|
|
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Google Mock - a framework for writing C++ mock classes.
//
// This file tests some commonly used argument matchers.
// Silence warning C4244: 'initializing': conversion from 'int' to 'short',
// possible loss of data and C4100, unreferenced local parameter
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable:4244)
# pragma warning(disable:4100)
#endif
#include "gmock/gmock-matchers.h"
#include "gmock/gmock-more-matchers.h"
#include <string.h>
#include <time.h>
#include <deque>
#include <forward_list>
#include <functional>
#include <iostream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <set>
#include <sstream>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "gtest/gtest-spi.h"
namespace testing { namespace gmock_matchers_test { namespace {
using std::greater; using std::less; using std::list; using std::make_pair; using std::map; using std::multimap; using std::multiset; using std::ostream; using std::pair; using std::set; using std::stringstream; using std::vector; using testing::internal::DummyMatchResultListener; using testing::internal::ElementMatcherPair; using testing::internal::ElementMatcherPairs; using testing::internal::ExplainMatchFailureTupleTo; using testing::internal::FloatingEqMatcher; using testing::internal::FormatMatcherDescription; using testing::internal::IsReadableTypeName; using testing::internal::MatchMatrix; using testing::internal::PredicateFormatterFromMatcher; using testing::internal::RE; using testing::internal::StreamMatchResultListener; using testing::internal::Strings;
// Helper for testing container-valued matchers in mock method context. It is
// important to test matchers in this context, since it requires additional type
// deduction beyond what EXPECT_THAT does, thus making it more restrictive.
struct ContainerHelper { MOCK_METHOD1(Call, void(std::vector<std::unique_ptr<int>>)); };
std::vector<std::unique_ptr<int>> MakeUniquePtrs(const std::vector<int>& ints) { std::vector<std::unique_ptr<int>> pointers; for (int i : ints) pointers.emplace_back(new int(i)); return pointers; }
// For testing ExplainMatchResultTo().
class GreaterThanMatcher : public MatcherInterface<int> { public: explicit GreaterThanMatcher(int rhs) : rhs_(rhs) {}
void DescribeTo(ostream* os) const override { *os << "is > " << rhs_; }
bool MatchAndExplain(int lhs, MatchResultListener* listener) const override { const int diff = lhs - rhs_; if (diff > 0) { *listener << "which is " << diff << " more than " << rhs_; } else if (diff == 0) { *listener << "which is the same as " << rhs_; } else { *listener << "which is " << -diff << " less than " << rhs_; }
return lhs > rhs_; }
private: int rhs_; };
Matcher<int> GreaterThan(int n) { return MakeMatcher(new GreaterThanMatcher(n)); }
std::string OfType(const std::string& type_name) { #if GTEST_HAS_RTTI
return " (of type " + type_name + ")"; #else
return ""; #endif
}
// Returns the description of the given matcher.
template <typename T> std::string Describe(const Matcher<T>& m) { return DescribeMatcher<T>(m); }
// Returns the description of the negation of the given matcher.
template <typename T> std::string DescribeNegation(const Matcher<T>& m) { return DescribeMatcher<T>(m, true); }
// Returns the reason why x matches, or doesn't match, m.
template <typename MatcherType, typename Value> std::string Explain(const MatcherType& m, const Value& x) { StringMatchResultListener listener; ExplainMatchResult(m, x, &listener); return listener.str(); }
TEST(MonotonicMatcherTest, IsPrintable) { stringstream ss; ss << GreaterThan(5); EXPECT_EQ("is > 5", ss.str()); }
TEST(MatchResultListenerTest, StreamingWorks) { StringMatchResultListener listener; listener << "hi" << 5; EXPECT_EQ("hi5", listener.str());
listener.Clear(); EXPECT_EQ("", listener.str());
listener << 42; EXPECT_EQ("42", listener.str());
// Streaming shouldn't crash when the underlying ostream is NULL.
DummyMatchResultListener dummy; dummy << "hi" << 5; }
TEST(MatchResultListenerTest, CanAccessUnderlyingStream) { EXPECT_TRUE(DummyMatchResultListener().stream() == nullptr); EXPECT_TRUE(StreamMatchResultListener(nullptr).stream() == nullptr);
EXPECT_EQ(&std::cout, StreamMatchResultListener(&std::cout).stream()); }
TEST(MatchResultListenerTest, IsInterestedWorks) { EXPECT_TRUE(StringMatchResultListener().IsInterested()); EXPECT_TRUE(StreamMatchResultListener(&std::cout).IsInterested());
EXPECT_FALSE(DummyMatchResultListener().IsInterested()); EXPECT_FALSE(StreamMatchResultListener(nullptr).IsInterested()); }
// Makes sure that the MatcherInterface<T> interface doesn't
// change.
class EvenMatcherImpl : public MatcherInterface<int> { public: bool MatchAndExplain(int x, MatchResultListener* /* listener */) const override { return x % 2 == 0; }
void DescribeTo(ostream* os) const override { *os << "is an even number"; }
// We deliberately don't define DescribeNegationTo() and
// ExplainMatchResultTo() here, to make sure the definition of these
// two methods is optional.
};
// Makes sure that the MatcherInterface API doesn't change.
TEST(MatcherInterfaceTest, CanBeImplementedUsingPublishedAPI) { EvenMatcherImpl m; }
// Tests implementing a monomorphic matcher using MatchAndExplain().
class NewEvenMatcherImpl : public MatcherInterface<int> { public: bool MatchAndExplain(int x, MatchResultListener* listener) const override { const bool match = x % 2 == 0; // Verifies that we can stream to a listener directly.
*listener << "value % " << 2; if (listener->stream() != nullptr) { // Verifies that we can stream to a listener's underlying stream
// too.
*listener->stream() << " == " << (x % 2); } return match; }
void DescribeTo(ostream* os) const override { *os << "is an even number"; } };
TEST(MatcherInterfaceTest, CanBeImplementedUsingNewAPI) { Matcher<int> m = MakeMatcher(new NewEvenMatcherImpl); EXPECT_TRUE(m.Matches(2)); EXPECT_FALSE(m.Matches(3)); EXPECT_EQ("value % 2 == 0", Explain(m, 2)); EXPECT_EQ("value % 2 == 1", Explain(m, 3)); }
// Tests default-constructing a matcher.
TEST(MatcherTest, CanBeDefaultConstructed) { Matcher<double> m; }
// Tests that Matcher<T> can be constructed from a MatcherInterface<T>*.
TEST(MatcherTest, CanBeConstructedFromMatcherInterface) { const MatcherInterface<int>* impl = new EvenMatcherImpl; Matcher<int> m(impl); EXPECT_TRUE(m.Matches(4)); EXPECT_FALSE(m.Matches(5)); }
// Tests that value can be used in place of Eq(value).
TEST(MatcherTest, CanBeImplicitlyConstructedFromValue) { Matcher<int> m1 = 5; EXPECT_TRUE(m1.Matches(5)); EXPECT_FALSE(m1.Matches(6)); }
// Tests that NULL can be used in place of Eq(NULL).
TEST(MatcherTest, CanBeImplicitlyConstructedFromNULL) { Matcher<int*> m1 = nullptr; EXPECT_TRUE(m1.Matches(nullptr)); int n = 0; EXPECT_FALSE(m1.Matches(&n)); }
// Tests that matchers can be constructed from a variable that is not properly
// defined. This should be illegal, but many users rely on this accidentally.
struct Undefined { virtual ~Undefined() = 0; static const int kInt = 1; };
TEST(MatcherTest, CanBeConstructedFromUndefinedVariable) { Matcher<int> m1 = Undefined::kInt; EXPECT_TRUE(m1.Matches(1)); EXPECT_FALSE(m1.Matches(2)); }
// Test that a matcher parameterized with an abstract class compiles.
TEST(MatcherTest, CanAcceptAbstractClass) { Matcher<const Undefined&> m = _; }
// Tests that matchers are copyable.
TEST(MatcherTest, IsCopyable) { // Tests the copy constructor.
Matcher<bool> m1 = Eq(false); EXPECT_TRUE(m1.Matches(false)); EXPECT_FALSE(m1.Matches(true));
// Tests the assignment operator.
m1 = Eq(true); EXPECT_TRUE(m1.Matches(true)); EXPECT_FALSE(m1.Matches(false)); }
// Tests that Matcher<T>::DescribeTo() calls
// MatcherInterface<T>::DescribeTo().
TEST(MatcherTest, CanDescribeItself) { EXPECT_EQ("is an even number", Describe(Matcher<int>(new EvenMatcherImpl))); }
// Tests Matcher<T>::MatchAndExplain().
TEST(MatcherTest, MatchAndExplain) { Matcher<int> m = GreaterThan(0); StringMatchResultListener listener1; EXPECT_TRUE(m.MatchAndExplain(42, &listener1)); EXPECT_EQ("which is 42 more than 0", listener1.str());
StringMatchResultListener listener2; EXPECT_FALSE(m.MatchAndExplain(-9, &listener2)); EXPECT_EQ("which is 9 less than 0", listener2.str()); }
// Tests that a C-string literal can be implicitly converted to a
// Matcher<std::string> or Matcher<const std::string&>.
TEST(StringMatcherTest, CanBeImplicitlyConstructedFromCStringLiteral) { Matcher<std::string> m1 = "hi"; EXPECT_TRUE(m1.Matches("hi")); EXPECT_FALSE(m1.Matches("hello"));
Matcher<const std::string&> m2 = "hi"; EXPECT_TRUE(m2.Matches("hi")); EXPECT_FALSE(m2.Matches("hello")); }
// Tests that a string object can be implicitly converted to a
// Matcher<std::string> or Matcher<const std::string&>.
TEST(StringMatcherTest, CanBeImplicitlyConstructedFromString) { Matcher<std::string> m1 = std::string("hi"); EXPECT_TRUE(m1.Matches("hi")); EXPECT_FALSE(m1.Matches("hello"));
Matcher<const std::string&> m2 = std::string("hi"); EXPECT_TRUE(m2.Matches("hi")); EXPECT_FALSE(m2.Matches("hello")); }
#if GTEST_HAS_ABSL
// Tests that a C-string literal can be implicitly converted to a
// Matcher<absl::string_view> or Matcher<const absl::string_view&>.
TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromCStringLiteral) { Matcher<absl::string_view> m1 = "cats"; EXPECT_TRUE(m1.Matches("cats")); EXPECT_FALSE(m1.Matches("dogs"));
Matcher<const absl::string_view&> m2 = "cats"; EXPECT_TRUE(m2.Matches("cats")); EXPECT_FALSE(m2.Matches("dogs")); }
// Tests that a std::string object can be implicitly converted to a
// Matcher<absl::string_view> or Matcher<const absl::string_view&>.
TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromString) { Matcher<absl::string_view> m1 = std::string("cats"); EXPECT_TRUE(m1.Matches("cats")); EXPECT_FALSE(m1.Matches("dogs"));
Matcher<const absl::string_view&> m2 = std::string("cats"); EXPECT_TRUE(m2.Matches("cats")); EXPECT_FALSE(m2.Matches("dogs")); }
// Tests that a absl::string_view object can be implicitly converted to a
// Matcher<absl::string_view> or Matcher<const absl::string_view&>.
TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromStringView) { Matcher<absl::string_view> m1 = absl::string_view("cats"); EXPECT_TRUE(m1.Matches("cats")); EXPECT_FALSE(m1.Matches("dogs"));
Matcher<const absl::string_view&> m2 = absl::string_view("cats"); EXPECT_TRUE(m2.Matches("cats")); EXPECT_FALSE(m2.Matches("dogs")); } #endif // GTEST_HAS_ABSL
// Tests that a std::reference_wrapper<std::string> object can be implicitly
// converted to a Matcher<std::string> or Matcher<const std::string&> via Eq().
TEST(StringMatcherTest, CanBeImplicitlyConstructedFromEqReferenceWrapperString) { std::string value = "cats"; Matcher<std::string> m1 = Eq(std::ref(value)); EXPECT_TRUE(m1.Matches("cats")); EXPECT_FALSE(m1.Matches("dogs"));
Matcher<const std::string&> m2 = Eq(std::ref(value)); EXPECT_TRUE(m2.Matches("cats")); EXPECT_FALSE(m2.Matches("dogs")); }
// Tests that MakeMatcher() constructs a Matcher<T> from a
// MatcherInterface* without requiring the user to explicitly
// write the type.
TEST(MakeMatcherTest, ConstructsMatcherFromMatcherInterface) { const MatcherInterface<int>* dummy_impl = nullptr; Matcher<int> m = MakeMatcher(dummy_impl); }
// Tests that MakePolymorphicMatcher() can construct a polymorphic
// matcher from its implementation using the old API.
const int g_bar = 1; class ReferencesBarOrIsZeroImpl { public: template <typename T> bool MatchAndExplain(const T& x, MatchResultListener* /* listener */) const { const void* p = &x; return p == &g_bar || x == 0; }
void DescribeTo(ostream* os) const { *os << "g_bar or zero"; }
void DescribeNegationTo(ostream* os) const { *os << "doesn't reference g_bar and is not zero"; } };
// This function verifies that MakePolymorphicMatcher() returns a
// PolymorphicMatcher<T> where T is the argument's type.
PolymorphicMatcher<ReferencesBarOrIsZeroImpl> ReferencesBarOrIsZero() { return MakePolymorphicMatcher(ReferencesBarOrIsZeroImpl()); }
TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingOldAPI) { // Using a polymorphic matcher to match a reference type.
Matcher<const int&> m1 = ReferencesBarOrIsZero(); EXPECT_TRUE(m1.Matches(0)); // Verifies that the identity of a by-reference argument is preserved.
EXPECT_TRUE(m1.Matches(g_bar)); EXPECT_FALSE(m1.Matches(1)); EXPECT_EQ("g_bar or zero", Describe(m1));
// Using a polymorphic matcher to match a value type.
Matcher<double> m2 = ReferencesBarOrIsZero(); EXPECT_TRUE(m2.Matches(0.0)); EXPECT_FALSE(m2.Matches(0.1)); EXPECT_EQ("g_bar or zero", Describe(m2)); }
// Tests implementing a polymorphic matcher using MatchAndExplain().
class PolymorphicIsEvenImpl { public: void DescribeTo(ostream* os) const { *os << "is even"; }
void DescribeNegationTo(ostream* os) const { *os << "is odd"; }
template <typename T> bool MatchAndExplain(const T& x, MatchResultListener* listener) const { // Verifies that we can stream to the listener directly.
*listener << "% " << 2; if (listener->stream() != nullptr) { // Verifies that we can stream to the listener's underlying stream
// too.
*listener->stream() << " == " << (x % 2); } return (x % 2) == 0; } };
PolymorphicMatcher<PolymorphicIsEvenImpl> PolymorphicIsEven() { return MakePolymorphicMatcher(PolymorphicIsEvenImpl()); }
TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingNewAPI) { // Using PolymorphicIsEven() as a Matcher<int>.
const Matcher<int> m1 = PolymorphicIsEven(); EXPECT_TRUE(m1.Matches(42)); EXPECT_FALSE(m1.Matches(43)); EXPECT_EQ("is even", Describe(m1));
const Matcher<int> not_m1 = Not(m1); EXPECT_EQ("is odd", Describe(not_m1));
EXPECT_EQ("% 2 == 0", Explain(m1, 42));
// Using PolymorphicIsEven() as a Matcher<char>.
const Matcher<char> m2 = PolymorphicIsEven(); EXPECT_TRUE(m2.Matches('\x42')); EXPECT_FALSE(m2.Matches('\x43')); EXPECT_EQ("is even", Describe(m2));
const Matcher<char> not_m2 = Not(m2); EXPECT_EQ("is odd", Describe(not_m2));
EXPECT_EQ("% 2 == 0", Explain(m2, '\x42')); }
// Tests that MatcherCast<T>(m) works when m is a polymorphic matcher.
