You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

142 lines
5.3 KiB

  1. // This file is part of Eigen, a lightweight C++ template library
  2. // for linear algebra. Eigen itself is part of the KDE project.
  3. //
  4. // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
  5. //
  6. // This Source Code Form is subject to the terms of the Mozilla
  7. // Public License v. 2.0. If a copy of the MPL was not distributed
  8. // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
  9. #include "main.h"
  10. #include <Eigen/Array>
  11. template<typename MatrixType> void array(const MatrixType& m)
  12. {
  13. /* this test covers the following files:
  14. Array.cpp
  15. */
  16. typedef typename MatrixType::Scalar Scalar;
  17. typedef typename NumTraits<Scalar>::Real RealScalar;
  18. typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
  19. int rows = m.rows();
  20. int cols = m.cols();
  21. MatrixType m1 = MatrixType::Random(rows, cols),
  22. m2 = MatrixType::Random(rows, cols),
  23. m3(rows, cols);
  24. Scalar s1 = ei_random<Scalar>(),
  25. s2 = ei_random<Scalar>();
  26. // scalar addition
  27. VERIFY_IS_APPROX(m1.cwise() + s1, s1 + m1.cwise());
  28. VERIFY_IS_APPROX(m1.cwise() + s1, MatrixType::Constant(rows,cols,s1) + m1);
  29. VERIFY_IS_APPROX((m1*Scalar(2)).cwise() - s2, (m1+m1) - MatrixType::Constant(rows,cols,s2) );
  30. m3 = m1;
  31. m3.cwise() += s2;
  32. VERIFY_IS_APPROX(m3, m1.cwise() + s2);
  33. m3 = m1;
  34. m3.cwise() -= s1;
  35. VERIFY_IS_APPROX(m3, m1.cwise() - s1);
  36. // reductions
  37. VERIFY_IS_APPROX(m1.colwise().sum().sum(), m1.sum());
  38. VERIFY_IS_APPROX(m1.rowwise().sum().sum(), m1.sum());
  39. if (!ei_isApprox(m1.sum(), (m1+m2).sum()))
  40. VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum());
  41. VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar>()));
  42. }
  43. template<typename MatrixType> void comparisons(const MatrixType& m)
  44. {
  45. typedef typename MatrixType::Scalar Scalar;
  46. typedef typename NumTraits<Scalar>::Real RealScalar;
  47. typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
  48. int rows = m.rows();
  49. int cols = m.cols();
  50. int r = ei_random<int>(0, rows-1),
  51. c = ei_random<int>(0, cols-1);
  52. MatrixType m1 = MatrixType::Random(rows, cols),
  53. m2 = MatrixType::Random(rows, cols),
  54. m3(rows, cols);
  55. VERIFY(((m1.cwise() + Scalar(1)).cwise() > m1).all());
  56. VERIFY(((m1.cwise() - Scalar(1)).cwise() < m1).all());
  57. if (rows*cols>1)
  58. {
  59. m3 = m1;
  60. m3(r,c) += 1;
  61. VERIFY(! (m1.cwise() < m3).all() );
  62. VERIFY(! (m1.cwise() > m3).all() );
  63. }
  64. // comparisons to scalar
  65. VERIFY( (m1.cwise() != (m1(r,c)+1) ).any() );
  66. VERIFY( (m1.cwise() > (m1(r,c)-1) ).any() );
  67. VERIFY( (m1.cwise() < (m1(r,c)+1) ).any() );
  68. VERIFY( (m1.cwise() == m1(r,c) ).any() );
