|
|
#include "ExplicitDFTModelBuilderApprox.h"
#include <map>
#include "storm/models/sparse/MarkovAutomaton.h"
#include "storm/models/sparse/Ctmc.h"
#include "storm/utility/constants.h"
#include "storm/utility/vector.h"
#include "storm/utility/bitoperations.h"
#include "storm/exceptions/UnexpectedException.h"
#include "storm/settings/SettingsManager.h"
#include "storm-dft/settings/modules/DFTSettings.h"
namespace storm { namespace builder {
template<typename ValueType, typename StateType> ExplicitDFTModelBuilderApprox<ValueType, StateType>::ModelComponents::ModelComponents() : transitionMatrix(), stateLabeling(), markovianStates(), exitRates(), choiceLabeling() { // Intentionally left empty.
}
template<typename ValueType, typename StateType> ExplicitDFTModelBuilderApprox<ValueType, StateType>::MatrixBuilder::MatrixBuilder(bool canHaveNondeterminism) : mappingOffset(0), stateRemapping(), currentRowGroup(0), currentRow(0), canHaveNondeterminism((canHaveNondeterminism)) { // Create matrix builder
builder = storm::storage::SparseMatrixBuilder<ValueType>(0, 0, 0, false, canHaveNondeterminism, 0); }
template<typename ValueType, typename StateType> ExplicitDFTModelBuilderApprox<ValueType, StateType>::ExplicitDFTModelBuilderApprox(storm::storage::DFT<ValueType> const& dft, storm::storage::DFTIndependentSymmetries const& symmetries, bool enableDC) : dft(dft), stateGenerationInfo(std::make_shared<storm::storage::DFTStateGenerationInfo>(dft.buildStateGenerationInfo(symmetries))), enableDC(enableDC), usedHeuristic(storm::settings::getModule<storm::settings::modules::DFTSettings>().getApproximationHeuristic()), generator(dft, *stateGenerationInfo, enableDC, mergeFailedStates), matrixBuilder(!generator.isDeterministicModel()), stateStorage(((dft.stateVectorSize() / 64) + 1) * 64), // TODO Matthias: make choosable
//explorationQueue(dft.nrElements()+1, 0, 1)
explorationQueue(200, 0, 0.9) { // Intentionally left empty.
// TODO Matthias: remove again
usedHeuristic = storm::builder::ApproximationHeuristic::BOUNDDIFFERENCE;
// Compute independent subtrees
if (dft.topLevelType() == storm::storage::DFTElementType::OR) { // We only support this for approximation with top level element OR
for (auto const& child : dft.getGate(dft.getTopLevelIndex())->children()) { // Consider all children of the top level gate
std::vector<size_t> isubdft; if (child->nrParents() > 1 || child->hasOutgoingDependencies()) { STORM_LOG_TRACE("child " << child->name() << "does not allow modularisation."); isubdft.clear(); } else if (dft.isGate(child->id())) { isubdft = dft.getGate(child->id())->independentSubDft(false); } else { STORM_LOG_ASSERT(dft.isBasicElement(child->id()), "Child is no BE."); if(dft.getBasicElement(child->id())->hasIngoingDependencies()) { STORM_LOG_TRACE("child " << child->name() << "does not allow modularisation."); isubdft.clear(); } else { isubdft = {child->id()}; } } if(isubdft.empty()) { subtreeBEs.clear(); break; } else { // Add new independent subtree
std::vector<size_t> subtree; for (size_t id : isubdft) { if (dft.isBasicElement(id)) { subtree.push_back(id); } } subtreeBEs.push_back(subtree); } } } if (subtreeBEs.empty()) { // Consider complete tree
std::vector<size_t> subtree; for (size_t id = 0; id < dft.nrElements(); ++id) { if (dft.isBasicElement(id)) { subtree.push_back(id); } } subtreeBEs.push_back(subtree); }
for (auto tree : subtreeBEs) { std::stringstream stream; stream << "Subtree: "; for (size_t id : tree) { stream << id << ", "; } STORM_LOG_TRACE(stream.str()); } }
template<typename ValueType, typename StateType> void ExplicitDFTModelBuilderApprox<ValueType, StateType>::buildModel(LabelOptions const& labelOpts, size_t iteration, double approximationThreshold) { STORM_LOG_TRACE("Generating DFT state space");
if (iteration < 1) { // Initialize
modelComponents.markovianStates = storm::storage::BitVector(INITIAL_BITVECTOR_SIZE);
if(mergeFailedStates) { // Introduce explicit fail state
storm::generator::StateBehavior<ValueType, StateType> behavior = generator.createMergeFailedState([this] (DFTStatePointer const& state) { this->failedStateId = newIndex++; matrixBuilder.stateRemapping.push_back(0); return this->failedStateId; } );
matrixBuilder.setRemapping(failedStateId); STORM_LOG_ASSERT(!behavior.empty(), "Behavior is empty."); matrixBuilder.newRowGroup(); setMarkovian(behavior.begin()->isMarkovian());
// Now add self loop.