TEST(MatcherCastTest, FromPolymorphicMatcher) { Matcher<int> m = MatcherCast<int>(Eq(5)); EXPECT_TRUE(m.Matches(5)); EXPECT_FALSE(m.Matches(6)); }
// For testing casting matchers between compatible types.
class IntValue { public: // An int can be statically (although not implicitly) cast to a
// IntValue.
explicit IntValue(int a_value) : value_(a_value) {}
int value() const { return value_; } private: int value_; };
// For testing casting matchers between compatible types.
bool IsPositiveIntValue(const IntValue& foo) { return foo.value() > 0; }
// Tests that MatcherCast<T>(m) works when m is a Matcher<U> where T
// can be statically converted to U.
TEST(MatcherCastTest, FromCompatibleType) { Matcher<double> m1 = Eq(2.0); Matcher<int> m2 = MatcherCast<int>(m1); EXPECT_TRUE(m2.Matches(2)); EXPECT_FALSE(m2.Matches(3));
Matcher<IntValue> m3 = Truly(IsPositiveIntValue); Matcher<int> m4 = MatcherCast<int>(m3); // In the following, the arguments 1 and 0 are statically converted
// to IntValue objects, and then tested by the IsPositiveIntValue()
// predicate.
EXPECT_TRUE(m4.Matches(1)); EXPECT_FALSE(m4.Matches(0)); }
// Tests that MatcherCast<T>(m) works when m is a Matcher<const T&>.
TEST(MatcherCastTest, FromConstReferenceToNonReference) { Matcher<const int&> m1 = Eq(0); Matcher<int> m2 = MatcherCast<int>(m1); EXPECT_TRUE(m2.Matches(0)); EXPECT_FALSE(m2.Matches(1)); }
// Tests that MatcherCast<T>(m) works when m is a Matcher<T&>.
TEST(MatcherCastTest, FromReferenceToNonReference) { Matcher<int&> m1 = Eq(0); Matcher<int> m2 = MatcherCast<int>(m1); EXPECT_TRUE(m2.Matches(0)); EXPECT_FALSE(m2.Matches(1)); }
// Tests that MatcherCast<const T&>(m) works when m is a Matcher<T>.
TEST(MatcherCastTest, FromNonReferenceToConstReference) { Matcher<int> m1 = Eq(0); Matcher<const int&> m2 = MatcherCast<const int&>(m1); EXPECT_TRUE(m2.Matches(0)); EXPECT_FALSE(m2.Matches(1)); }
// Tests that MatcherCast<T&>(m) works when m is a Matcher<T>.
TEST(MatcherCastTest, FromNonReferenceToReference) { Matcher<int> m1 = Eq(0); Matcher<int&> m2 = MatcherCast<int&>(m1); int n = 0; EXPECT_TRUE(m2.Matches(n)); n = 1; EXPECT_FALSE(m2.Matches(n)); }
// Tests that MatcherCast<T>(m) works when m is a Matcher<T>.
TEST(MatcherCastTest, FromSameType) { Matcher<int> m1 = Eq(0); Matcher<int> m2 = MatcherCast<int>(m1); EXPECT_TRUE(m2.Matches(0)); EXPECT_FALSE(m2.Matches(1)); }
// Tests that MatcherCast<T>(m) works when m is a value of the same type as the
// value type of the Matcher.
TEST(MatcherCastTest, FromAValue) { Matcher<int> m = MatcherCast<int>(42); EXPECT_TRUE(m.Matches(42)); EXPECT_FALSE(m.Matches(239)); }
// Tests that MatcherCast<T>(m) works when m is a value of the type implicitly
// convertible to the value type of the Matcher.
TEST(MatcherCastTest, FromAnImplicitlyConvertibleValue) { const int kExpected = 'c'; Matcher<int> m = MatcherCast<int>('c'); EXPECT_TRUE(m.Matches(kExpected)); EXPECT_FALSE(m.Matches(kExpected + 1)); }
struct NonImplicitlyConstructibleTypeWithOperatorEq { friend bool operator==( const NonImplicitlyConstructibleTypeWithOperatorEq& /* ignored */, int rhs) { return 42 == rhs; } friend bool operator==( int lhs, const NonImplicitlyConstructibleTypeWithOperatorEq& /* ignored */) { return lhs == 42; } };
// Tests that MatcherCast<T>(m) works when m is a neither a matcher nor
// implicitly convertible to the value type of the Matcher, but the value type
// of the matcher has operator==() overload accepting m.
TEST(MatcherCastTest, NonImplicitlyConstructibleTypeWithOperatorEq) { Matcher<NonImplicitlyConstructibleTypeWithOperatorEq> m1 = MatcherCast<NonImplicitlyConstructibleTypeWithOperatorEq>(42); EXPECT_TRUE(m1.Matches(NonImplicitlyConstructibleTypeWithOperatorEq()));
Matcher<NonImplicitlyConstructibleTypeWithOperatorEq> m2 = MatcherCast<NonImplicitlyConstructibleTypeWithOperatorEq>(239); EXPECT_FALSE(m2.Matches(NonImplicitlyConstructibleTypeWithOperatorEq()));
// When updating the following lines please also change the comment to
// namespace convertible_from_any.
Matcher<int> m3 = MatcherCast<int>(NonImplicitlyConstructibleTypeWithOperatorEq()); EXPECT_TRUE(m3.Matches(42)); EXPECT_FALSE(m3.Matches(239)); }
// ConvertibleFromAny does not work with MSVC. resulting in
// error C2440: 'initializing': cannot convert from 'Eq' to 'M'
// No constructor could take the source type, or constructor overload
// resolution was ambiguous
#if !defined _MSC_VER
// The below ConvertibleFromAny struct is implicitly constructible from anything
// and when in the same namespace can interact with other tests. In particular,
// if it is in the same namespace as other tests and one removes
// NonImplicitlyConstructibleTypeWithOperatorEq::operator==(int lhs, ...);
// then the corresponding test still compiles (and it should not!) by implicitly
// converting NonImplicitlyConstructibleTypeWithOperatorEq to ConvertibleFromAny
// in m3.Matcher().
namespace convertible_from_any { // Implicitly convertible from any type.
struct ConvertibleFromAny { ConvertibleFromAny(int a_value) : value(a_value) {} template <typename T> ConvertibleFromAny(const T& /*a_value*/) : value(-1) { ADD_FAILURE() << "Conversion constructor called"; } int value; };
bool operator==(const ConvertibleFromAny& a, const ConvertibleFromAny& b) { return a.value == b.value; }
ostream& operator<<(ostream& os, const ConvertibleFromAny& a) { return os << a.value; }
TEST(MatcherCastTest, ConversionConstructorIsUsed) { Matcher<ConvertibleFromAny> m = MatcherCast<ConvertibleFromAny>(1); EXPECT_TRUE(m.Matches(ConvertibleFromAny(1))); EXPECT_FALSE(m.Matches(ConvertibleFromAny(2))); }
TEST(MatcherCastTest, FromConvertibleFromAny) { Matcher<ConvertibleFromAny> m = MatcherCast<ConvertibleFromAny>(Eq(ConvertibleFromAny(1))); EXPECT_TRUE(m.Matches(ConvertibleFromAny(1))); EXPECT_FALSE(m.Matches(ConvertibleFromAny(2))); } } // namespace convertible_from_any
#endif // !defined _MSC_VER
struct IntReferenceWrapper { IntReferenceWrapper(const int& a_value) : value(&a_value) {} const int* value; };
bool operator==(const IntReferenceWrapper& a, const IntReferenceWrapper& b) { return a.value == b.value; }
TEST(MatcherCastTest, ValueIsNotCopied) { int n = 42; Matcher<IntReferenceWrapper> m = MatcherCast<IntReferenceWrapper>(n); // Verify that the matcher holds a reference to n, not to its temporary copy.
EXPECT_TRUE(m.Matches(n)); }
class Base { public: virtual ~Base() {} Base() {} private: GTEST_DISALLOW_COPY_AND_ASSIGN_(Base); };
class Derived : public Base { public: Derived() : Base() {} int i; };
class OtherDerived : public Base {};
// Tests that SafeMatcherCast<T>(m) works when m is a polymorphic matcher.
TEST(SafeMatcherCastTest, FromPolymorphicMatcher) { Matcher<char> m2 = SafeMatcherCast<char>(Eq(32)); EXPECT_TRUE(m2.Matches(' ')); EXPECT_FALSE(m2.Matches('\n')); }
// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where
// T and U are arithmetic types and T can be losslessly converted to
// U.
TEST(SafeMatcherCastTest, FromLosslesslyConvertibleArithmeticType) { Matcher<double> m1 = DoubleEq(1.0); Matcher<float> m2 = SafeMatcherCast<float>(m1); EXPECT_TRUE(m2.Matches(1.0f)); EXPECT_FALSE(m2.Matches(2.0f));
Matcher<char> m3 = SafeMatcherCast<char>(TypedEq<int>('a')); EXPECT_TRUE(m3.Matches('a')); EXPECT_FALSE(m3.Matches('b')); }
// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where T and U
// are pointers or references to a derived and a base class, correspondingly.
TEST(SafeMatcherCastTest, FromBaseClass) { Derived d, d2; Matcher<Base*> m1 = Eq(&d); Matcher<Derived*> m2 = SafeMatcherCast<Derived*>(m1); EXPECT_TRUE(m2.Matches(&d)); EXPECT_FALSE(m2.Matches(&d2));
Matcher<Base&> m3 = Ref(d); Matcher<Derived&> m4 = SafeMatcherCast<Derived&>(m3); EXPECT_TRUE(m4.Matches(d)); EXPECT_FALSE(m4.Matches(d2)); }
// Tests that SafeMatcherCast<T&>(m) works when m is a Matcher<const T&>.
TEST(SafeMatcherCastTest, FromConstReferenceToReference) { int n = 0; Matcher<const int&> m1 = Ref(n); Matcher<int&> m2 = SafeMatcherCast<int&>(m1); int n1 = 0; EXPECT_TRUE(m2.Matches(n)); EXPECT_FALSE(m2.Matches(n1)); }
// Tests that MatcherCast<const T&>(m) works when m is a Matcher<T>.
TEST(SafeMatcherCastTest, FromNonReferenceToConstReference) { Matcher<int> m1 = Eq(0); Matcher<const int&> m2 = SafeMatcherCast<const int&>(m1); EXPECT_TRUE(m2.Matches(0)); EXPECT_FALSE(m2.Matches(1)); }
// Tests that SafeMatcherCast<T&>(m) works when m is a Matcher<T>.
TEST(SafeMatcherCastTest, FromNonReferenceToReference) { Matcher<int> m1 = Eq(0); Matcher<int&> m2 = SafeMatcherCast<int&>(m1); int n = 0; EXPECT_TRUE(m2.Matches(n)); n = 1; EXPECT_FALSE(m2.Matches(n)); }
// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<T>.
TEST(SafeMatcherCastTest, FromSameType) { Matcher<int> m1 = Eq(0); Matcher<int> m2 = SafeMatcherCast<int>(m1); EXPECT_TRUE(m2.Matches(0)); EXPECT_FALSE(m2.Matches(1)); }
#if !defined _MSC_VER
namespace convertible_from_any { TEST(SafeMatcherCastTest, ConversionConstructorIsUsed) { Matcher<ConvertibleFromAny> m = SafeMatcherCast<ConvertibleFromAny>(1); EXPECT_TRUE(m.Matches(ConvertibleFromAny(1))); EXPECT_FALSE(m.Matches(ConvertibleFromAny(2))); }
TEST(SafeMatcherCastTest, FromConvertibleFromAny) { Matcher<ConvertibleFromAny> m = SafeMatcherCast<ConvertibleFromAny>(Eq(ConvertibleFromAny(1))); EXPECT_TRUE(m.Matches(ConvertibleFromAny(1))); EXPECT_FALSE(m.Matches(ConvertibleFromAny(2))); } } // namespace convertible_from_any
#endif // !defined _MSC_VER
TEST(SafeMatcherCastTest, ValueIsNotCopied) { int n = 42; Matcher<IntReferenceWrapper> m = SafeMatcherCast<IntReferenceWrapper>(n); // Verify that the matcher holds a reference to n, not to its temporary copy.
EXPECT_TRUE(m.Matches(n)); }
TEST(ExpectThat, TakesLiterals) { EXPECT_THAT(1, 1); EXPECT_THAT(1.0, 1.0); EXPECT_THAT(std::string(), ""); }
TEST(ExpectThat, TakesFunctions) { struct Helper { static void Func() {} }; void (*func)() = Helper::Func; EXPECT_THAT(func, Helper::Func); EXPECT_THAT(func, &Helper::Func); }
// Tests that A<T>() matches any value of type T.
TEST(ATest, MatchesAnyValue) { // Tests a matcher for a value type.
Matcher<double> m1 = A<double>(); EXPECT_TRUE(m1.Matches(91.43)); EXPECT_TRUE(m1.Matches(-15.32));
// Tests a matcher for a reference type.
int a = 2; int b = -6; Matcher<int&> m2 = A<int&>(); EXPECT_TRUE(m2.Matches(a)); EXPECT_TRUE(m2.Matches(b)); }
TEST(ATest, WorksForDerivedClass) { Base base; Derived derived; EXPECT_THAT(&base, A<Base*>()); // This shouldn't compile: EXPECT_THAT(&base, A<Derived*>());
EXPECT_THAT(&derived, A<Base*>()); EXPECT_THAT(&derived, A<Derived*>()); }
// Tests that A<T>() describes itself properly.
TEST(ATest, CanDescribeSelf) { EXPECT_EQ("is anything", Describe(A<bool>())); }
// Tests that An<T>() matches any value of type T.
TEST(AnTest, MatchesAnyValue) { // Tests a matcher for a value type.
Matcher<int> m1 = An<int>(); EXPECT_TRUE(m1.Matches(9143)); EXPECT_TRUE(m1.Matches(-1532));
// Tests a matcher for a reference type.
int a = 2; int b = -6; Matcher<int&> m2 = An<int&>(); EXPECT_TRUE(m2.Matches(a)); EXPECT_TRUE(m2.Matches(b)); }
// Tests that An<T>() describes itself properly.
TEST(AnTest, CanDescribeSelf) { EXPECT_EQ("is anything", Describe(An<int>())); }
// Tests that _ can be used as a matcher for any type and matches any
// value of that type.
TEST(UnderscoreTest, MatchesAnyValue) { // Uses _ as a matcher for a value type.
Matcher<int> m1 = _; EXPECT_TRUE(m1.Matches(123)); EXPECT_TRUE(m1.Matches(-242));
// Uses _ as a matcher for a reference type.
bool a = false; const bool b = true; Matcher<const bool&> m2 = _; EXPECT_TRUE(m2.Matches(a)); EXPECT_TRUE(m2.Matches(b)); }
// Tests that _ describes itself properly.
TEST(UnderscoreTest, CanDescribeSelf) { Matcher<int> m = _; EXPECT_EQ("is anything", Describe(m)); }
// Tests that Eq(x) matches any value equal to x.
TEST(EqTest, MatchesEqualValue) { // 2 C-strings with same content but different addresses.
const char a1[] = "hi"; const char a2[] = "hi";
Matcher<const char*> m1 = Eq(a1); EXPECT_TRUE(m1.Matches(a1)); EXPECT_FALSE(m1.Matches(a2)); }
// Tests that Eq(v) describes itself properly.
class Unprintable { public: Unprintable() : c_('a') {}
bool operator==(const Unprintable& /* rhs */) const { return true; } // -Wunused-private-field: dummy accessor for `c_`.
char dummy_c() { return c_; } private: char c_; };
TEST(EqTest, CanDescribeSelf) { Matcher<Unprintable> m = Eq(Unprintable()); EXPECT_EQ("is equal to 1-byte object <61>", Describe(m)); }
// Tests that Eq(v) can be used to match any type that supports
// comparing with type T, where T is v's type.