  69. // test Select
  70. VERIFY_IS_APPROX( (m1.cwise()<m2).select(m1,m2), m1.cwise().min(m2) );
  71. VERIFY_IS_APPROX( (m1.cwise()>m2).select(m1,m2), m1.cwise().max(m2) );
  72. Scalar mid = (m1.cwise().abs().minCoeff() + m1.cwise().abs().maxCoeff())/Scalar(2);
  73. for (int j=0; j<cols; ++j)
  74. for (int i=0; i<rows; ++i)
  75. m3(i,j) = ei_abs(m1(i,j))<mid ? 0 : m1(i,j);
  76. VERIFY_IS_APPROX( (m1.cwise().abs().cwise()<MatrixType::Constant(rows,cols,mid))
  77. .select(MatrixType::Zero(rows,cols),m1), m3);
  78. // shorter versions:
  79. VERIFY_IS_APPROX( (m1.cwise().abs().cwise()<MatrixType::Constant(rows,cols,mid))
  80. .select(0,m1), m3);
  81. VERIFY_IS_APPROX( (m1.cwise().abs().cwise()>=MatrixType::Constant(rows,cols,mid))
  82. .select(m1,0), m3);
  83. // even shorter version:
  84. VERIFY_IS_APPROX( (m1.cwise().abs().cwise()<mid).select(0,m1), m3);
  85. // count
  86. VERIFY(((m1.cwise().abs().cwise()+1).cwise()>RealScalar(0.1)).count() == rows*cols);
  87. VERIFY_IS_APPROX(((m1.cwise().abs().cwise()+1).cwise()>RealScalar(0.1)).colwise().count().template cast<int>(), RowVectorXi::Constant(cols,rows));
  88. VERIFY_IS_APPROX(((m1.cwise().abs().cwise()+1).cwise()>RealScalar(0.1)).rowwise().count().template cast<int>(), VectorXi::Constant(rows, cols));
  89. }
  90. template<typename VectorType> void lpNorm(const VectorType& v)
  91. {
  92. VectorType u = VectorType::Random(v.size());
  93. VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), u.cwise().abs().maxCoeff());
  94. VERIFY_IS_APPROX(u.template lpNorm<1>(), u.cwise().abs().sum());
  95. VERIFY_IS_APPROX(u.template lpNorm<2>(), ei_sqrt(u.cwise().abs().cwise().square().sum()));
  96. VERIFY_IS_APPROX(ei_pow(u.template lpNorm<5>(), typename VectorType::RealScalar(5)), u.cwise().abs().cwise().pow(5).sum());
  97. }
  98. void test_eigen2_array()
  99. {
  100. for(int i = 0; i < g_repeat; i++) {
  101. CALL_SUBTEST_1( array(Matrix<float, 1, 1>()) );
  102. CALL_SUBTEST_2( array(Matrix2f()) );
  103. CALL_SUBTEST_3( array(Matrix4d()) );
  104. CALL_SUBTEST_4( array(MatrixXcf(3, 3)) );
  105. CALL_SUBTEST_5( array(MatrixXf(8, 12)) );
  106. CALL_SUBTEST_6( array(MatrixXi(8, 12)) );
  107. }
  108. for(int i = 0; i < g_repeat; i++) {
  109. CALL_SUBTEST_1( comparisons(Matrix<float, 1, 1>()) );
  110. CALL_SUBTEST_2( comparisons(Matrix2f()) );
  111. CALL_SUBTEST_3( comparisons(Matrix4d()) );
  112. CALL_SUBTEST_5( comparisons(MatrixXf(8, 12)) );
  113. CALL_SUBTEST_6( comparisons(MatrixXi(8, 12)) );
  114. }
  115. for(int i = 0; i < g_repeat; i++) {
  116. CALL_SUBTEST_1( lpNorm(Matrix<float, 1, 1>()) );
  117. CALL_SUBTEST_2( lpNorm(Vector2f()) );
  118. CALL_SUBTEST_3( lpNorm(Vector3d()) );
  119. CALL_SUBTEST_4( lpNorm(Vector4f()) );
  120. CALL_SUBTEST_5( lpNorm(VectorXf(16)) );
  121. CALL_SUBTEST_7( lpNorm(VectorXcd(10)) );
  122. }
  123. }