// TODO Matthias: maybe use general method.
STORM_LOG_ASSERT(behavior.getNumberOfChoices() == 1, "Wrong number of choices for failed state."); STORM_LOG_ASSERT(behavior.begin()->size() == 1, "Wrong number of transitions for failed state."); std::pair<StateType, ValueType> stateProbabilityPair = *(behavior.begin()->begin()); STORM_LOG_ASSERT(stateProbabilityPair.first == failedStateId, "No self loop for failed state."); STORM_LOG_ASSERT(storm::utility::isOne<ValueType>(stateProbabilityPair.second), "Probability for failed state != 1."); matrixBuilder.addTransition(stateProbabilityPair.first, stateProbabilityPair.second); matrixBuilder.finishRow(); }
// Build initial state
this->stateStorage.initialStateIndices = generator.getInitialStates(std::bind(&ExplicitDFTModelBuilderApprox::getOrAddStateIndex, this, std::placeholders::_1)); STORM_LOG_ASSERT(stateStorage.initialStateIndices.size() == 1, "Only one initial state assumed."); initialStateIndex = stateStorage.initialStateIndices[0]; STORM_LOG_TRACE("Initial state: " << initialStateIndex); // Initialize heuristic values for inital state
STORM_LOG_ASSERT(!statesNotExplored.at(initialStateIndex).second, "Heuristic for initial state is already initialized"); ExplorationHeuristicPointer heuristic = std::make_shared<ExplorationHeuristic>(initialStateIndex); heuristic->markExpand(); statesNotExplored[initialStateIndex].second = heuristic; explorationQueue.push(heuristic); } else { initializeNextIteration(); }
if (approximationThreshold > 0) { switch (usedHeuristic) { case storm::builder::ApproximationHeuristic::NONE: // Do not change anything
approximationThreshold = dft.nrElements()+10; break; case storm::builder::ApproximationHeuristic::DEPTH: approximationThreshold = iteration; break; case storm::builder::ApproximationHeuristic::PROBABILITY: case storm::builder::ApproximationHeuristic::BOUNDDIFFERENCE: approximationThreshold = 10 * std::pow(2, iteration); break; } } exploreStateSpace(approximationThreshold);
size_t stateSize = stateStorage.getNumberOfStates() + (mergeFailedStates ? 1 : 0); modelComponents.markovianStates.resize(stateSize); modelComponents.deterministicModel = generator.isDeterministicModel();
// Fix the entries in the transition matrix according to the mapping of ids to row group indices
STORM_LOG_ASSERT(matrixBuilder.stateRemapping[initialStateIndex] == initialStateIndex, "Initial state should not be remapped."); // TODO Matthias: do not consider all rows?