TEST(EqTest, IsPolymorphic) { Matcher<int> m1 = Eq(1); EXPECT_TRUE(m1.Matches(1)); EXPECT_FALSE(m1.Matches(2));
Matcher<char> m2 = Eq(1); EXPECT_TRUE(m2.Matches('\1')); EXPECT_FALSE(m2.Matches('a')); }
// Tests that TypedEq<T>(v) matches values of type T that's equal to v.
TEST(TypedEqTest, ChecksEqualityForGivenType) { Matcher<char> m1 = TypedEq<char>('a'); EXPECT_TRUE(m1.Matches('a')); EXPECT_FALSE(m1.Matches('b'));
Matcher<int> m2 = TypedEq<int>(6); EXPECT_TRUE(m2.Matches(6)); EXPECT_FALSE(m2.Matches(7)); }
// Tests that TypedEq(v) describes itself properly.
TEST(TypedEqTest, CanDescribeSelf) { EXPECT_EQ("is equal to 2", Describe(TypedEq<int>(2))); }
// Tests that TypedEq<T>(v) has type Matcher<T>.
// Type<T>::IsTypeOf(v) compiles if and only if the type of value v is T, where
// T is a "bare" type (i.e. not in the form of const U or U&). If v's type is
// not T, the compiler will generate a message about "undefined reference".
template <typename T> struct Type { static bool IsTypeOf(const T& /* v */) { return true; }
template <typename T2> static void IsTypeOf(T2 v); };
TEST(TypedEqTest, HasSpecifiedType) { // Verfies that the type of TypedEq<T>(v) is Matcher<T>.
Type<Matcher<int> >::IsTypeOf(TypedEq<int>(5)); Type<Matcher<double> >::IsTypeOf(TypedEq<double>(5)); }
// Tests that Ge(v) matches anything >= v.
TEST(GeTest, ImplementsGreaterThanOrEqual) { Matcher<int> m1 = Ge(0); EXPECT_TRUE(m1.Matches(1)); EXPECT_TRUE(m1.Matches(0)); EXPECT_FALSE(m1.Matches(-1)); }
// Tests that Ge(v) describes itself properly.
TEST(GeTest, CanDescribeSelf) { Matcher<int> m = Ge(5); EXPECT_EQ("is >= 5", Describe(m)); }
// Tests that Gt(v) matches anything > v.
TEST(GtTest, ImplementsGreaterThan) { Matcher<double> m1 = Gt(0); EXPECT_TRUE(m1.Matches(1.0)); EXPECT_FALSE(m1.Matches(0.0)); EXPECT_FALSE(m1.Matches(-1.0)); }
// Tests that Gt(v) describes itself properly.
TEST(GtTest, CanDescribeSelf) { Matcher<int> m = Gt(5); EXPECT_EQ("is > 5", Describe(m)); }
// Tests that Le(v) matches anything <= v.
TEST(LeTest, ImplementsLessThanOrEqual) { Matcher<char> m1 = Le('b'); EXPECT_TRUE(m1.Matches('a')); EXPECT_TRUE(m1.Matches('b')); EXPECT_FALSE(m1.Matches('c')); }
// Tests that Le(v) describes itself properly.
TEST(LeTest, CanDescribeSelf) { Matcher<int> m = Le(5); EXPECT_EQ("is <= 5", Describe(m)); }
// Tests that Lt(v) matches anything < v.
TEST(LtTest, ImplementsLessThan) { Matcher<const std::string&> m1 = Lt("Hello"); EXPECT_TRUE(m1.Matches("Abc")); EXPECT_FALSE(m1.Matches("Hello")); EXPECT_FALSE(m1.Matches("Hello, world!")); }
// Tests that Lt(v) describes itself properly.
TEST(LtTest, CanDescribeSelf) { Matcher<int> m = Lt(5); EXPECT_EQ("is < 5", Describe(m)); }
// Tests that Ne(v) matches anything != v.
TEST(NeTest, ImplementsNotEqual) { Matcher<int> m1 = Ne(0); EXPECT_TRUE(m1.Matches(1)); EXPECT_TRUE(m1.Matches(-1)); EXPECT_FALSE(m1.Matches(0)); }
// Tests that Ne(v) describes itself properly.
TEST(NeTest, CanDescribeSelf) { Matcher<int> m = Ne(5); EXPECT_EQ("isn't equal to 5", Describe(m)); }
class MoveOnly { public: explicit MoveOnly(int i) : i_(i) {} MoveOnly(const MoveOnly&) = delete; MoveOnly(MoveOnly&&) = default; MoveOnly& operator=(const MoveOnly&) = delete; MoveOnly& operator=(MoveOnly&&) = default;
bool operator==(const MoveOnly& other) const { return i_ == other.i_; } bool operator!=(const MoveOnly& other) const { return i_ != other.i_; } bool operator<(const MoveOnly& other) const { return i_ < other.i_; } bool operator<=(const MoveOnly& other) const { return i_ <= other.i_; } bool operator>(const MoveOnly& other) const { return i_ > other.i_; } bool operator>=(const MoveOnly& other) const { return i_ >= other.i_; }
private: int i_; };
struct MoveHelper { MOCK_METHOD1(Call, void(MoveOnly)); };
TEST(ComparisonBaseTest, WorksWithMoveOnly) { MoveOnly m{0}; MoveHelper helper;
EXPECT_CALL(helper, Call(Eq(ByRef(m)))); helper.Call(MoveOnly(0)); EXPECT_CALL(helper, Call(Ne(ByRef(m)))); helper.Call(MoveOnly(1)); EXPECT_CALL(helper, Call(Le(ByRef(m)))); helper.Call(MoveOnly(0)); EXPECT_CALL(helper, Call(Lt(ByRef(m)))); helper.Call(MoveOnly(-1)); EXPECT_CALL(helper, Call(Ge(ByRef(m)))); helper.Call(MoveOnly(0)); EXPECT_CALL(helper, Call(Gt(ByRef(m)))); helper.Call(MoveOnly(1)); }
// Tests that IsNull() matches any NULL pointer of any type.
TEST(IsNullTest, MatchesNullPointer) { Matcher<int*> m1 = IsNull(); int* p1 = nullptr; int n = 0; EXPECT_TRUE(m1.Matches(p1)); EXPECT_FALSE(m1.Matches(&n));
Matcher<const char*> m2 = IsNull(); const char* p2 = nullptr; EXPECT_TRUE(m2.Matches(p2)); EXPECT_FALSE(m2.Matches("hi"));
Matcher<void*> m3 = IsNull(); void* p3 = nullptr; EXPECT_TRUE(m3.Matches(p3)); EXPECT_FALSE(m3.Matches(reinterpret_cast<void*>(0xbeef))); }
TEST(IsNullTest, StdFunction) { const Matcher<std::function<void()>> m = IsNull();
EXPECT_TRUE(m.Matches(std::function<void()>())); EXPECT_FALSE(m.Matches([]{})); }
// Tests that IsNull() describes itself properly.
TEST(IsNullTest, CanDescribeSelf) { Matcher<int*> m = IsNull(); EXPECT_EQ("is NULL", Describe(m)); EXPECT_EQ("isn't NULL", DescribeNegation(m)); }
// Tests that NotNull() matches any non-NULL pointer of any type.
TEST(NotNullTest, MatchesNonNullPointer) { Matcher<int*> m1 = NotNull(); int* p1 = nullptr; int n = 0; EXPECT_FALSE(m1.Matches(p1)); EXPECT_TRUE(m1.Matches(&n));
Matcher<const char*> m2 = NotNull(); const char* p2 = nullptr; EXPECT_FALSE(m2.Matches(p2)); EXPECT_TRUE(m2.Matches("hi")); }
TEST(NotNullTest, LinkedPtr) { const Matcher<std::shared_ptr<int>> m = NotNull(); const std::shared_ptr<int> null_p; const std::shared_ptr<int> non_null_p(new int);
EXPECT_FALSE(m.Matches(null_p)); EXPECT_TRUE(m.Matches(non_null_p)); }
TEST(NotNullTest, ReferenceToConstLinkedPtr) { const Matcher<const std::shared_ptr<double>&> m = NotNull(); const std::shared_ptr<double> null_p; const std::shared_ptr<double> non_null_p(new double);
EXPECT_FALSE(m.Matches(null_p)); EXPECT_TRUE(m.Matches(non_null_p)); }
TEST(NotNullTest, StdFunction) { const Matcher<std::function<void()>> m = NotNull();
EXPECT_TRUE(m.Matches([]{})); EXPECT_FALSE(m.Matches(std::function<void()>())); }
// Tests that NotNull() describes itself properly.
TEST(NotNullTest, CanDescribeSelf) { Matcher<int*> m = NotNull(); EXPECT_EQ("isn't NULL", Describe(m)); }
// Tests that Ref(variable) matches an argument that references
// 'variable'.
TEST(RefTest, MatchesSameVariable) { int a = 0; int b = 0; Matcher<int&> m = Ref(a); EXPECT_TRUE(m.Matches(a)); EXPECT_FALSE(m.Matches(b)); }
// Tests that Ref(variable) describes itself properly.
TEST(RefTest, CanDescribeSelf) { int n = 5; Matcher<int&> m = Ref(n); stringstream ss; ss << "references the variable @" << &n << " 5"; EXPECT_EQ(ss.str(), Describe(m)); }
// Test that Ref(non_const_varialbe) can be used as a matcher for a
// const reference.
TEST(RefTest, CanBeUsedAsMatcherForConstReference) { int a = 0; int b = 0; Matcher<const int&> m = Ref(a); EXPECT_TRUE(m.Matches(a)); EXPECT_FALSE(m.Matches(b)); }
// Tests that Ref(variable) is covariant, i.e. Ref(derived) can be
// used wherever Ref(base) can be used (Ref(derived) is a sub-type
// of Ref(base), but not vice versa.
TEST(RefTest, IsCovariant) { Base base, base2; Derived derived; Matcher<const Base&> m1 = Ref(base); EXPECT_TRUE(m1.Matches(base)); EXPECT_FALSE(m1.Matches(base2)); EXPECT_FALSE(m1.Matches(derived));
m1 = Ref(derived); EXPECT_TRUE(m1.Matches(derived)); EXPECT_FALSE(m1.Matches(base)); EXPECT_FALSE(m1.Matches(base2)); }
TEST(RefTest, ExplainsResult) { int n = 0; EXPECT_THAT(Explain(Matcher<const int&>(Ref(n)), n), StartsWith("which is located @"));
int m = 0; EXPECT_THAT(Explain(Matcher<const int&>(Ref(n)), m), StartsWith("which is located @")); }
// Tests string comparison matchers.
TEST(StrEqTest, MatchesEqualString) { Matcher<const char*> m = StrEq(std::string("Hello")); EXPECT_TRUE(m.Matches("Hello")); EXPECT_FALSE(m.Matches("hello")); EXPECT_FALSE(m.Matches(nullptr));
Matcher<const std::string&> m2 = StrEq("Hello"); EXPECT_TRUE(m2.Matches("Hello")); EXPECT_FALSE(m2.Matches("Hi"));
#if GTEST_HAS_ABSL
Matcher<const absl::string_view&> m3 = StrEq("Hello"); EXPECT_TRUE(m3.Matches(absl::string_view("Hello"))); EXPECT_FALSE(m3.Matches(absl::string_view("hello"))); EXPECT_FALSE(m3.Matches(absl::string_view()));
Matcher<const absl::string_view&> m_empty = StrEq(""); EXPECT_TRUE(m_empty.Matches(absl::string_view(""))); EXPECT_TRUE(m_empty.Matches(absl::string_view())); EXPECT_FALSE(m_empty.Matches(absl::string_view("hello"))); #endif // GTEST_HAS_ABSL
}
TEST(StrEqTest, CanDescribeSelf) { Matcher<std::string> m = StrEq("Hi-\'\"?\\\a\b\f\n\r\t\v\xD3"); EXPECT_EQ("is equal to \"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\\xD3\"", Describe(m));
std::string str("01204500800"); str[3] = '\0'; Matcher<std::string> m2 = StrEq(str); EXPECT_EQ("is equal to \"012\\04500800\"", Describe(m2)); str[0] = str[6] = str[7] = str[9] = str[10] = '\0'; Matcher<std::string> m3 = StrEq(str); EXPECT_EQ("is equal to \"\\012\\045\\0\\08\\0\\0\"", Describe(m3)); }
TEST(StrNeTest, MatchesUnequalString) { Matcher<const char*> m = StrNe("Hello"); EXPECT_TRUE(m.Matches("")); EXPECT_TRUE(m.Matches(nullptr)); EXPECT_FALSE(m.Matches("Hello"));
Matcher<std::string> m2 = StrNe(std::string("Hello")); EXPECT_TRUE(m2.Matches("hello")); EXPECT_FALSE(m2.Matches("Hello"));
#if GTEST_HAS_ABSL
Matcher<const absl::string_view> m3 = StrNe("Hello"); EXPECT_TRUE(m3.Matches(absl::string_view(""))); EXPECT_TRUE(m3.Matches(absl::string_view())); EXPECT_FALSE(m3.Matches(absl::string_view("Hello"))); #endif // GTEST_HAS_ABSL
}
TEST(StrNeTest, CanDescribeSelf) { Matcher<const char*> m = StrNe("Hi"); EXPECT_EQ("isn't equal to \"Hi\"", Describe(m)); }
TEST(StrCaseEqTest, MatchesEqualStringIgnoringCase) { Matcher<const char*> m = StrCaseEq(std::string("Hello")); EXPECT_TRUE(m.Matches("Hello")); EXPECT_TRUE(m.Matches("hello")); EXPECT_FALSE(m.Matches("Hi")); EXPECT_FALSE(m.Matches(nullptr));
Matcher<const std::string&> m2 = StrCaseEq("Hello"); EXPECT_TRUE(m2.Matches("hello")); EXPECT_FALSE(m2.Matches("Hi"));
#if GTEST_HAS_ABSL
Matcher<const absl::string_view&> m3 = StrCaseEq(std::string("Hello")); EXPECT_TRUE(m3.Matches(absl::string_view("Hello"))); EXPECT_TRUE(m3.Matches(absl::string_view("hello"))); EXPECT_FALSE(m3.Matches(absl::string_view("Hi"))); EXPECT_FALSE(m3.Matches(absl::string_view())); #endif // GTEST_HAS_ABSL
}
TEST(StrCaseEqTest, MatchesEqualStringWith0IgnoringCase) { std::string str1("oabocdooeoo"); std::string str2("OABOCDOOEOO"); Matcher<const std::string&> m0 = StrCaseEq(str1); EXPECT_FALSE(m0.Matches(str2 + std::string(1, '\0')));
str1[3] = str2[3] = '\0'; Matcher<const std::string&> m1 = StrCaseEq(str1); EXPECT_TRUE(m1.Matches(str2));
str1[0] = str1[6] = str1[7] = str1[10] = '\0'; str2[0] = str2[6] = str2[7] = str2[10] = '\0'; Matcher<const std::string&> m2 = StrCaseEq(str1); str1[9] = str2[9] = '\0'; EXPECT_FALSE(m2.Matches(str2));
Matcher<const std::string&> m3 = StrCaseEq(str1); EXPECT_TRUE(m3.Matches(str2));
EXPECT_FALSE(m3.Matches(str2 + "x")); str2.append(1, '\0'); EXPECT_FALSE(m3.Matches(str2)); EXPECT_FALSE(m3.Matches(std::string(str2, 0, 9))); }
TEST(StrCaseEqTest, CanDescribeSelf) { Matcher<std::string> m = StrCaseEq("Hi"); EXPECT_EQ("is equal to (ignoring case) \"Hi\"", Describe(m)); }
TEST(StrCaseNeTest, MatchesUnequalStringIgnoringCase) { Matcher<const char*> m = StrCaseNe("Hello"); EXPECT_TRUE(m.Matches("Hi")); EXPECT_TRUE(m.Matches(nullptr)); EXPECT_FALSE(m.Matches("Hello")); EXPECT_FALSE(m.Matches("hello"));
Matcher<std::string> m2 = StrCaseNe(std::string("Hello")); EXPECT_TRUE(m2.Matches("")); EXPECT_FALSE(m2.Matches("Hello"));
#if GTEST_HAS_ABSL
Matcher<const absl::string_view> m3 = StrCaseNe("Hello"); EXPECT_TRUE(m3.Matches(absl::string_view("Hi"))); EXPECT_TRUE(m3.Matches(absl::string_view())); EXPECT_FALSE(m3.Matches(absl::string_view("Hello"))); EXPECT_FALSE(m3.Matches(absl::string_view("hello"))); #endif // GTEST_HAS_ABSL
}
TEST(StrCaseNeTest, CanDescribeSelf) { Matcher<const char*> m = StrCaseNe("Hi"); EXPECT_EQ("isn't equal to (ignoring case) \"Hi\"", Describe(m)); }
// Tests that HasSubstr() works for matching string-typed values.
