(refM1+refM2)); VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2);
VERIFY_IS_APPROX(m1*=s1, refM1*=s1); VERIFY_IS_APPROX(m1/=s1, refM1/=s1); VERIFY_IS_APPROX(m1+=m2, refM1+=refM2); VERIFY_IS_APPROX(m1-=m2, refM1-=refM2); VERIFY_IS_APPROX(m1.col(0).eigen2_dot(refM2.row(0)), refM1.col(0).eigen2_dot(refM2.row(0))); refM4.setRandom(); // sparse cwise* dense
VERIFY_IS_APPROX(m3.cwise()*refM4, refM3.cwise()*refM4); // VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);
}
// test innerVector()
{ DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); SparseMatrixType m2(rows, rows); initSparse<Scalar>(density, refMat2, m2); int j0 = ei_random(0,rows-1); int j1 = ei_random(0,rows-1); VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0)); VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1)); //m2.innerVector(j0) = 2*m2.innerVector(j1);
//refMat2.col(j0) = 2*refMat2.col(j1);
//VERIFY_IS_APPROX(m2, refMat2);
} // test innerVectors()
{ DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); SparseMatrixType m2(rows, rows); initSparse<Scalar>(density, refMat2, m2); int j0 = ei_random(0,rows-2); int j1 = ei_random(0,rows-2); int n0 = ei_random<int>(1,rows-std::max(j0,j1)); VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0)); VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); //m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0);
//refMat2.block(0,j0,rows,n0) = refMat2.block(0,j0,rows,n0) + refMat2.block(0,j1,rows,n0);
}
// test transpose
{ DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); SparseMatrixType m2(rows, rows); initSparse<Scalar>(density, refMat2, m2); VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval()); VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose()); } // test prune
{ SparseMatrixType m2(rows, rows); DenseMatrix refM2(rows, rows); refM2.setZero(); int countFalseNonZero = 0; int countTrueNonZero = 0; m2.startFill(); for (int j=0; j<m2.outerSize(); ++j) for (int i=0; i<m2.innerSize(); ++i) { float x = ei_random<float>(0,1); if (x<0.1) { // do nothing
} else if (x<0.5) { countFalseNonZero++; m2.fill(i,j) = Scalar(0); } else { countTrueNonZero++; m2.fill(i,j) = refM2(i,j) = Scalar(1); } } m2.endFill(); VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros()); VERIFY_IS_APPROX(m2, refM2); m2.prune(1); VERIFY(countTrueNonZero==m2.nonZeros()); VERIFY_IS_APPROX(m2, refM2); } }
void test_eigen2_sparse_basic() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( sparse_basic(SparseMatrix<double>(8, 8)) ); CALL_SUBTEST_2( sparse_basic(SparseMatrix<std::complex<double> >(16, 16)) ); CALL_SUBTEST_1( sparse_basic(SparseMatrix<double>(33, 33)) ); CALL_SUBTEST_3( sparse_basic(DynamicSparseMatrix<double>(8, 8)) ); } }
|