STORM_LOG_TRACE("Remap matrix: " << matrixBuilder.stateRemapping << ", offset: " << matrixBuilder.mappingOffset); matrixBuilder.remap();
STORM_LOG_TRACE("State remapping: " << matrixBuilder.stateRemapping); STORM_LOG_TRACE("Markovian states: " << modelComponents.markovianStates); STORM_LOG_DEBUG("Model has " << stateSize << " states"); STORM_LOG_DEBUG("Model is " << (generator.isDeterministicModel() ? "deterministic" : "non-deterministic"));
// Build transition matrix
modelComponents.transitionMatrix = matrixBuilder.builder.build(stateSize, stateSize); if (stateSize <= 15) { STORM_LOG_TRACE("Transition matrix: " << std::endl << modelComponents.transitionMatrix); } else { STORM_LOG_TRACE("Transition matrix: too big to print"); }
buildLabeling(labelOpts); }
template<typename ValueType, typename StateType> void ExplicitDFTModelBuilderApprox<ValueType, StateType>::initializeNextIteration() { STORM_LOG_TRACE("Refining DFT state space");
// TODO Matthias: should be easier now as skipped states all are at the end of the matrix
// Push skipped states to explore queue
// TODO Matthias: remove
for (auto const& skippedState : skippedStates) { statesNotExplored[skippedState.second.first->getId()] = skippedState.second; explorationQueue.push(skippedState.second.second); }
// Initialize matrix builder again
// TODO Matthias: avoid copy
std::vector<uint_fast64_t> copyRemapping = matrixBuilder.stateRemapping; matrixBuilder = MatrixBuilder(!generator.isDeterministicModel()); matrixBuilder.stateRemapping = copyRemapping; StateType nrStates = modelComponents.transitionMatrix.getRowGroupCount(); STORM_LOG_ASSERT(nrStates == matrixBuilder.stateRemapping.size(), "No. of states does not coincide with mapping size.");
// Start by creating a remapping from the old indices to the new indices
std::vector<StateType> indexRemapping = std::vector<StateType>(nrStates, 0); auto iterSkipped = skippedStates.begin(); size_t skippedBefore = 0; for (size_t i = 0; i < indexRemapping.size(); ++i) { while (iterSkipped != skippedStates.end() && iterSkipped->first <= i) { STORM_LOG_ASSERT(iterSkipped->first < indexRemapping.size(), "Skipped is too high."); ++skippedBefore; ++iterSkipped; } indexRemapping[i] = i - skippedBefore; }
// Set remapping
size_t nrExpandedStates = nrStates - skippedBefore; matrixBuilder.mappingOffset = nrStates; STORM_LOG_TRACE("# expanded states: " << nrExpandedStates); StateType skippedIndex = nrExpandedStates; std::map<StateType, std::pair<DFTStatePointer, ExplorationHeuristicPointer>> skippedStatesNew; for (size_t id = 0; id < matrixBuilder.stateRemapping.size(); ++id) { StateType index = matrixBuilder.stateRemapping[id]; auto itFind = skippedStates.find(index); if (itFind != skippedStates.end()) { // Set new mapping for skipped state
matrixBuilder.stateRemapping[id] = skippedIndex; skippedStatesNew[skippedIndex] = itFind->second; indexRemapping[index] = skippedIndex; ++skippedIndex; } else { // Set new mapping for expanded state
matrixBuilder.stateRemapping[id] = indexRemapping[index]; } } STORM_LOG_TRACE("New state remapping: " << matrixBuilder.stateRemapping); std::stringstream ss; ss << "Index remapping:" << std::endl; for (auto tmp : indexRemapping) { ss << tmp << " "; } STORM_LOG_TRACE(ss.str());
// Remap markovian states
storm::storage::BitVector markovianStatesNew = storm::storage::BitVector(modelComponents.markovianStates.size(), true); // Iterate over all not set bits
modelComponents.markovianStates.complement(); size_t index = modelComponents.markovianStates.getNextSetIndex(0); while (index < modelComponents.markovianStates.size()) { markovianStatesNew.set(indexRemapping[index], false); index = modelComponents.markovianStates.getNextSetIndex(index+1); } STORM_LOG_ASSERT(modelComponents.markovianStates.size() - modelComponents.markovianStates.getNumberOfSetBits() == markovianStatesNew.getNumberOfSetBits(), "Remapping of markovian states is wrong."); STORM_LOG_ASSERT(markovianStatesNew.size() == nrStates, "No. of states does not coincide with markovian size."); modelComponents.markovianStates = markovianStatesNew;
// Build submatrix for expanded states
// TODO Matthias: only use row groups when necessary