TEST(HasSubstrTest, WorksForStringClasses) { const Matcher<std::string> m1 = HasSubstr("foo"); EXPECT_TRUE(m1.Matches(std::string("I love food."))); EXPECT_FALSE(m1.Matches(std::string("tofo")));
const Matcher<const std::string&> m2 = HasSubstr("foo"); EXPECT_TRUE(m2.Matches(std::string("I love food."))); EXPECT_FALSE(m2.Matches(std::string("tofo")));
const Matcher<std::string> m_empty = HasSubstr(""); EXPECT_TRUE(m_empty.Matches(std::string())); EXPECT_TRUE(m_empty.Matches(std::string("not empty"))); }
// Tests that HasSubstr() works for matching C-string-typed values.
TEST(HasSubstrTest, WorksForCStrings) { const Matcher<char*> m1 = HasSubstr("foo"); EXPECT_TRUE(m1.Matches(const_cast<char*>("I love food."))); EXPECT_FALSE(m1.Matches(const_cast<char*>("tofo"))); EXPECT_FALSE(m1.Matches(nullptr));
const Matcher<const char*> m2 = HasSubstr("foo"); EXPECT_TRUE(m2.Matches("I love food.")); EXPECT_FALSE(m2.Matches("tofo")); EXPECT_FALSE(m2.Matches(nullptr));
const Matcher<const char*> m_empty = HasSubstr(""); EXPECT_TRUE(m_empty.Matches("not empty")); EXPECT_TRUE(m_empty.Matches("")); EXPECT_FALSE(m_empty.Matches(nullptr)); }
#if GTEST_HAS_ABSL
// Tests that HasSubstr() works for matching absl::string_view-typed values.
TEST(HasSubstrTest, WorksForStringViewClasses) { const Matcher<absl::string_view> m1 = HasSubstr("foo"); EXPECT_TRUE(m1.Matches(absl::string_view("I love food."))); EXPECT_FALSE(m1.Matches(absl::string_view("tofo"))); EXPECT_FALSE(m1.Matches(absl::string_view()));
const Matcher<const absl::string_view&> m2 = HasSubstr("foo"); EXPECT_TRUE(m2.Matches(absl::string_view("I love food."))); EXPECT_FALSE(m2.Matches(absl::string_view("tofo"))); EXPECT_FALSE(m2.Matches(absl::string_view()));
const Matcher<const absl::string_view&> m3 = HasSubstr(""); EXPECT_TRUE(m3.Matches(absl::string_view("foo"))); EXPECT_TRUE(m3.Matches(absl::string_view(""))); EXPECT_TRUE(m3.Matches(absl::string_view())); } #endif // GTEST_HAS_ABSL
// Tests that HasSubstr(s) describes itself properly.
TEST(HasSubstrTest, CanDescribeSelf) { Matcher<std::string> m = HasSubstr("foo\n\""); EXPECT_EQ("has substring \"foo\\n\\\"\"", Describe(m)); }
TEST(KeyTest, CanDescribeSelf) { Matcher<const pair<std::string, int>&> m = Key("foo"); EXPECT_EQ("has a key that is equal to \"foo\"", Describe(m)); EXPECT_EQ("doesn't have a key that is equal to \"foo\"", DescribeNegation(m)); }
TEST(KeyTest, ExplainsResult) { Matcher<pair<int, bool> > m = Key(GreaterThan(10)); EXPECT_EQ("whose first field is a value which is 5 less than 10", Explain(m, make_pair(5, true))); EXPECT_EQ("whose first field is a value which is 5 more than 10", Explain(m, make_pair(15, true))); }
TEST(KeyTest, MatchesCorrectly) { pair<int, std::string> p(25, "foo"); EXPECT_THAT(p, Key(25)); EXPECT_THAT(p, Not(Key(42))); EXPECT_THAT(p, Key(Ge(20))); EXPECT_THAT(p, Not(Key(Lt(25)))); }
TEST(KeyTest, WorksWithMoveOnly) { pair<std::unique_ptr<int>, std::unique_ptr<int>> p; EXPECT_THAT(p, Key(Eq(nullptr))); }
template <size_t I> struct Tag {};
struct PairWithGet { int member_1; std::string member_2; using first_type = int; using second_type = std::string;
const int& GetImpl(Tag<0>) const { return member_1; } const std::string& GetImpl(Tag<1>) const { return member_2; } }; template <size_t I> auto get(const PairWithGet& value) -> decltype(value.GetImpl(Tag<I>())) { return value.GetImpl(Tag<I>()); } TEST(PairTest, MatchesPairWithGetCorrectly) { PairWithGet p{25, "foo"}; EXPECT_THAT(p, Key(25)); EXPECT_THAT(p, Not(Key(42))); EXPECT_THAT(p, Key(Ge(20))); EXPECT_THAT(p, Not(Key(Lt(25))));
std::vector<PairWithGet> v = {{11, "Foo"}, {29, "gMockIsBestMock"}}; EXPECT_THAT(v, Contains(Key(29))); }
TEST(KeyTest, SafelyCastsInnerMatcher) { Matcher<int> is_positive = Gt(0); Matcher<int> is_negative = Lt(0); pair<char, bool> p('a', true); EXPECT_THAT(p, Key(is_positive)); EXPECT_THAT(p, Not(Key(is_negative))); }
TEST(KeyTest, InsideContainsUsingMap) { map<int, char> container; container.insert(make_pair(1, 'a')); container.insert(make_pair(2, 'b')); container.insert(make_pair(4, 'c')); EXPECT_THAT(container, Contains(Key(1))); EXPECT_THAT(container, Not(Contains(Key(3)))); }
TEST(KeyTest, InsideContainsUsingMultimap) { multimap<int, char> container; container.insert(make_pair(1, 'a')); container.insert(make_pair(2, 'b')); container.insert(make_pair(4, 'c'));
EXPECT_THAT(container, Not(Contains(Key(25)))); container.insert(make_pair(25, 'd')); EXPECT_THAT(container, Contains(Key(25))); container.insert(make_pair(25, 'e')); EXPECT_THAT(container, Contains(Key(25)));
EXPECT_THAT(container, Contains(Key(1))); EXPECT_THAT(container, Not(Contains(Key(3)))); }
TEST(PairTest, Typing) { // Test verifies the following type conversions can be compiled.
Matcher<const pair<const char*, int>&> m1 = Pair("foo", 42); Matcher<const pair<const char*, int> > m2 = Pair("foo", 42); Matcher<pair<const char*, int> > m3 = Pair("foo", 42);
Matcher<pair<int, const std::string> > m4 = Pair(25, "42"); Matcher<pair<const std::string, int> > m5 = Pair("25", 42); }
TEST(PairTest, CanDescribeSelf) { Matcher<const pair<std::string, int>&> m1 = Pair("foo", 42); EXPECT_EQ("has a first field that is equal to \"foo\"" ", and has a second field that is equal to 42", Describe(m1)); EXPECT_EQ("has a first field that isn't equal to \"foo\"" ", or has a second field that isn't equal to 42", DescribeNegation(m1)); // Double and triple negation (1 or 2 times not and description of negation).
Matcher<const pair<int, int>&> m2 = Not(Pair(Not(13), 42)); EXPECT_EQ("has a first field that isn't equal to 13" ", and has a second field that is equal to 42", DescribeNegation(m2)); }
TEST(PairTest, CanExplainMatchResultTo) { // If neither field matches, Pair() should explain about the first
// field.
const Matcher<pair<int, int> > m = Pair(GreaterThan(0), GreaterThan(0)); EXPECT_EQ("whose first field does not match, which is 1 less than 0", Explain(m, make_pair(-1, -2)));
// If the first field matches but the second doesn't, Pair() should
// explain about the second field.
EXPECT_EQ("whose second field does not match, which is 2 less than 0", Explain(m, make_pair(1, -2)));
// If the first field doesn't match but the second does, Pair()
// should explain about the first field.
EXPECT_EQ("whose first field does not match, which is 1 less than 0", Explain(m, make_pair(-1, 2)));
// If both fields match, Pair() should explain about them both.
EXPECT_EQ("whose both fields match, where the first field is a value " "which is 1 more than 0, and the second field is a value " "which is 2 more than 0", Explain(m, make_pair(1, 2)));
// If only the first match has an explanation, only this explanation should
// be printed.
const Matcher<pair<int, int> > explain_first = Pair(GreaterThan(0), 0); EXPECT_EQ("whose both fields match, where the first field is a value " "which is 1 more than 0", Explain(explain_first, make_pair(1, 0)));
// If only the second match has an explanation, only this explanation should
// be printed.
const Matcher<pair<int, int> > explain_second = Pair(0, GreaterThan(0)); EXPECT_EQ("whose both fields match, where the second field is a value " "which is 1 more than 0", Explain(explain_second, make_pair(0, 1))); }
TEST(PairTest, MatchesCorrectly) { pair<int, std::string> p(25, "foo");
// Both fields match.
EXPECT_THAT(p, Pair(25, "foo")); EXPECT_THAT(p, Pair(Ge(20), HasSubstr("o")));
// 'first' doesnt' match, but 'second' matches.
EXPECT_THAT(p, Not(Pair(42, "foo"))); EXPECT_THAT(p, Not(Pair(Lt(25), "foo")));
// 'first' matches, but 'second' doesn't match.
EXPECT_THAT(p, Not(Pair(25, "bar"))); EXPECT_THAT(p, Not(Pair(25, Not("foo"))));
// Neither field matches.
EXPECT_THAT(p, Not(Pair(13, "bar"))); EXPECT_THAT(p, Not(Pair(Lt(13), HasSubstr("a")))); }
TEST(PairTest, WorksWithMoveOnly) { pair<std::unique_ptr<int>, std::unique_ptr<int>> p; p.second.reset(new int(7)); EXPECT_THAT(p, Pair(Eq(nullptr), Ne(nullptr))); }
TEST(PairTest, SafelyCastsInnerMatchers) { Matcher<int> is_positive = Gt(0); Matcher<int> is_negative = Lt(0); pair<char, bool> p('a', true); EXPECT_THAT(p, Pair(is_positive, _)); EXPECT_THAT(p, Not(Pair(is_negative, _))); EXPECT_THAT(p, Pair(_, is_positive)); EXPECT_THAT(p, Not(Pair(_, is_negative))); }
TEST(PairTest, InsideContainsUsingMap) { map<int, char> container; container.insert(make_pair(1, 'a')); container.insert(make_pair(2, 'b')); container.insert(make_pair(4, 'c')); EXPECT_THAT(container, Contains(Pair(1, 'a'))); EXPECT_THAT(container, Contains(Pair(1, _))); EXPECT_THAT(container, Contains(Pair(_, 'a'))); EXPECT_THAT(container, Not(Contains(Pair(3, _)))); }
TEST(ContainsTest, WorksWithMoveOnly) { ContainerHelper helper; EXPECT_CALL(helper, Call(Contains(Pointee(2)))); helper.Call(MakeUniquePtrs({1, 2})); }
TEST(PairTest, UseGetInsteadOfMembers) { PairWithGet pair{7, "ABC"}; EXPECT_THAT(pair, Pair(7, "ABC")); EXPECT_THAT(pair, Pair(Ge(7), HasSubstr("AB"))); EXPECT_THAT(pair, Not(Pair(Lt(7), "ABC")));
std::vector<PairWithGet> v = {{11, "Foo"}, {29, "gMockIsBestMock"}}; EXPECT_THAT(v, ElementsAre(Pair(11, std::string("Foo")), Pair(Ge(10), Not("")))); }
// Tests StartsWith(s).
TEST(StartsWithTest, MatchesStringWithGivenPrefix) { const Matcher<const char*> m1 = StartsWith(std::string("")); EXPECT_TRUE(m1.Matches("Hi")); EXPECT_TRUE(m1.Matches("")); EXPECT_FALSE(m1.Matches(nullptr));
const Matcher<const std::string&> m2 = StartsWith("Hi"); EXPECT_TRUE(m2.Matches("Hi")); EXPECT_TRUE(m2.Matches("Hi Hi!")); EXPECT_TRUE(m2.Matches("High")); EXPECT_FALSE(m2.Matches("H")); EXPECT_FALSE(m2.Matches(" Hi"));
#if GTEST_HAS_ABSL
const Matcher<absl::string_view> m_empty = StartsWith(""); EXPECT_TRUE(m_empty.Matches(absl::string_view())); EXPECT_TRUE(m_empty.Matches(absl::string_view(""))); EXPECT_TRUE(m_empty.Matches(absl::string_view("not empty"))); #endif // GTEST_HAS_ABSL
}
TEST(StartsWithTest, CanDescribeSelf) { Matcher<const std::string> m = StartsWith("Hi"); EXPECT_EQ("starts with \"Hi\"", Describe(m)); }
// Tests EndsWith(s).
TEST(EndsWithTest, MatchesStringWithGivenSuffix) { const Matcher<const char*> m1 = EndsWith(""); EXPECT_TRUE(m1.Matches("Hi")); EXPECT_TRUE(m1.Matches("")); EXPECT_FALSE(m1.Matches(nullptr));
const Matcher<const std::string&> m2 = EndsWith(std::string("Hi")); EXPECT_TRUE(m2.Matches("Hi")); EXPECT_TRUE(m2.Matches("Wow Hi Hi")); EXPECT_TRUE(m2.Matches("Super Hi")); EXPECT_FALSE(m2.Matches("i")); EXPECT_FALSE(m2.Matches("Hi "));
#if GTEST_HAS_ABSL
const Matcher<const absl::string_view&> m4 = EndsWith(""); EXPECT_TRUE(m4.Matches("Hi")); EXPECT_TRUE(m4.Matches("")); EXPECT_TRUE(m4.Matches(absl::string_view())); EXPECT_TRUE(m4.Matches(absl::string_view(""))); #endif // GTEST_HAS_ABSL
}
TEST(EndsWithTest, CanDescribeSelf) { Matcher<const std::string> m = EndsWith("Hi"); EXPECT_EQ("ends with \"Hi\"", Describe(m)); }
// Tests MatchesRegex().
