|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_NO_ASSERTION_CHECKING
#include "main.h"
#include <Eigen/Cholesky>
#include <Eigen/LU>
#ifdef HAS_GSL
#include "gsl_helper.h"
#endif
template<typename MatrixType> void cholesky(const MatrixType& m) { /* this test covers the following files:
LLT.h LDLT.h */ int rows = m.rows(); int cols = m.cols();
typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
MatrixType a0 = MatrixType::Random(rows,cols); VectorType vecB = VectorType::Random(rows), vecX(rows); MatrixType matB = MatrixType::Random(rows,cols), matX(rows,cols); SquareMatrixType symm = a0 * a0.adjoint(); // let's make sure the matrix is not singular or near singular
MatrixType a1 = MatrixType::Random(rows,cols); symm += a1 * a1.adjoint();
#ifdef HAS_GSL
if (ei_is_same_type<RealScalar,double>::ret) { typedef GslTraits<Scalar> Gsl; typename Gsl::Matrix gMatA=0, gSymm=0; typename Gsl::Vector gVecB=0, gVecX=0; convert<MatrixType>(symm, gSymm); convert<MatrixType>(symm, gMatA); convert<VectorType>(vecB, gVecB); convert<VectorType>(vecB, gVecX); Gsl::cholesky(gMatA); Gsl::cholesky_solve(gMatA, gVecB, gVecX); VectorType vecX(rows), _vecX, _vecB; convert(gVecX, _vecX); symm.llt().solve(vecB, &vecX); Gsl::prod(gSymm, gVecX, gVecB); convert(gVecB, _vecB); // test gsl itself !
VERIFY_IS_APPROX(vecB, _vecB); VERIFY_IS_APPROX(vecX, _vecX);
Gsl::free(gMatA); Gsl::free(gSymm); Gsl::free(gVecB); Gsl::free(gVecX); } #endif
{ LDLT<SquareMatrixType> ldlt(symm); VERIFY(ldlt.isPositiveDefinite()); // in eigen3, LDLT is pivoting
//VERIFY_IS_APPROX(symm, ldlt.matrixL() * ldlt.vectorD().asDiagonal() * ldlt.matrixL().adjoint());
ldlt.solve(vecB, &vecX); VERIFY_IS_APPROX(symm * vecX, vecB); ldlt.solve(matB, &matX); VERIFY_IS_APPROX(symm * matX, matB); }
{ LLT<SquareMatrixType> chol(symm); VERIFY(chol.isPositiveDefinite()); VERIFY_IS_APPROX(symm, chol.matrixL() * chol.matrixL().adjoint()); chol.solve(vecB, &vecX); VERIFY_IS_APPROX(symm * vecX, vecB); chol.solve(matB, &matX); VERIFY_IS_APPROX(symm * matX, matB); }
#if 0 // cholesky is not rank-revealing anyway
// test isPositiveDefinite on non definite matrix
if (rows>4) { SquareMatrixType symm = a0.block(0,0,rows,cols-4) * a0.block(0,0,rows,cols-4).adjoint(); LLT<SquareMatrixType> chol(symm); VERIFY(!chol.isPositiveDefinite()); LDLT<SquareMatrixType> cholnosqrt(symm); VERIFY(!cholnosqrt.isPositiveDefinite()); } #endif
}
void test_eigen2_cholesky() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( cholesky(Matrix<double,1,1>()) ); CALL_SUBTEST_2( cholesky(Matrix2d()) ); CALL_SUBTEST_3( cholesky(Matrix3f()) ); CALL_SUBTEST_4( cholesky(Matrix4d()) ); CALL_SUBTEST_5( cholesky(MatrixXcd(7,7)) ); CALL_SUBTEST_6( cholesky(MatrixXf(17,17)) ); CALL_SUBTEST_7( cholesky(MatrixXd(33,33)) ); } }
|