for (StateType oldRowGroup = 0; oldRowGroup < modelComponents.transitionMatrix.getRowGroupCount(); ++oldRowGroup) { if (indexRemapping[oldRowGroup] < nrExpandedStates) { // State is expanded -> copy to new matrix
matrixBuilder.newRowGroup(); for (StateType oldRow = modelComponents.transitionMatrix.getRowGroupIndices()[oldRowGroup]; oldRow < modelComponents.transitionMatrix.getRowGroupIndices()[oldRowGroup+1]; ++oldRow) { for (typename storm::storage::SparseMatrix<ValueType>::const_iterator itEntry = modelComponents.transitionMatrix.begin(oldRow); itEntry != modelComponents.transitionMatrix.end(oldRow); ++itEntry) { auto itFind = skippedStates.find(itEntry->getColumn()); if (itFind != skippedStates.end()) { // Set id for skipped states as we remap it later
matrixBuilder.addTransition(matrixBuilder.mappingOffset + itFind->second.first->getId(), itEntry->getValue()); } else { // Set newly remapped index for expanded states
matrixBuilder.addTransition(indexRemapping[itEntry->getColumn()], itEntry->getValue()); } } matrixBuilder.finishRow(); } } }
skippedStates = skippedStatesNew;
STORM_LOG_ASSERT(matrixBuilder.getCurrentRowGroup() == nrExpandedStates, "Row group size does not match."); skippedStates.clear(); }
template<typename ValueType, typename StateType> void ExplicitDFTModelBuilderApprox<ValueType, StateType>::exploreStateSpace(double approximationThreshold) { size_t nrExpandedStates = 0; size_t nrSkippedStates = 0; // TODO Matthias: do not empty queue every time but break before
while (!explorationQueue.empty()) { // Get the first state in the queue
ExplorationHeuristicPointer currentExplorationHeuristic = explorationQueue.popTop(); StateType currentId = currentExplorationHeuristic->getId(); auto itFind = statesNotExplored.find(currentId); STORM_LOG_ASSERT(itFind != statesNotExplored.end(), "Id " << currentId << " not found"); DFTStatePointer currentState = itFind->second.first; STORM_LOG_ASSERT(currentExplorationHeuristic == itFind->second.second, "Exploration heuristics do not match"); STORM_LOG_ASSERT(currentState->getId() == currentId, "Ids do not match"); // Remove it from the list of not explored states
statesNotExplored.erase(itFind); STORM_LOG_ASSERT(stateStorage.stateToId.contains(currentState->status()), "State is not contained in state storage."); STORM_LOG_ASSERT(stateStorage.stateToId.getValue(currentState->status()) == currentId, "Ids of states do not coincide.");
// Get concrete state if necessary
if (currentState->isPseudoState()) { // Create concrete state from pseudo state
currentState->construct(); } STORM_LOG_ASSERT(!currentState->isPseudoState(), "State is pseudo state.");
// Remember that the current row group was actually filled with the transitions of a different state
matrixBuilder.setRemapping(currentId);
matrixBuilder.newRowGroup();
// Try to explore the next state
generator.load(currentState);
if (approximationThreshold > 0.0 && nrExpandedStates > approximationThreshold && !currentExplorationHeuristic->isExpand()) { //if (currentExplorationHeuristic->isSkip(approximationThreshold)) {
// Skip the current state
++nrSkippedStates; STORM_LOG_TRACE("Skip expansion of state: " << dft.getStateString(currentState)); setMarkovian(true); // Add transition to target state with temporary value 0
// TODO Matthias: what to do when there is no unique target state?
matrixBuilder.addTransition(failedStateId, storm::utility::zero<ValueType>()); // Remember skipped state
skippedStates[matrixBuilder.getCurrentRowGroup() - 1] = std::make_pair(currentState, currentExplorationHeuristic); matrixBuilder.finishRow(); } else { // Explore the current state
++nrExpandedStates; storm::generator::StateBehavior<ValueType, StateType> behavior = generator.expand(std::bind(&ExplicitDFTModelBuilderApprox::getOrAddStateIndex, this, std::placeholders::_1)); STORM_LOG_ASSERT(!behavior.empty(), "Behavior is empty."); setMarkovian(behavior.begin()->isMarkovian());
// Now add all choices.
for (auto const& choice : behavior) { // Add the probabilistic behavior to the matrix.
for (auto const& stateProbabilityPair : choice) { STORM_LOG_ASSERT(!storm::utility::isZero(stateProbabilityPair.second), "Probability zero."); // Set transition to state id + offset. This helps in only remapping all previously skipped states.