TEST(MatchesRegexTest, MatchesStringMatchingGivenRegex) { const Matcher<const char*> m1 = MatchesRegex("a.*z"); EXPECT_TRUE(m1.Matches("az")); EXPECT_TRUE(m1.Matches("abcz")); EXPECT_FALSE(m1.Matches(nullptr));
const Matcher<const std::string&> m2 = MatchesRegex(new RE("a.*z")); EXPECT_TRUE(m2.Matches("azbz")); EXPECT_FALSE(m2.Matches("az1")); EXPECT_FALSE(m2.Matches("1az"));
#if GTEST_HAS_ABSL
const Matcher<const absl::string_view&> m3 = MatchesRegex("a.*z"); EXPECT_TRUE(m3.Matches(absl::string_view("az"))); EXPECT_TRUE(m3.Matches(absl::string_view("abcz"))); EXPECT_FALSE(m3.Matches(absl::string_view("1az"))); EXPECT_FALSE(m3.Matches(absl::string_view())); const Matcher<const absl::string_view&> m4 = MatchesRegex(""); EXPECT_TRUE(m4.Matches(absl::string_view(""))); EXPECT_TRUE(m4.Matches(absl::string_view())); #endif // GTEST_HAS_ABSL
}
TEST(MatchesRegexTest, CanDescribeSelf) { Matcher<const std::string> m1 = MatchesRegex(std::string("Hi.*")); EXPECT_EQ("matches regular expression \"Hi.*\"", Describe(m1));
Matcher<const char*> m2 = MatchesRegex(new RE("a.*")); EXPECT_EQ("matches regular expression \"a.*\"", Describe(m2));
#if GTEST_HAS_ABSL
Matcher<const absl::string_view> m3 = MatchesRegex(new RE("0.*")); EXPECT_EQ("matches regular expression \"0.*\"", Describe(m3)); #endif // GTEST_HAS_ABSL
}
// Tests ContainsRegex().
TEST(ContainsRegexTest, MatchesStringContainingGivenRegex) { const Matcher<const char*> m1 = ContainsRegex(std::string("a.*z")); EXPECT_TRUE(m1.Matches("az")); EXPECT_TRUE(m1.Matches("0abcz1")); EXPECT_FALSE(m1.Matches(nullptr));
const Matcher<const std::string&> m2 = ContainsRegex(new RE("a.*z")); EXPECT_TRUE(m2.Matches("azbz")); EXPECT_TRUE(m2.Matches("az1")); EXPECT_FALSE(m2.Matches("1a"));
#if GTEST_HAS_ABSL
const Matcher<const absl::string_view&> m3 = ContainsRegex(new RE("a.*z")); EXPECT_TRUE(m3.Matches(absl::string_view("azbz"))); EXPECT_TRUE(m3.Matches(absl::string_view("az1"))); EXPECT_FALSE(m3.Matches(absl::string_view("1a"))); EXPECT_FALSE(m3.Matches(absl::string_view())); const Matcher<const absl::string_view&> m4 = ContainsRegex(""); EXPECT_TRUE(m4.Matches(absl::string_view(""))); EXPECT_TRUE(m4.Matches(absl::string_view())); #endif // GTEST_HAS_ABSL
}
TEST(ContainsRegexTest, CanDescribeSelf) { Matcher<const std::string> m1 = ContainsRegex("Hi.*"); EXPECT_EQ("contains regular expression \"Hi.*\"", Describe(m1));
Matcher<const char*> m2 = ContainsRegex(new RE("a.*")); EXPECT_EQ("contains regular expression \"a.*\"", Describe(m2));
#if GTEST_HAS_ABSL
Matcher<const absl::string_view> m3 = ContainsRegex(new RE("0.*")); EXPECT_EQ("contains regular expression \"0.*\"", Describe(m3)); #endif // GTEST_HAS_ABSL
}
// Tests for wide strings.
#if GTEST_HAS_STD_WSTRING
TEST(StdWideStrEqTest, MatchesEqual) { Matcher<const wchar_t*> m = StrEq(::std::wstring(L"Hello")); EXPECT_TRUE(m.Matches(L"Hello")); EXPECT_FALSE(m.Matches(L"hello")); EXPECT_FALSE(m.Matches(nullptr));
Matcher<const ::std::wstring&> m2 = StrEq(L"Hello"); EXPECT_TRUE(m2.Matches(L"Hello")); EXPECT_FALSE(m2.Matches(L"Hi"));
Matcher<const ::std::wstring&> m3 = StrEq(L"\xD3\x576\x8D3\xC74D"); EXPECT_TRUE(m3.Matches(L"\xD3\x576\x8D3\xC74D")); EXPECT_FALSE(m3.Matches(L"\xD3\x576\x8D3\xC74E"));
::std::wstring str(L"01204500800"); str[3] = L'\0'; Matcher<const ::std::wstring&> m4 = StrEq(str); EXPECT_TRUE(m4.Matches(str)); str[0] = str[6] = str[7] = str[9] = str[10] = L'\0'; Matcher<const ::std::wstring&> m5 = StrEq(str); EXPECT_TRUE(m5.Matches(str)); }
TEST(StdWideStrEqTest, CanDescribeSelf) { Matcher< ::std::wstring> m = StrEq(L"Hi-\'\"?\\\a\b\f\n\r\t\v"); EXPECT_EQ("is equal to L\"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\"", Describe(m));
Matcher< ::std::wstring> m2 = StrEq(L"\xD3\x576\x8D3\xC74D"); EXPECT_EQ("is equal to L\"\\xD3\\x576\\x8D3\\xC74D\"", Describe(m2));
::std::wstring str(L"01204500800"); str[3] = L'\0'; Matcher<const ::std::wstring&> m4 = StrEq(str); EXPECT_EQ("is equal to L\"012\\04500800\"", Describe(m4)); str[0] = str[6] = str[7] = str[9] = str[10] = L'\0'; Matcher<const ::std::wstring&> m5 = StrEq(str); EXPECT_EQ("is equal to L\"\\012\\045\\0\\08\\0\\0\"", Describe(m5)); }
TEST(StdWideStrNeTest, MatchesUnequalString) { Matcher<const wchar_t*> m = StrNe(L"Hello"); EXPECT_TRUE(m.Matches(L"")); EXPECT_TRUE(m.Matches(nullptr)); EXPECT_FALSE(m.Matches(L"Hello"));
Matcher< ::std::wstring> m2 = StrNe(::std::wstring(L"Hello")); EXPECT_TRUE(m2.Matches(L"hello")); EXPECT_FALSE(m2.Matches(L"Hello")); }
TEST(StdWideStrNeTest, CanDescribeSelf) { Matcher<const wchar_t*> m = StrNe(L"Hi"); EXPECT_EQ("isn't equal to L\"Hi\"", Describe(m)); }
TEST(StdWideStrCaseEqTest, MatchesEqualStringIgnoringCase) { Matcher<const wchar_t*> m = StrCaseEq(::std::wstring(L"Hello")); EXPECT_TRUE(m.Matches(L"Hello")); EXPECT_TRUE(m.Matches(L"hello")); EXPECT_FALSE(m.Matches(L"Hi")); EXPECT_FALSE(m.Matches(nullptr));
Matcher<const ::std::wstring&> m2 = StrCaseEq(L"Hello"); EXPECT_TRUE(m2.Matches(L"hello")); EXPECT_FALSE(m2.Matches(L"Hi")); }
TEST(StdWideStrCaseEqTest, MatchesEqualStringWith0IgnoringCase) { ::std::wstring str1(L"oabocdooeoo"); ::std::wstring str2(L"OABOCDOOEOO"); Matcher<const ::std::wstring&> m0 = StrCaseEq(str1); EXPECT_FALSE(m0.Matches(str2 + ::std::wstring(1, L'\0')));
str1[3] = str2[3] = L'\0'; Matcher<const ::std::wstring&> m1 = StrCaseEq(str1); EXPECT_TRUE(m1.Matches(str2));
str1[0] = str1[6] = str1[7] = str1[10] = L'\0'; str2[0] = str2[6] = str2[7] = str2[10] = L'\0'; Matcher<const ::std::wstring&> m2 = StrCaseEq(str1); str1[9] = str2[9] = L'\0'; EXPECT_FALSE(m2.Matches(str2));
Matcher<const ::std::wstring&> m3 = StrCaseEq(str1); EXPECT_TRUE(m3.Matches(str2));
EXPECT_FALSE(m3.Matches(str2 + L"x")); str2.append(1, L'\0'); EXPECT_FALSE(m3.Matches(str2)); EXPECT_FALSE(m3.Matches(::std::wstring(str2, 0, 9))); }
TEST(StdWideStrCaseEqTest, CanDescribeSelf) { Matcher< ::std::wstring> m = StrCaseEq(L"Hi"); EXPECT_EQ("is equal to (ignoring case) L\"Hi\"", Describe(m)); }
TEST(StdWideStrCaseNeTest, MatchesUnequalStringIgnoringCase) { Matcher<const wchar_t*> m = StrCaseNe(L"Hello"); EXPECT_TRUE(m.Matches(L"Hi")); EXPECT_TRUE(m.Matches(nullptr)); EXPECT_FALSE(m.Matches(L"Hello")); EXPECT_FALSE(m.Matches(L"hello"));
Matcher< ::std::wstring> m2 = StrCaseNe(::std::wstring(L"Hello")); EXPECT_TRUE(m2.Matches(L"")); EXPECT_FALSE(m2.Matches(L"Hello")); }
TEST(StdWideStrCaseNeTest, CanDescribeSelf) { Matcher<const wchar_t*> m = StrCaseNe(L"Hi"); EXPECT_EQ("isn't equal to (ignoring case) L\"Hi\"", Describe(m)); }
// Tests that HasSubstr() works for matching wstring-typed values.
TEST(StdWideHasSubstrTest, WorksForStringClasses) { const Matcher< ::std::wstring> m1 = HasSubstr(L"foo"); EXPECT_TRUE(m1.Matches(::std::wstring(L"I love food."))); EXPECT_FALSE(m1.Matches(::std::wstring(L"tofo")));
const Matcher<const ::std::wstring&> m2 = HasSubstr(L"foo"); EXPECT_TRUE(m2.Matches(::std::wstring(L"I love food."))); EXPECT_FALSE(m2.Matches(::std::wstring(L"tofo"))); }
// Tests that HasSubstr() works for matching C-wide-string-typed values.
TEST(StdWideHasSubstrTest, WorksForCStrings) { const Matcher<wchar_t*> m1 = HasSubstr(L"foo"); EXPECT_TRUE(m1.Matches(const_cast<wchar_t*>(L"I love food."))); EXPECT_FALSE(m1.Matches(const_cast<wchar_t*>(L"tofo"))); EXPECT_FALSE(m1.Matches(nullptr));
const Matcher<const wchar_t*> m2 = HasSubstr(L"foo"); EXPECT_TRUE(m2.Matches(L"I love food.")); EXPECT_FALSE(m2.Matches(L"tofo")); EXPECT_FALSE(m2.Matches(nullptr)); }
// Tests that HasSubstr(s) describes itself properly.
TEST(StdWideHasSubstrTest, CanDescribeSelf) { Matcher< ::std::wstring> m = HasSubstr(L"foo\n\""); EXPECT_EQ("has substring L\"foo\\n\\\"\"", Describe(m)); }
// Tests StartsWith(s).
TEST(StdWideStartsWithTest, MatchesStringWithGivenPrefix) { const Matcher<const wchar_t*> m1 = StartsWith(::std::wstring(L"")); EXPECT_TRUE(m1.Matches(L"Hi")); EXPECT_TRUE(m1.Matches(L"")); EXPECT_FALSE(m1.Matches(nullptr));
const Matcher<const ::std::wstring&> m2 = StartsWith(L"Hi"); EXPECT_TRUE(m2.Matches(L"Hi")); EXPECT_TRUE(m2.Matches(L"Hi Hi!")); EXPECT_TRUE(m2.Matches(L"High")); EXPECT_FALSE(m2.Matches(L"H")); EXPECT_FALSE(m2.Matches(L" Hi")); }
TEST(StdWideStartsWithTest, CanDescribeSelf) { Matcher<const ::std::wstring> m = StartsWith(L"Hi"); EXPECT_EQ("starts with L\"Hi\"", Describe(m)); }
// Tests EndsWith(s).
TEST(StdWideEndsWithTest, MatchesStringWithGivenSuffix) { const Matcher<const wchar_t*> m1 = EndsWith(L""); EXPECT_TRUE(m1.Matches(L"Hi")); EXPECT_TRUE(m1.Matches(L"")); EXPECT_FALSE(m1.Matches(nullptr));
const Matcher<const ::std::wstring&> m2 = EndsWith(::std::wstring(L"Hi")); EXPECT_TRUE(m2.Matches(L"Hi")); EXPECT_TRUE(m2.Matches(L"Wow Hi Hi")); EXPECT_TRUE(m2.Matches(L"Super Hi")); EXPECT_FALSE(m2.Matches(L"i")); EXPECT_FALSE(m2.Matches(L"Hi ")); }
TEST(StdWideEndsWithTest, CanDescribeSelf) { Matcher<const ::std::wstring> m = EndsWith(L"Hi"); EXPECT_EQ("ends with L\"Hi\"", Describe(m)); }
#endif // GTEST_HAS_STD_WSTRING
typedef ::std::tuple<long, int> Tuple2; // NOLINT
// Tests that Eq() matches a 2-tuple where the first field == the
// second field.
TEST(Eq2Test, MatchesEqualArguments) { Matcher<const Tuple2&> m = Eq(); EXPECT_TRUE(m.Matches(Tuple2(5L, 5))); EXPECT_FALSE(m.Matches(Tuple2(5L, 6))); }
// Tests that Eq() describes itself properly.
TEST(Eq2Test, CanDescribeSelf) { Matcher<const Tuple2&> m = Eq(); EXPECT_EQ("are an equal pair", Describe(m)); }
// Tests that Ge() matches a 2-tuple where the first field >= the
// second field.
TEST(Ge2Test, MatchesGreaterThanOrEqualArguments) { Matcher<const Tuple2&> m = Ge(); EXPECT_TRUE(m.Matches(Tuple2(5L, 4))); EXPECT_TRUE(m.Matches(Tuple2(5L, 5))); EXPECT_FALSE(m.Matches(Tuple2(5L, 6))); }
// Tests that Ge() describes itself properly.
TEST(Ge2Test, CanDescribeSelf) { Matcher<const Tuple2&> m = Ge(); EXPECT_EQ("are a pair where the first >= the second", Describe(m)); }
// Tests that Gt() matches a 2-tuple where the first field > the
// second field.
TEST(Gt2Test, MatchesGreaterThanArguments) { Matcher<const Tuple2&> m = Gt(); EXPECT_TRUE(m.Matches(Tuple2(5L, 4))); EXPECT_FALSE(m.Matches(Tuple2(5L, 5))); EXPECT_FALSE(m.Matches(Tuple2(5L, 6))); }
// Tests that Gt() describes itself properly.
TEST(Gt2Test, CanDescribeSelf) { Matcher<const Tuple2&> m = Gt(); EXPECT_EQ("are a pair where the first > the second", Describe(m)); }
// Tests that Le() matches a 2-tuple where the first field <= the
// second field.
TEST(Le2Test, MatchesLessThanOrEqualArguments) { Matcher<const Tuple2&> m = Le(); EXPECT_TRUE(m.Matches(Tuple2(5L, 6))); EXPECT_TRUE(m.Matches(Tuple2(5L, 5))); EXPECT_FALSE(m.Matches(Tuple2(5L, 4))); }
// Tests that Le() describes itself properly.
TEST(Le2Test, CanDescribeSelf) { Matcher<const Tuple2&> m = Le(); EXPECT_EQ("are a pair where the first <= the second", Describe(m)); }
// Tests that Lt() matches a 2-tuple where the first field < the
// second field.
TEST(Lt2Test, MatchesLessThanArguments) { Matcher<const Tuple2&> m = Lt(); EXPECT_TRUE(m.Matches(Tuple2(5L, 6))); EXPECT_FALSE(m.Matches(Tuple2(5L, 5))); EXPECT_FALSE(m.Matches(Tuple2(5L, 4))); }
// Tests that Lt() describes itself properly.
TEST(Lt2Test, CanDescribeSelf) { Matcher<const Tuple2&> m = Lt(); EXPECT_EQ("are a pair where the first < the second", Describe(m)); }
// Tests that Ne() matches a 2-tuple where the first field != the
// second field.