matrixBuilder.addTransition(matrixBuilder.mappingOffset + stateProbabilityPair.first, stateProbabilityPair.second); // Set heuristic values for reached states
auto iter = statesNotExplored.find(stateProbabilityPair.first); if (iter != statesNotExplored.end()) { // Update heuristic values
DFTStatePointer state = iter->second.first; if (!iter->second.second) { // Initialize heuristic values
ExplorationHeuristicPointer heuristic = std::make_shared<ExplorationHeuristic>(stateProbabilityPair.first, *currentExplorationHeuristic, stateProbabilityPair.second, choice.getTotalMass()); iter->second.second = heuristic; if (state->hasFailed(dft.getTopLevelIndex()) || state->isFailsafe(dft.getTopLevelIndex()) || state->nrFailableDependencies() > 0 || (state->nrFailableDependencies() == 0 && state->nrFailableBEs() == 0)) { // Do not skip absorbing state or if reached by dependencies
iter->second.second->markExpand(); } if (usedHeuristic == storm::builder::ApproximationHeuristic::BOUNDDIFFERENCE) { // Compute bounds for heuristic now
if (state->isPseudoState()) { // Create concrete state from pseudo state
state->construct(); } STORM_LOG_ASSERT(!currentState->isPseudoState(), "State is pseudo state.");
// Initialize bounds
ValueType lowerBound = getLowerBound(state); ValueType upperBound = getUpperBound(state); heuristic->setBounds(lowerBound, upperBound); }
explorationQueue.push(heuristic); } else if (!iter->second.second->isExpand()) { double oldPriority = iter->second.second->getPriority(); if (iter->second.second->updateHeuristicValues(*currentExplorationHeuristic, stateProbabilityPair.second, choice.getTotalMass())) { // Update priority queue
explorationQueue.update(iter->second.second, oldPriority); } } } } matrixBuilder.finishRow(); } } } // end exploration
STORM_LOG_INFO("Expanded " << nrExpandedStates << " states"); STORM_LOG_INFO("Skipped " << nrSkippedStates << " states"); STORM_LOG_ASSERT(nrSkippedStates == skippedStates.size(), "Nr skipped states is wrong"); }
template<typename ValueType, typename StateType> void ExplicitDFTModelBuilderApprox<ValueType, StateType>::buildLabeling(LabelOptions const& labelOpts) { // Build state labeling
modelComponents.stateLabeling = storm::models::sparse::StateLabeling(modelComponents.transitionMatrix.getRowGroupCount()); // Initial state
modelComponents.stateLabeling.addLabel("init"); modelComponents.stateLabeling.addLabelToState("init", initialStateIndex); // Label all states corresponding to their status (failed, failsafe, failed BE)
if(labelOpts.buildFailLabel) { modelComponents.stateLabeling.addLabel("failed"); } if(labelOpts.buildFailSafeLabel) { modelComponents.stateLabeling.addLabel("failsafe"); }
// Collect labels for all BE
std::vector<std::shared_ptr<storage::DFTBE<ValueType>>> basicElements = dft.getBasicElements(); for (std::shared_ptr<storage::DFTBE<ValueType>> elem : basicElements) { if(labelOpts.beLabels.count(elem->name()) > 0) { modelComponents.stateLabeling.addLabel(elem->name() + "_fail"); } }
// Set labels to states
if(mergeFailedStates) { modelComponents.stateLabeling.addLabelToState("failed", failedStateId); } for (auto const& stateIdPair : stateStorage.stateToId) { storm::storage::BitVector state = stateIdPair.first; size_t stateId = stateIdPair.second; if (!mergeFailedStates && labelOpts.buildFailLabel && dft.hasFailed(state, *stateGenerationInfo)) { modelComponents.stateLabeling.addLabelToState("failed", stateId); } if (labelOpts.buildFailSafeLabel && dft.isFailsafe(state, *stateGenerationInfo)) { modelComponents.stateLabeling.addLabelToState("failsafe", stateId); }; // Set fail status for each BE
for (std::shared_ptr<storage::DFTBE<ValueType>> elem : basicElements) { if (labelOpts.beLabels.count(elem->name()) > 0 && storm::storage::DFTState<ValueType>::hasFailed(state, stateGenerationInfo->getStateIndex(elem->id())) ) { modelComponents.stateLabeling.addLabelToState(elem->name() + "_fail", stateId); } } } }
template<typename ValueType, typename StateType> std::shared_ptr<storm::models::sparse::Model<ValueType>> ExplicitDFTModelBuilderApprox<ValueType, StateType>::getModel() { STORM_LOG_ASSERT(skippedStates.size() == 0, "Concrete model has skipped states"); return createModel(false); }
template<typename ValueType, typename StateType> std::shared_ptr<storm::models::sparse::Model<ValueType>> ExplicitDFTModelBuilderApprox<ValueType, StateType>::getModelApproximation(bool lowerBound) { // TODO Matthias: handle case with no skipped states
changeMatrixBound(modelComponents.transitionMatrix, lowerBound); return createModel(true); }
template<typename ValueType, typename StateType> std::shared_ptr<storm::models::sparse::Model<ValueType>> ExplicitDFTModelBuilderApprox<ValueType, StateType>::createModel(bool copy) { std::shared_ptr<storm::models::sparse::Model<ValueType>> model;
if (modelComponents.deterministicModel) { // Build CTMC
if (copy) { model = std::make_shared<storm::models::sparse::Ctmc<ValueType>>(modelComponents.transitionMatrix, modelComponents.stateLabeling); } else { model = std::make_shared<storm::models::sparse::Ctmc<ValueType>>(std::move(modelComponents.transitionMatrix), std::move(modelComponents.stateLabeling)); } } else { // Build MA
// Compute exit rates
// TODO Matthias: avoid computing multiple times
modelComponents.exitRates = std::vector<ValueType>(modelComponents.markovianStates.size()); std::vector<typename storm::storage::SparseMatrix<ValueType>::index_type> indices = modelComponents.transitionMatrix.getRowGroupIndices(); for (StateType stateIndex = 0; stateIndex < modelComponents.markovianStates.size(); ++stateIndex) { if (modelComponents.markovianStates[stateIndex]) { modelComponents.exitRates[stateIndex] = modelComponents.transitionMatrix.getRowSum(indices[stateIndex]); } else { modelComponents.exitRates[stateIndex] = storm::utility::zero<ValueType>(); } } STORM_LOG_TRACE("Exit rates: " << modelComponents.exitRates);
std::shared_ptr<storm::models::sparse::MarkovAutomaton<ValueType>> ma; if (copy) { ma = std::make_shared<storm::models::sparse::MarkovAutomaton<ValueType>>(modelComponents.transitionMatrix, modelComponents.stateLabeling, modelComponents.markovianStates, modelComponents.exitRates); } else { ma = std::make_shared<storm::models::sparse::MarkovAutomaton<ValueType>>(std::move(modelComponents.transitionMatrix), std::move(modelComponents.stateLabeling), std::move(modelComponents.markovianStates), std::move(modelComponents.exitRates)); } if (ma->hasOnlyTrivialNondeterminism()) { // Markov automaton can be converted into CTMC
// TODO Matthias: change components which were not moved accordingly
model = ma->convertToCTMC(); } else { model = ma; } }
STORM_LOG_DEBUG("No. states: " << model->getNumberOfStates()); STORM_LOG_DEBUG("No. transitions: " << model->getNumberOfTransitions()); if (model->getNumberOfStates() <= 15) { STORM_LOG_TRACE("Transition matrix: " << std::endl << model->getTransitionMatrix()); } else { STORM_LOG_TRACE("Transition matrix: too big to print"); } return model; }
template<typename ValueType, typename StateType> void ExplicitDFTModelBuilderApprox<ValueType, StateType>::changeMatrixBound(storm::storage::SparseMatrix<ValueType> & matrix, bool lowerBound) const { // Set lower bound for skipped states