TEST(Ne2Test, MatchesUnequalArguments) { Matcher<const Tuple2&> m = Ne(); EXPECT_TRUE(m.Matches(Tuple2(5L, 6))); EXPECT_TRUE(m.Matches(Tuple2(5L, 4))); EXPECT_FALSE(m.Matches(Tuple2(5L, 5))); }
// Tests that Ne() describes itself properly.
TEST(Ne2Test, CanDescribeSelf) { Matcher<const Tuple2&> m = Ne(); EXPECT_EQ("are an unequal pair", Describe(m)); }
TEST(PairMatchBaseTest, WorksWithMoveOnly) { using Pointers = std::tuple<std::unique_ptr<int>, std::unique_ptr<int>>; Matcher<Pointers> matcher = Eq(); Pointers pointers; // Tested values don't matter; the point is that matcher does not copy the
// matched values.
EXPECT_TRUE(matcher.Matches(pointers)); }
// Tests that FloatEq() matches a 2-tuple where
// FloatEq(first field) matches the second field.
TEST(FloatEq2Test, MatchesEqualArguments) { typedef ::std::tuple<float, float> Tpl; Matcher<const Tpl&> m = FloatEq(); EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); EXPECT_TRUE(m.Matches(Tpl(0.3f, 0.1f + 0.1f + 0.1f))); EXPECT_FALSE(m.Matches(Tpl(1.1f, 1.0f))); }
// Tests that FloatEq() describes itself properly.
TEST(FloatEq2Test, CanDescribeSelf) { Matcher<const ::std::tuple<float, float>&> m = FloatEq(); EXPECT_EQ("are an almost-equal pair", Describe(m)); }
// Tests that NanSensitiveFloatEq() matches a 2-tuple where
// NanSensitiveFloatEq(first field) matches the second field.
TEST(NanSensitiveFloatEqTest, MatchesEqualArgumentsWithNaN) { typedef ::std::tuple<float, float> Tpl; Matcher<const Tpl&> m = NanSensitiveFloatEq(); EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits<float>::quiet_NaN(), std::numeric_limits<float>::quiet_NaN()))); EXPECT_FALSE(m.Matches(Tpl(1.1f, 1.0f))); EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits<float>::quiet_NaN()))); EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits<float>::quiet_NaN(), 1.0f))); }
// Tests that NanSensitiveFloatEq() describes itself properly.
TEST(NanSensitiveFloatEqTest, CanDescribeSelfWithNaNs) { Matcher<const ::std::tuple<float, float>&> m = NanSensitiveFloatEq(); EXPECT_EQ("are an almost-equal pair", Describe(m)); }
// Tests that DoubleEq() matches a 2-tuple where
// DoubleEq(first field) matches the second field.
TEST(DoubleEq2Test, MatchesEqualArguments) { typedef ::std::tuple<double, double> Tpl; Matcher<const Tpl&> m = DoubleEq(); EXPECT_TRUE(m.Matches(Tpl(1.0, 1.0))); EXPECT_TRUE(m.Matches(Tpl(0.3, 0.1 + 0.1 + 0.1))); EXPECT_FALSE(m.Matches(Tpl(1.1, 1.0))); }
// Tests that DoubleEq() describes itself properly.
TEST(DoubleEq2Test, CanDescribeSelf) { Matcher<const ::std::tuple<double, double>&> m = DoubleEq(); EXPECT_EQ("are an almost-equal pair", Describe(m)); }
// Tests that NanSensitiveDoubleEq() matches a 2-tuple where
// NanSensitiveDoubleEq(first field) matches the second field.
TEST(NanSensitiveDoubleEqTest, MatchesEqualArgumentsWithNaN) { typedef ::std::tuple<double, double> Tpl; Matcher<const Tpl&> m = NanSensitiveDoubleEq(); EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN()))); EXPECT_FALSE(m.Matches(Tpl(1.1f, 1.0f))); EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits<double>::quiet_NaN()))); EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits<double>::quiet_NaN(), 1.0f))); }
// Tests that DoubleEq() describes itself properly.
TEST(NanSensitiveDoubleEqTest, CanDescribeSelfWithNaNs) { Matcher<const ::std::tuple<double, double>&> m = NanSensitiveDoubleEq(); EXPECT_EQ("are an almost-equal pair", Describe(m)); }
// Tests that FloatEq() matches a 2-tuple where
// FloatNear(first field, max_abs_error) matches the second field.
TEST(FloatNear2Test, MatchesEqualArguments) { typedef ::std::tuple<float, float> Tpl; Matcher<const Tpl&> m = FloatNear(0.5f); EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); EXPECT_TRUE(m.Matches(Tpl(1.3f, 1.0f))); EXPECT_FALSE(m.Matches(Tpl(1.8f, 1.0f))); }
// Tests that FloatNear() describes itself properly.
TEST(FloatNear2Test, CanDescribeSelf) { Matcher<const ::std::tuple<float, float>&> m = FloatNear(0.5f); EXPECT_EQ("are an almost-equal pair", Describe(m)); }
// Tests that NanSensitiveFloatNear() matches a 2-tuple where
// NanSensitiveFloatNear(first field) matches the second field.
TEST(NanSensitiveFloatNearTest, MatchesNearbyArgumentsWithNaN) { typedef ::std::tuple<float, float> Tpl; Matcher<const Tpl&> m = NanSensitiveFloatNear(0.5f); EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); EXPECT_TRUE(m.Matches(Tpl(1.1f, 1.0f))); EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits<float>::quiet_NaN(), std::numeric_limits<float>::quiet_NaN()))); EXPECT_FALSE(m.Matches(Tpl(1.6f, 1.0f))); EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits<float>::quiet_NaN()))); EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits<float>::quiet_NaN(), 1.0f))); }
// Tests that NanSensitiveFloatNear() describes itself properly.
TEST(NanSensitiveFloatNearTest, CanDescribeSelfWithNaNs) { Matcher<const ::std::tuple<float, float>&> m = NanSensitiveFloatNear(0.5f); EXPECT_EQ("are an almost-equal pair", Describe(m)); }
// Tests that FloatEq() matches a 2-tuple where
// DoubleNear(first field, max_abs_error) matches the second field.
TEST(DoubleNear2Test, MatchesEqualArguments) { typedef ::std::tuple<double, double> Tpl; Matcher<const Tpl&> m = DoubleNear(0.5); EXPECT_TRUE(m.Matches(Tpl(1.0, 1.0))); EXPECT_TRUE(m.Matches(Tpl(1.3, 1.0))); EXPECT_FALSE(m.Matches(Tpl(1.8, 1.0))); }
// Tests that DoubleNear() describes itself properly.
TEST(DoubleNear2Test, CanDescribeSelf) { Matcher<const ::std::tuple<double, double>&> m = DoubleNear(0.5); EXPECT_EQ("are an almost-equal pair", Describe(m)); }
// Tests that NanSensitiveDoubleNear() matches a 2-tuple where
// NanSensitiveDoubleNear(first field) matches the second field.
TEST(NanSensitiveDoubleNearTest, MatchesNearbyArgumentsWithNaN) { typedef ::std::tuple<double, double> Tpl; Matcher<const Tpl&> m = NanSensitiveDoubleNear(0.5f); EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); EXPECT_TRUE(m.Matches(Tpl(1.1f, 1.0f))); EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN()))); EXPECT_FALSE(m.Matches(Tpl(1.6f, 1.0f))); EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits<double>::quiet_NaN()))); EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits<double>::quiet_NaN(), 1.0f))); }
// Tests that NanSensitiveDoubleNear() describes itself properly.
TEST(NanSensitiveDoubleNearTest, CanDescribeSelfWithNaNs) { Matcher<const ::std::tuple<double, double>&> m = NanSensitiveDoubleNear(0.5f); EXPECT_EQ("are an almost-equal pair", Describe(m)); }
// Tests that Not(m) matches any value that doesn't match m.
TEST(NotTest, NegatesMatcher) { Matcher<int> m; m = Not(Eq(2)); EXPECT_TRUE(m.Matches(3)); EXPECT_FALSE(m.Matches(2)); }
// Tests that Not(m) describes itself properly.
TEST(NotTest, CanDescribeSelf) { Matcher<int> m = Not(Eq(5)); EXPECT_EQ("isn't equal to 5", Describe(m)); }
// Tests that monomorphic matchers are safely cast by the Not matcher.
TEST(NotTest, NotMatcherSafelyCastsMonomorphicMatchers) { // greater_than_5 is a monomorphic matcher.
Matcher<int> greater_than_5 = Gt(5);
Matcher<const int&> m = Not(greater_than_5); Matcher<int&> m2 = Not(greater_than_5); Matcher<int&> m3 = Not(m); }
// Helper to allow easy testing of AllOf matchers with num parameters.
void AllOfMatches(int num, const Matcher<int>& m) { SCOPED_TRACE(Describe(m)); EXPECT_TRUE(m.Matches(0)); for (int i = 1; i <= num; ++i) { EXPECT_FALSE(m.Matches(i)); } EXPECT_TRUE(m.Matches(num + 1)); }
// Tests that AllOf(m1, ..., mn) matches any value that matches all of
// the given matchers.
TEST(AllOfTest, MatchesWhenAllMatch) { Matcher<int> m; m = AllOf(Le(2), Ge(1)); EXPECT_TRUE(m.Matches(1)); EXPECT_TRUE(m.Matches(2)); EXPECT_FALSE(m.Matches(0)); EXPECT_FALSE(m.Matches(3));
m = AllOf(Gt(0), Ne(1), Ne(2)); EXPECT_TRUE(m.Matches(3)); EXPECT_FALSE(m.Matches(2)); EXPECT_FALSE(m.Matches(1)); EXPECT_FALSE(m.Matches(0));
m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3)); EXPECT_TRUE(m.Matches(4)); EXPECT_FALSE(m.Matches(3)); EXPECT_FALSE(m.Matches(2)); EXPECT_FALSE(m.Matches(1)); EXPECT_FALSE(m.Matches(0));
m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7)); EXPECT_TRUE(m.Matches(0)); EXPECT_TRUE(m.Matches(1)); EXPECT_FALSE(m.Matches(3));
// The following tests for varying number of sub-matchers. Due to the way
// the sub-matchers are handled it is enough to test every sub-matcher once
// with sub-matchers using the same matcher type. Varying matcher types are
// checked for above.
AllOfMatches(2, AllOf(Ne(1), Ne(2))); AllOfMatches(3, AllOf(Ne(1), Ne(2), Ne(3))); AllOfMatches(4, AllOf(Ne(1), Ne(2), Ne(3), Ne(4))); AllOfMatches(5, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5))); AllOfMatches(6, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6))); AllOfMatches(7, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7))); AllOfMatches(8, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8))); AllOfMatches(9, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8), Ne(9))); AllOfMatches(10, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8), Ne(9), Ne(10))); AllOfMatches( 50, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8), Ne(9), Ne(10), Ne(11), Ne(12), Ne(13), Ne(14), Ne(15), Ne(16), Ne(17), Ne(18), Ne(19), Ne(20), Ne(21), Ne(22), Ne(23), Ne(24), Ne(25), Ne(26), Ne(27), Ne(28), Ne(29), Ne(30), Ne(31), Ne(32), Ne(33), Ne(34), Ne(35), Ne(36), Ne(37), Ne(38), Ne(39), Ne(40), Ne(41), Ne(42), Ne(43), Ne(44), Ne(45), Ne(46), Ne(47), Ne(48), Ne(49), Ne(50))); }
// Tests that AllOf(m1, ..., mn) describes itself properly.
TEST(AllOfTest, CanDescribeSelf) { Matcher<int> m; m = AllOf(Le(2), Ge(1)); EXPECT_EQ("(is <= 2) and (is >= 1)", Describe(m));
m = AllOf(Gt(0), Ne(1), Ne(2)); std::string expected_descr1 = "(is > 0) and (isn't equal to 1) and (isn't equal to 2)"; EXPECT_EQ(expected_descr1, Describe(m));
m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3)); std::string expected_descr2 = "(is > 0) and (isn't equal to 1) and (isn't equal to 2) and (isn't equal " "to 3)"; EXPECT_EQ(expected_descr2, Describe(m));
m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7)); std::string expected_descr3 = "(is >= 0) and (is < 10) and (isn't equal to 3) and (isn't equal to 5) " "and (isn't equal to 7)"; EXPECT_EQ(expected_descr3, Describe(m)); }
// Tests that AllOf(m1, ..., mn) describes its negation properly.
TEST(AllOfTest, CanDescribeNegation) { Matcher<int> m; m = AllOf(Le(2), Ge(1)); std::string expected_descr4 = "(isn't <= 2) or (isn't >= 1)"; EXPECT_EQ(expected_descr4, DescribeNegation(m));
m = AllOf(Gt(0), Ne(1), Ne(2)); std::string expected_descr5 = "(isn't > 0) or (is equal to 1) or (is equal to 2)"; EXPECT_EQ(expected_descr5, DescribeNegation(m));
m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3)); std::string expected_descr6 = "(isn't > 0) or (is equal to 1) or (is equal to 2) or (is equal to 3)"; EXPECT_EQ(expected_descr6, DescribeNegation(m));
m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7)); std::string expected_desr7 = "(isn't >= 0) or (isn't < 10) or (is equal to 3) or (is equal to 5) or " "(is equal to 7)"; EXPECT_EQ(expected_desr7, DescribeNegation(m));
m = AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8), Ne(9), Ne(10), Ne(11)); AllOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); EXPECT_THAT(Describe(m), EndsWith("and (isn't equal to 11)")); AllOfMatches(11, m); }
// Tests that monomorphic matchers are safely cast by the AllOf matcher.
TEST(AllOfTest, AllOfMatcherSafelyCastsMonomorphicMatchers) { // greater_than_5 and less_than_10 are monomorphic matchers.
Matcher<int> greater_than_5 = Gt(5); Matcher<int> less_than_10 = Lt(10);
Matcher<const int&> m = AllOf(greater_than_5, less_than_10); Matcher<int&> m2 = AllOf(greater_than_5, less_than_10); Matcher<int&> m3 = AllOf(greater_than_5, m2);
// Tests that BothOf works when composing itself.
Matcher<const int&> m4 = AllOf(greater_than_5, less_than_10, less_than_10); Matcher<int&> m5 = AllOf(greater_than_5, less_than_10, less_than_10); }
TEST(AllOfTest, ExplainsResult) { Matcher<int> m;
// Successful match. Both matchers need to explain. The second
// matcher doesn't give an explanation, so only the first matcher's
// explanation is printed.
m = AllOf(GreaterThan(10), Lt(30)); EXPECT_EQ("which is 15 more than 10", Explain(m, 25));
// Successful match. Both matchers need to explain.
m = AllOf(GreaterThan(10), GreaterThan(20)); EXPECT_EQ("which is 20 more than 10, and which is 10 more than 20", Explain(m, 30));
// Successful match. All matchers need to explain. The second
// matcher doesn't given an explanation.
m = AllOf(GreaterThan(10), Lt(30), GreaterThan(20)); EXPECT_EQ("which is 15 more than 10, and which is 5 more than 20", Explain(m, 25));
// Successful match. All matchers need to explain.
m = AllOf(GreaterThan(10), GreaterThan(20), GreaterThan(30)); EXPECT_EQ("which is 30 more than 10, and which is 20 more than 20, " "and which is 10 more than 30", Explain(m, 40));
// Failed match. The first matcher, which failed, needs to
// explain.
m = AllOf(GreaterThan(10), GreaterThan(20)); EXPECT_EQ("which is 5 less than 10", Explain(m, 5));
// Failed match. The second matcher, which failed, needs to
// explain. Since it doesn't given an explanation, nothing is
// printed.
m = AllOf(GreaterThan(10), Lt(30)); EXPECT_EQ("", Explain(m, 40));
// Failed match. The second matcher, which failed, needs to
// explain.
m = AllOf(GreaterThan(10), GreaterThan(20)); EXPECT_EQ("which is 5 less than 20", Explain(m, 15)); }
// Helper to allow easy testing of AnyOf matchers with num parameters.
static void AnyOfMatches(int num, const Matcher<int>& m) { SCOPED_TRACE(Describe(m)); EXPECT_FALSE(m.Matches(0)); for (int i = 1; i <= num; ++i) { EXPECT_TRUE(m.Matches(i)); } EXPECT_FALSE(m.Matches(num + 1)); }
static void AnyOfStringMatches(int num, const Matcher<std::string>& m) { SCOPED_TRACE(Describe(m)); EXPECT_FALSE(m.Matches(std::to_string(0)));
for (int i = 1; i <= num; ++i) { EXPECT_TRUE(m.Matches(std::to_string(i))); } EXPECT_FALSE(m.Matches(std::to_string(num + 1))); }
// Tests that AnyOf(m1, ..., mn) matches any value that matches at
// least one of the given matchers.