for (auto it = skippedStates.begin(); it != skippedStates.end(); ++it) { auto matrixEntry = matrix.getRow(it->first, 0).begin(); STORM_LOG_ASSERT(matrixEntry->getColumn() == failedStateId, "Transition has wrong target state."); STORM_LOG_ASSERT(!it->second.first->isPseudoState(), "State is still pseudo state.");
ExplorationHeuristicPointer heuristic = it->second.second; if (storm::utility::isZero(heuristic->getUpperBound())) { // Initialize bounds
ValueType lowerBound = getLowerBound(it->second.first); ValueType upperBound = getUpperBound(it->second.first); heuristic->setBounds(lowerBound, upperBound); }
// Change bound
if (lowerBound) { matrixEntry->setValue(it->second.second->getLowerBound()); } else { matrixEntry->setValue(it->second.second->getUpperBound()); } } }
template<typename ValueType, typename StateType> ValueType ExplicitDFTModelBuilderApprox<ValueType, StateType>::getLowerBound(DFTStatePointer const& state) const { // Get the lower bound by considering the failure of all possible BEs
ValueType lowerBound = storm::utility::zero<ValueType>(); for (size_t index = 0; index < state->nrFailableBEs(); ++index) { lowerBound += state->getFailableBERate(index); } return lowerBound; }
template<typename ValueType, typename StateType> ValueType ExplicitDFTModelBuilderApprox<ValueType, StateType>::getUpperBound(DFTStatePointer const& state) const { // Get the upper bound by considering the failure of all BEs
ValueType upperBound = storm::utility::one<ValueType>(); ValueType rateSum = storm::utility::zero<ValueType>();
// Compute for each independent subtree
for (std::vector<size_t> const& subtree : subtreeBEs) { // Get all possible rates
std::vector<ValueType> rates; storm::storage::BitVector coldBEs(subtree.size(), false); for (size_t i = 0; i < subtree.size(); ++i) { size_t id = subtree[i]; if (state->isOperational(id)) { // Get BE rate
ValueType rate = state->getBERate(id); if (storm::utility::isZero<ValueType>(rate)) { // Get active failure rate for cold BE
rate = dft.getBasicElement(id)->activeFailureRate(); // Mark BE as cold
coldBEs.set(i, true); } rates.push_back(rate); rateSum += rate; } }
STORM_LOG_ASSERT(rates.size() > 0, "No rates failable");
// Sort rates
std::sort(rates.begin(), rates.end()); std::vector<size_t> rateCount(rates.size(), 0); size_t lastIndex = 0; for (size_t i = 0; i < rates.size(); ++i) { if (rates[lastIndex] != rates[i]) { lastIndex = i; } ++rateCount[lastIndex]; }
for (size_t i = 0; i < rates.size(); ++i) { // Cold BEs cannot fail in the first step
if (!coldBEs.get(i) && rateCount[i] > 0) { std::iter_swap(rates.begin() + i, rates.end() - 1); // Compute AND MTTF of subtree without current rate and scale with current rate
upperBound += rates.back() * rateCount[i] * computeMTTFAnd(rates, rates.size() - 1); // Swap back
// TODO try to avoid swapping back
std::iter_swap(rates.begin() + i, rates.end() - 1); } } }
STORM_LOG_TRACE("Upper bound is " << (rateSum / upperBound) << " for state " << state->getId()); STORM_LOG_ASSERT(!storm::utility::isZero(upperBound), "Upper bound is 0"); STORM_LOG_ASSERT(!storm::utility::isZero(rateSum), "State is absorbing"); return rateSum / upperBound; }
template<typename ValueType, typename StateType> ValueType ExplicitDFTModelBuilderApprox<ValueType, StateType>::computeMTTFAnd(std::vector<ValueType> const& rates, size_t size) const { ValueType result = storm::utility::zero<ValueType>(); if (size == 0) { return result; }
// TODO Matthias: works only for <64 BEs!
// WARNING: this code produces wrong results for more than 32 BEs
/*for (size_t i = 1; i < 4 && i <= rates.size(); ++i) {
size_t permutation = smallestIntWithNBitsSet(static_cast<size_t>(i)); ValueType sum = storm::utility::zero<ValueType>(); do { ValueType permResult = storm::utility::zero<ValueType>(); for(size_t j = 0; j < rates.size(); ++j) { if(permutation & static_cast<size_t>(1 << static_cast<size_t>(j))) { // WARNING: if the first bit is set, it also recognizes the 32nd bit as set
// TODO: fix
permResult += rates[j]; } } permutation = nextBitPermutation(permutation); STORM_LOG_ASSERT(!storm::utility::isZero(permResult), "PermResult is 0"); sum += storm::utility::one<ValueType>() / permResult; } while(permutation < (static_cast<size_t>(1) << rates.size()) && permutation != 0); if (i % 2 == 0) { result -= sum; } else { result += sum; } }*/
// Compute result with permutations of size <= 3
ValueType one = storm::utility::one<ValueType>(); for (size_t i1 = 0; i1 < size; ++i1) { // + 1/a
ValueType sum = rates[i1]; result += one / sum; for (size_t i2 = 0; i2 < i1; ++i2) { // - 1/(a+b)
ValueType sum2 = sum + rates[i2]; result -= one / sum2; for (size_t i3 = 0; i3 < i2; ++i3) { // + 1/(a+b+c)
result += one / (sum2 + rates[i3]); } } }
STORM_LOG_ASSERT(!storm::utility::isZero(result), "UpperBound is 0"); return result; }
template<typename ValueType, typename StateType> StateType ExplicitDFTModelBuilderApprox<ValueType, StateType>::getOrAddStateIndex(DFTStatePointer const& state) { StateType stateId; bool changed = false;
if (stateGenerationInfo->hasSymmetries()) { // Order state by symmetry
STORM_LOG_TRACE("Check for symmetry: " << dft.getStateString(state)); changed = state->orderBySymmetry(); STORM_LOG_TRACE("State " << (changed ? "changed to " : "did not change") << (changed ? dft.getStateString(state) : "")); }
if (stateStorage.stateToId.contains(state->status())) { // State already exists
stateId = stateStorage.stateToId.getValue(state->status()); STORM_LOG_TRACE("State " << dft.getStateString(state) << " with id " << stateId << " already exists"); if (!changed) { // Check if state is pseudo state
// If state is explored already the possible pseudo state was already constructed
auto iter = statesNotExplored.find(stateId); if (iter != statesNotExplored.end() && iter->second.first->isPseudoState()) { // Create pseudo state now
STORM_LOG_ASSERT(iter->second.first->getId() == stateId, "Ids do not match."); STORM_LOG_ASSERT(iter->second.first->status() == state->status(), "Pseudo states do not coincide."); state->setId(stateId); // Update mapping to map to concrete state now
// TODO Matthias: just change pointer?
statesNotExplored[stateId] = std::make_pair(state, iter->second.second); // We do not push the new state on the exploration queue as the pseudo state was already pushed
STORM_LOG_TRACE("Created pseudo state " << dft.getStateString(state)); } } } else { // State does not exist yet
STORM_LOG_ASSERT(state->isPseudoState() == changed, "State type (pseudo/concrete) wrong."); // Create new state
state->setId(newIndex++); stateId = stateStorage.stateToId.findOrAdd(state->status(), state->getId()); STORM_LOG_ASSERT(stateId == state->getId(), "Ids do not match."); // Insert state as not yet explored
ExplorationHeuristicPointer nullHeuristic; statesNotExplored[stateId] = std::make_pair(state, nullHeuristic); // Reserve one slot for the new state in the remapping
matrixBuilder.stateRemapping.push_back(0); STORM_LOG_TRACE("New " << (state->isPseudoState() ? "pseudo" : "concrete") << " state: " << dft.getStateString(state)); } return stateId; }
template<typename ValueType, typename StateType> void ExplicitDFTModelBuilderApprox<ValueType, StateType>::setMarkovian(bool markovian) { if (matrixBuilder.getCurrentRowGroup() > modelComponents.markovianStates.size()) { // Resize BitVector
modelComponents.markovianStates.resize(modelComponents.markovianStates.size() + INITIAL_BITVECTOR_SIZE); } modelComponents.markovianStates.set(matrixBuilder.getCurrentRowGroup() - 1, markovian); }
template<typename ValueType, typename StateType> void ExplicitDFTModelBuilderApprox<ValueType, StateType>::printNotExplored() const { std::cout << "states not explored:" << std::endl; for (auto it : statesNotExplored) { std::cout << it.first << " -> " << dft.getStateString(it.second.first) << std::endl; } }
// Explicitly instantiate the class.
template class ExplicitDFTModelBuilderApprox<double>;
#ifdef STORM_HAVE_CARL
template class ExplicitDFTModelBuilderApprox<storm::RationalFunction>; #endif
} // namespace builder
} // namespace storm
|