TEST(AnyOfTest, MatchesWhenAnyMatches) { Matcher<int> m; m = AnyOf(Le(1), Ge(3)); EXPECT_TRUE(m.Matches(1)); EXPECT_TRUE(m.Matches(4)); EXPECT_FALSE(m.Matches(2));
m = AnyOf(Lt(0), Eq(1), Eq(2)); EXPECT_TRUE(m.Matches(-1)); EXPECT_TRUE(m.Matches(1)); EXPECT_TRUE(m.Matches(2)); EXPECT_FALSE(m.Matches(0));
m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3)); EXPECT_TRUE(m.Matches(-1)); EXPECT_TRUE(m.Matches(1)); EXPECT_TRUE(m.Matches(2)); EXPECT_TRUE(m.Matches(3)); EXPECT_FALSE(m.Matches(0));
m = AnyOf(Le(0), Gt(10), 3, 5, 7); EXPECT_TRUE(m.Matches(0)); EXPECT_TRUE(m.Matches(11)); EXPECT_TRUE(m.Matches(3)); EXPECT_FALSE(m.Matches(2));
// The following tests for varying number of sub-matchers. Due to the way
// the sub-matchers are handled it is enough to test every sub-matcher once
// with sub-matchers using the same matcher type. Varying matcher types are
// checked for above.
AnyOfMatches(2, AnyOf(1, 2)); AnyOfMatches(3, AnyOf(1, 2, 3)); AnyOfMatches(4, AnyOf(1, 2, 3, 4)); AnyOfMatches(5, AnyOf(1, 2, 3, 4, 5)); AnyOfMatches(6, AnyOf(1, 2, 3, 4, 5, 6)); AnyOfMatches(7, AnyOf(1, 2, 3, 4, 5, 6, 7)); AnyOfMatches(8, AnyOf(1, 2, 3, 4, 5, 6, 7, 8)); AnyOfMatches(9, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9)); AnyOfMatches(10, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)); }
// Tests the variadic version of the AnyOfMatcher.
TEST(AnyOfTest, VariadicMatchesWhenAnyMatches) { // Also make sure AnyOf is defined in the right namespace and does not depend
// on ADL.
Matcher<int> m = ::testing::AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
EXPECT_THAT(Describe(m), EndsWith("or (is equal to 11)")); AnyOfMatches(11, m); AnyOfMatches(50, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50)); AnyOfStringMatches( 50, AnyOf("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "50")); }
// Tests the variadic version of the ElementsAreMatcher
TEST(ElementsAreTest, HugeMatcher) { vector<int> test_vector{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
EXPECT_THAT(test_vector, ElementsAre(Eq(1), Eq(2), Lt(13), Eq(4), Eq(5), Eq(6), Eq(7), Eq(8), Eq(9), Eq(10), Gt(1), Eq(12))); }
// Tests the variadic version of the UnorderedElementsAreMatcher
TEST(ElementsAreTest, HugeMatcherStr) { vector<std::string> test_vector{ "literal_string", "", "", "", "", "", "", "", "", "", "", ""};
EXPECT_THAT(test_vector, UnorderedElementsAre("literal_string", _, _, _, _, _, _, _, _, _, _, _)); }
// Tests the variadic version of the UnorderedElementsAreMatcher
TEST(ElementsAreTest, HugeMatcherUnordered) { vector<int> test_vector{2, 1, 8, 5, 4, 6, 7, 3, 9, 12, 11, 10};
EXPECT_THAT(test_vector, UnorderedElementsAre( Eq(2), Eq(1), Gt(7), Eq(5), Eq(4), Eq(6), Eq(7), Eq(3), Eq(9), Eq(12), Eq(11), Ne(122))); }
// Tests that AnyOf(m1, ..., mn) describes itself properly.
TEST(AnyOfTest, CanDescribeSelf) { Matcher<int> m; m = AnyOf(Le(1), Ge(3));
EXPECT_EQ("(is <= 1) or (is >= 3)", Describe(m));
m = AnyOf(Lt(0), Eq(1), Eq(2)); EXPECT_EQ("(is < 0) or (is equal to 1) or (is equal to 2)", Describe(m));
m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3)); EXPECT_EQ("(is < 0) or (is equal to 1) or (is equal to 2) or (is equal to 3)", Describe(m));
m = AnyOf(Le(0), Gt(10), 3, 5, 7); EXPECT_EQ( "(is <= 0) or (is > 10) or (is equal to 3) or (is equal to 5) or (is " "equal to 7)", Describe(m)); }
// Tests that AnyOf(m1, ..., mn) describes its negation properly.
TEST(AnyOfTest, CanDescribeNegation) { Matcher<int> m; m = AnyOf(Le(1), Ge(3)); EXPECT_EQ("(isn't <= 1) and (isn't >= 3)", DescribeNegation(m));
m = AnyOf(Lt(0), Eq(1), Eq(2)); EXPECT_EQ("(isn't < 0) and (isn't equal to 1) and (isn't equal to 2)", DescribeNegation(m));
m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3)); EXPECT_EQ( "(isn't < 0) and (isn't equal to 1) and (isn't equal to 2) and (isn't " "equal to 3)", DescribeNegation(m));
m = AnyOf(Le(0), Gt(10), 3, 5, 7); EXPECT_EQ( "(isn't <= 0) and (isn't > 10) and (isn't equal to 3) and (isn't equal " "to 5) and (isn't equal to 7)", DescribeNegation(m)); }
// Tests that monomorphic matchers are safely cast by the AnyOf matcher.
TEST(AnyOfTest, AnyOfMatcherSafelyCastsMonomorphicMatchers) { // greater_than_5 and less_than_10 are monomorphic matchers.
Matcher<int> greater_than_5 = Gt(5); Matcher<int> less_than_10 = Lt(10);
Matcher<const int&> m = AnyOf(greater_than_5, less_than_10); Matcher<int&> m2 = AnyOf(greater_than_5, less_than_10); Matcher<int&> m3 = AnyOf(greater_than_5, m2);
// Tests that EitherOf works when composing itself.
Matcher<const int&> m4 = AnyOf(greater_than_5, less_than_10, less_than_10); Matcher<int&> m5 = AnyOf(greater_than_5, less_than_10, less_than_10); }
TEST(AnyOfTest, ExplainsResult) { Matcher<int> m;
// Failed match. Both matchers need to explain. The second
// matcher doesn't give an explanation, so only the first matcher's
// explanation is printed.
m = AnyOf(GreaterThan(10), Lt(0)); EXPECT_EQ("which is 5 less than 10", Explain(m, 5));
// Failed match. Both matchers need to explain.
m = AnyOf(GreaterThan(10), GreaterThan(20)); EXPECT_EQ("which is 5 less than 10, and which is 15 less than 20", Explain(m, 5));
// Failed match. All matchers need to explain. The second
// matcher doesn't given an explanation.
m = AnyOf(GreaterThan(10), Gt(20), GreaterThan(30)); EXPECT_EQ("which is 5 less than 10, and which is 25 less than 30", Explain(m, 5));
// Failed match. All matchers need to explain.
m = AnyOf(GreaterThan(10), GreaterThan(20), GreaterThan(30)); EXPECT_EQ("which is 5 less than 10, and which is 15 less than 20, " "and which is 25 less than 30", Explain(m, 5));
// Successful match. The first matcher, which succeeded, needs to
// explain.
m = AnyOf(GreaterThan(10), GreaterThan(20)); EXPECT_EQ("which is 5 more than 10", Explain(m, 15));
// Successful match. The second matcher, which succeeded, needs to
// explain. Since it doesn't given an explanation, nothing is
// printed.
m = AnyOf(GreaterThan(10), Lt(30)); EXPECT_EQ("", Explain(m, 0));
// Successful match. The second matcher, which succeeded, needs to
// explain.
m = AnyOf(GreaterThan(30), GreaterThan(20)); EXPECT_EQ("which is 5 more than 20", Explain(m, 25)); }
// The following predicate function and predicate functor are for
// testing the Truly(predicate) matcher.
// Returns non-zero if the input is positive. Note that the return
// type of this function is not bool. It's OK as Truly() accepts any
// unary function or functor whose return type can be implicitly
// converted to bool.
int IsPositive(double x) { return x > 0 ? 1 : 0; }
// This functor returns true if the input is greater than the given
// number.
class IsGreaterThan { public: explicit IsGreaterThan(int threshold) : threshold_(threshold) {}
bool operator()(int n) const { return n > threshold_; }
private: int threshold_; };
// For testing Truly().
const int foo = 0;
// This predicate returns true if and only if the argument references foo and
// has a zero value.
bool ReferencesFooAndIsZero(const int& n) { return (&n == &foo) && (n == 0); }
// Tests that Truly(predicate) matches what satisfies the given
// predicate.
TEST(TrulyTest, MatchesWhatSatisfiesThePredicate) { Matcher<double> m = Truly(IsPositive); EXPECT_TRUE(m.Matches(2.0)); EXPECT_FALSE(m.Matches(-1.5)); }
// Tests that Truly(predicate_functor) works too.
TEST(TrulyTest, CanBeUsedWithFunctor) { Matcher<int> m = Truly(IsGreaterThan(5)); EXPECT_TRUE(m.Matches(6)); EXPECT_FALSE(m.Matches(4)); }
// A class that can be implicitly converted to bool.
class ConvertibleToBool { public: explicit ConvertibleToBool(int number) : number_(number) {} operator bool() const { return number_ != 0; }
private: int number_; };
ConvertibleToBool IsNotZero(int number) { return ConvertibleToBool(number); }
// Tests that the predicate used in Truly() may return a class that's
// implicitly convertible to bool, even when the class has no
// operator!().
TEST(TrulyTest, PredicateCanReturnAClassConvertibleToBool) { Matcher<int> m = Truly(IsNotZero); EXPECT_TRUE(m.Matches(1)); EXPECT_FALSE(m.Matches(0)); }
// Tests that Truly(predicate) can describe itself properly.
TEST(TrulyTest, CanDescribeSelf) { Matcher<double> m = Truly(IsPositive); EXPECT_EQ("satisfies the given predicate", Describe(m)); }
// Tests that Truly(predicate) works when the matcher takes its
// argument by reference.
TEST(TrulyTest, WorksForByRefArguments) { Matcher<const int&> m = Truly(ReferencesFooAndIsZero); EXPECT_TRUE(m.Matches(foo)); int n = 0; EXPECT_FALSE(m.Matches(n)); }
// Tests that Matches(m) is a predicate satisfied by whatever that
// matches matcher m.
TEST(MatchesTest, IsSatisfiedByWhatMatchesTheMatcher) { EXPECT_TRUE(Matches(Ge(0))(1)); EXPECT_FALSE(Matches(Eq('a'))('b')); }
// Tests that Matches(m) works when the matcher takes its argument by
// reference.
TEST(MatchesTest, WorksOnByRefArguments) { int m = 0, n = 0; EXPECT_TRUE(Matches(AllOf(Ref(n), Eq(0)))(n)); EXPECT_FALSE(Matches(Ref(m))(n)); }
// Tests that a Matcher on non-reference type can be used in
// Matches().
TEST(MatchesTest, WorksWithMatcherOnNonRefType) { Matcher<int> eq5 = Eq(5); EXPECT_TRUE(Matches(eq5)(5)); EXPECT_FALSE(Matches(eq5)(2)); }
// Tests Value(value, matcher). Since Value() is a simple wrapper for
// Matches(), which has been tested already, we don't spend a lot of
// effort on testing Value().
TEST(ValueTest, WorksWithPolymorphicMatcher) { EXPECT_TRUE(Value("hi", StartsWith("h"))); EXPECT_FALSE(Value(5, Gt(10))); }
TEST(ValueTest, WorksWithMonomorphicMatcher) { const Matcher<int> is_zero = Eq(0); EXPECT_TRUE(Value(0, is_zero)); EXPECT_FALSE(Value('a', is_zero));
int n = 0; const Matcher<const int&> ref_n = Ref(n); EXPECT_TRUE(Value(n, ref_n)); EXPECT_FALSE(Value(1, ref_n)); }
TEST(ExplainMatchResultTest, WorksWithPolymorphicMatcher) { StringMatchResultListener listener1; EXPECT_TRUE(ExplainMatchResult(PolymorphicIsEven(), 42, &listener1)); EXPECT_EQ("% 2 == 0", listener1.str());
StringMatchResultListener listener2; EXPECT_FALSE(ExplainMatchResult(Ge(42), 1.5, &listener2)); EXPECT_EQ("", listener2.str()); }
TEST(ExplainMatchResultTest, WorksWithMonomorphicMatcher) { const Matcher<int> is_even = PolymorphicIsEven(); StringMatchResultListener listener1; EXPECT_TRUE(ExplainMatchResult(is_even, 42, &listener1)); EXPECT_EQ("% 2 == 0", listener1.str());
const Matcher<const double&> is_zero = Eq(0); StringMatchResultListener listener2; EXPECT_FALSE(ExplainMatchResult(is_zero, 1.5, &listener2)); EXPECT_EQ("", listener2.str()); }
MATCHER_P(Really, inner_matcher, "") { return ExplainMatchResult(inner_matcher, arg, result_listener); }
TEST(ExplainMatchResultTest, WorksInsideMATCHER) { EXPECT_THAT(0, Really(Eq(0))); }
TEST(DescribeMatcherTest, WorksWithValue) { EXPECT_EQ("is equal to 42", DescribeMatcher<int>(42)); EXPECT_EQ("isn't equal to 42", DescribeMatcher<int>(42, true)); }
TEST(DescribeMatcherTest, WorksWithMonomorphicMatcher) { const Matcher<int> monomorphic = Le(0); EXPECT_EQ("is <= 0", DescribeMatcher<int>(monomorphic)); EXPECT_EQ("isn't <= 0", DescribeMatcher<int>(monomorphic, true)); }
TEST(DescribeMatcherTest, WorksWithPolymorphicMatcher) { EXPECT_EQ("is even", DescribeMatcher<int>(PolymorphicIsEven())); EXPECT_EQ("is odd", DescribeMatcher<int>(PolymorphicIsEven(), true)); }
TEST(AllArgsTest, WorksForTuple) { EXPECT_THAT(std::make_tuple(1, 2L), AllArgs(Lt())); EXPECT_THAT(std::make_tuple(2L, 1), Not(AllArgs(Lt()))); }
TEST(AllArgsTest, WorksForNonTuple) { EXPECT_THAT(42, AllArgs(Gt(0))); EXPECT_THAT('a', Not(AllArgs(Eq('b')))); }
class AllArgsHelper { public: AllArgsHelper() {}
MOCK_METHOD2(Helper, int(char x, int y));
private: GTEST_DISALLOW_COPY_AND_ASSIGN_(AllArgsHelper); };
TEST(AllArgsTest, WorksInWithClause) { AllArgsHelper helper; ON_CALL(helper, Helper(_, _)) .With(AllArgs(Lt())) .WillByDefault(Return(1)); EXPECT_CALL(helper, Helper(_, _)); EXPECT_CALL(helper, Helper(_, _)) .With(AllArgs(Gt())) .WillOnce(Return(2));
EXPECT_EQ(1, helper.Helper('\1', 2)); EXPECT_EQ(2, helper.Helper('a', 1)); }
class OptionalMatchersHelper { public: OptionalMatchersHelper() {}
MOCK_METHOD0(NoArgs, int());
MOCK_METHOD1(OneArg, int(int y));
MOCK_METHOD2(TwoArgs, int(char x, int y));
MOCK_METHOD1(Overloaded, int(char x)); MOCK_METHOD2(Overloaded, int(char x, int y));
private: GTEST_DISALLOW_COPY_AND_ASSIGN_(OptionalMatchersHelper); };
TEST(AllArgsTest, WorksWithoutMatchers) { OptionalMatchersHelper helper;
ON_CALL(helper, NoArgs).WillByDefault(Return(10)); ON_CALL(helper, OneArg).WillByDefault(Return(20)); ON_CALL(helper, TwoArgs).WillByDefault(Return(30));
EXPECT_EQ(10, helper.NoArgs()); EXPECT_EQ(20, helper.OneArg(1)); EXPECT_EQ(30, helper.TwoArgs('\1', 2));
EXPECT_CALL(helper, NoArgs).Times(1); EXPECT_CALL(helper, OneArg).WillOnce(Return(100)); EXPECT_CALL(helper, OneArg(17)).WillOnce(Return(200)); EXPECT_CALL(helper, TwoArgs).Times(0);
EXPECT_EQ(10, helper.NoArgs()); EXPECT_EQ(100, helper.OneArg(1)); EXPECT_EQ(200, helper.OneArg(17)); }
// Tests that ASSERT_THAT() and EXPECT_THAT() work when the value
// matches the matcher.
TEST(MatcherAssertionTest, WorksWhenMatcherIsSatisfied) { ASSERT_THAT(5, Ge(2)) << "This should succeed."; ASSERT_THAT("Foo", EndsWith("oo")); EXPECT_THAT(2, AllOf(Le(7), Ge(0))) << "This should succeed too."; EXPECT_THAT("Hello", StartsWith("Hell")); }
// Tests that ASSERT_THAT() and EXPECT_THAT() work when the value
// doesn't match the matcher.
TEST(MatcherAssertionTest, WorksWhenMatcherIsNotSatisfied) { // 'n' must be static as it is used in an EXPECT_FATAL_FAILURE(),
// which cannot reference auto variables.
static unsigned short n; // NOLINT
n = 5;
// VC++ prior to version 8.0 SP1 has a bug where it will not see any
// functions declared in the namespace scope from within nested classes.
// EXPECT/ASSERT_(NON)FATAL_FAILURE macros use nested classes so that all
// namespace-level functions invoked inside them need to be explicitly
// resolved.
EXPECT_FATAL_FAILURE(ASSERT_THAT(n, ::testing::Gt(10)), "Value of: n\n" "Expected: is > 10\n" " Actual: 5" + OfType("unsigned short")); n = 0; EXPECT_NONFATAL_FAILURE( EXPECT_THAT(n, ::testing::AllOf(::testing::Le(7), ::testing::Ge(5))), "Value of: n\n" "Expected: (is <= 7) and (is >= 5)\n" " Actual: 0" + OfType("unsigned short")); }
// Tests that ASSERT_THAT() and EXPECT_THAT() work when the argument
// has a reference type.
TEST(MatcherAssertionTest, WorksForByRefArguments) { // We use a static variable here as EXPECT_FATAL_FAILURE() cannot
// reference auto variables.
static int n; n = 0; EXPECT_THAT(n, AllOf(Le(7), Ref(n))); EXPECT_FATAL_FAILURE(ASSERT_THAT(n, ::testing::Not(::testing::Ref(n))), "Value of: n\n" "Expected: does not reference the variable @"); // Tests the "Actual" part.
EXPECT_FATAL_FAILURE(ASSERT_THAT(n, ::testing::Not(::testing::Ref(n))), "Actual: 0" + OfType("int") + ", which is located @"); }
// Tests that ASSERT_THAT() and EXPECT_THAT() work when the matcher is
// monomorphic.
TEST(MatcherAssertionTest, WorksForMonomorphicMatcher) { Matcher<const char*> starts_with_he = StartsWith("he"); ASSERT_THAT("hello", starts_with_he);
Matcher<const std::string&> ends_with_ok = EndsWith("ok"); ASSERT_THAT("book", ends_with_ok); const std::string bad = "bad"; EXPECT_NONFATAL_FAILURE(EXPECT_THAT(bad, ends_with_ok), "Value of: bad\n" "Expected: ends with \"ok\"\n" " Actual: \"bad\""); Matcher<int> is_greater_than_5 = Gt(5); EXPECT_NONFATAL_FAILURE(EXPECT_THAT(5, is_greater_than_5), "Value of: 5\n" "Expected: is > 5\n" " Actual: 5" + OfType("int")); }
// Tests floating-point matchers.
template <typename RawType> class FloatingPointTest : public testing::Test { protected: typedef testing::internal::FloatingPoint<RawType> Floating; typedef typename Floating::Bits Bits;
FloatingPointTest() : max_ulps_(Floating::kMaxUlps), zero_bits_(Floating(0).bits()), one_bits_(Floating(1).bits()), infinity_bits_(Floating(Floating::Infinity()).bits()), close_to_positive_zero_( Floating::ReinterpretBits(zero_bits_ + max_ulps_/2)), close_to_negative_zero_( -Floating::ReinterpretBits(zero_bits_ + max_ulps_ - max_ulps_/2)), further_from_negative_zero_(-Floating::ReinterpretBits( zero_bits_ + max_ulps_ + 1 - max_ulps_/2)), close_to_one_(Floating::ReinterpretBits(one_bits_ + max_ulps_)), further_from_one_(Floating::ReinterpretBits(one_bits_ + max_ulps_ + 1)), infinity_(Floating::Infinity()), close_to_infinity_( Floating::ReinterpretBits(infinity_bits_ - max_ulps_)), further_from_infinity_( Floating::ReinterpretBits(infinity_bits_ - max_ulps_ - 1)), max_(Floating::Max()), nan1_(Floating::ReinterpretBits(Floating::kExponentBitMask | 1)), nan2_(Floating::ReinterpretBits(Floating::kExponentBitMask | 200)) { }
void TestSize() { EXPECT_EQ(sizeof(RawType), sizeof(Bits)); }
// A battery of tests for FloatingEqMatcher::Matches.
// matcher_maker is a pointer to a function which creates a FloatingEqMatcher.
void TestMatches( testing::internal::FloatingEqMatcher<RawType> (*matcher_maker)(RawType)) { Matcher<RawType> m1 = matcher_maker(0.0); EXPECT_TRUE(m1.Matches(-0.0)); EXPECT_TRUE(m1.Matches(close_to_positive_zero_)); EXPECT_TRUE(m1.Matches(close_to_negative_zero_)); EXPECT_FALSE(m1.Matches(1.0));
Matcher<RawType> m2 = matcher_maker(close_to_positive_zero_); EXPECT_FALSE(m2.Matches(further_from_negative_zero_));
Matcher<RawType> m3 = matcher_maker(1.0); EXPECT_TRUE(m3.Matches(close_to_one_)); EXPECT_FALSE(m3.Matches(further_from_one_));
// Test commutativity: matcher_maker(0.0).Matches(1.0) was tested above.
EXPECT_FALSE(m3.Matches(0.0));
Matcher<RawType> m4 = matcher_maker(-infinity_); EXPECT_TRUE(m4.Matches(-close_to_infinity_));
Matcher<RawType> m5 = matcher_maker(infinity_); EXPECT_TRUE(m5.Matches(close_to_infinity_));
// This is interesting as the representations of infinity_ and nan1_
// are only 1 DLP apart.
EXPECT_FALSE(m5.Matches(nan1_));
// matcher_maker can produce a Matcher<const RawType&>, which is needed in
// some cases.
Matcher<const RawType&> m6 = matcher_maker(0.0); EXPECT_TRUE(m6.Matches(-0.0)); EXPECT_TRUE(m6.Matches(close_to_positive_zero_)); EXPECT_FALSE(m6.Matches(1.0));
// matcher_maker can produce a Matcher<RawType&>, which is needed in some
// cases.
Matcher<RawType&> m7 = matcher_maker(0.0); RawType x = 0.0; EXPECT_TRUE(m7.Matches(x)); x = 0.01f; EXPECT_FALSE(m7.Matches(x)); }
// Pre-calculated numbers to be used by the tests.
const Bits max_ulps_;
const Bits zero_bits_; // The bits that represent 0.0.
const Bits one_bits_; // The bits that represent 1.0.
const Bits infinity_bits_; // The bits that represent +infinity.
// Some numbers close to 0.0.
const RawType close_to_positive_zero_; const RawType close_to_negative_zero_; const RawType further_from_negative_zero_;
// Some numbers close to 1.0.
const RawType close_to_one_; const RawType further_from_one_;
// Some numbers close to +infinity.
const RawType infinity_; const RawType close_to_infinity_; const RawType further_from_infinity_;
// Maximum representable value that's not infinity.
const RawType max_;
// Some NaNs.
const RawType nan1_; const RawType nan2_; };
// Tests floating-point matchers with fixed epsilons.
template <typename RawType> class FloatingPointNearTest : public FloatingPointTest<RawType> { protected: typedef FloatingPointTest<RawType> ParentType;
// A battery of tests for FloatingEqMatcher::Matches with a fixed epsilon.
// matcher_maker is a pointer to a function which creates a FloatingEqMatcher.
void TestNearMatches( testing::internal::FloatingEqMatcher<RawType> (*matcher_maker)(RawType, RawType)) { Matcher<RawType> m1 = matcher_maker(0.0, 0.0); EXPECT_TRUE(m1.Matches(0.0)); EXPECT_TRUE(m1.Matches(-0.0)); EXPECT_FALSE(m1.Matches(ParentType::close_to_positive_zero_)); EXPECT_FALSE(m1.Matches(ParentType::close_to_negative_zero_)); EXPECT_FALSE(m1.Matches(1.0));
Matcher<RawType> m2 = matcher_maker(0.0, 1.0); EXPECT_TRUE(m2.Matches(0.0)); EXPECT_TRUE(m2.Matches(-0.0)); EXPECT_TRUE(m2.Matches(1.0)); EXPECT_TRUE(m2.Matches(-1.0)); EXPECT_FALSE(m2.Matches(ParentType::close_to_one_)); EXPECT_FALSE(m2.Matches(-ParentType::close_to_one_));
// Check that inf matches inf, regardless of the of the specified max
// absolute error.
Matcher<RawType> m3 = matcher_maker(ParentType::infinity_, 0.0); EXPECT_TRUE(m3.Matches(ParentType::infinity_)); EXPECT_FALSE(m3.Matches(ParentType::close_to_infinity_)); EXPECT_FALSE(m3.Matches(-ParentType::infinity_));
Matcher<RawType> m4 = matcher_maker(-ParentType::infinity_, 0.0); EXPECT_TRUE(m4.Matches(-ParentType::infinity_)); EXPECT_FALSE(m4.Matches(-ParentType::close_to_infinity_)); EXPECT_FALSE(m4.Matches(ParentType::infinity_));
// Test various overflow scenarios.
Matcher<RawType> m5 = matcher_maker(ParentType::max_, ParentType::max_); EXPECT_TRUE(m5.Matches(ParentType::max_)); EXPECT_FALSE(m5.Matches(-ParentType::max_));
Matcher<RawType> m6 = matcher_maker(-ParentType::max_, ParentType::max_); EXPECT_FALSE(m6.Matches(ParentType::max_)); EXPECT_TRUE(m6.Matches(-ParentType::max_));
Matcher<RawType> m7 = matcher_maker(ParentType::max_, 0); EXPECT_TRUE(m7.Matches(ParentType::max_)); EXPECT_FALSE(m7.Matches(-ParentType::max_));
Matcher<RawType> m8 = matcher_maker(-ParentType::max_, 0); EXPECT_FALSE(m8.Matches(ParentType::max_)); EXPECT_TRUE(m8.Matches(-ParentType::max_));
// The difference between max() and -max() normally overflows to infinity,
// but it should still match if the max_abs_error is also infinity.
Matcher<RawType> m9 = matcher_maker( ParentType::max_, ParentType::infinity_); EXPECT_TRUE(m8.Matches(-ParentType::max_));
// matcher_maker can produce a Matcher<const RawType&>, which is needed in
// some cases.
Matcher<const RawType&> m10 = matcher_maker(0.0, 1.0); EXPECT_TRUE(m10.Matches(-0.0)); EXPECT_TRUE(m10.Matches(ParentType::close_to_positive_zero_)); EXPECT_FALSE(m10.Matches(ParentType::close_to_one_));
// matcher_maker can produce a Matcher<RawType&>, which is needed in some
// cases.
Matcher<RawType&> m11 = matcher_maker(0.0, 1.0); RawType x = 0.0; EXPECT_TRUE(m11.Matches(x)); x = 1.0f; EXPECT_TRUE(m11.Matches(x)); x = -1.0f; EXPECT_TRUE(m11.Matches(x)); x = 1.1f; EXPECT_FALSE(m11.Matches(x)); x = -1.1f; EXPECT_FALSE(m11.Matches(x)); } };
// Instantiate FloatingPointTest for testing floats.
typedef FloatingPointTest<float> FloatTest;
TEST_F(FloatTest, FloatEqApproximatelyMatchesFloats) { TestMatches(&FloatEq); }
TEST_F(FloatTest, NanSensitiveFloatEqApproximatelyMatchesFloats) { TestMatches(&NanSensitiveFloatEq); }
TEST_F(FloatTest, FloatEqCannotMatchNaN) { // FloatEq never matches NaN.
Matcher<float> m = FloatEq(nan1_); EXPECT_FALSE(m.Matches(nan1_)); EXPECT_FALSE(m.Matches(nan2_)); EXPECT_FALSE(m.Matches(1.0)); }
TEST_F(FloatTest, NanSensitiveFloatEqCanMatchNaN) { // NanSensitiveFloatEq will match NaN.
Matcher<float> m = NanSensitiveFloatEq(nan1_); EXPECT_TRUE(m.Matches(nan1_)); EXPECT_TRUE(m.Matches(nan2_)); EXPECT_FALSE(m.Matches(1.0)); }
TEST_F(FloatTest, FloatEqCanDescribeSelf) { Matcher<float> m1 = FloatEq(2.0f); EXPECT_EQ("is approximately 2", Describe(m1)); EXPECT_EQ("isn't approximately 2", DescribeNegation(m1));
Matcher<float> m2 = FloatEq(0.5f); EXPECT_EQ("is approximately 0.5", Describe(m2)); EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2));
Matcher<float> m3 = FloatEq(nan1_); EXPECT_EQ("never matches", Describe(m3)); EXPECT_EQ("is anything", DescribeNegation(m3)); }
TEST_F(FloatTest, NanSensitiveFloatEqCanDescribeSelf) { Matcher<float> m1 = NanSensitiveFloatEq(2.0f); EXPECT_EQ("is approximately 2", Describe(m1)); EXPECT_EQ("isn't approximately 2", DescribeNegation(m1));
Matcher<float> m2 = NanSensitiveFloatEq(0.5f); EXPECT_EQ("is approximately 0.5", Describe(m2)); EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2));
Matcher<float> m3 = NanSensitiveFloatEq(nan1_); EXPECT_EQ("is NaN", Describe(m3)); EXPECT_EQ("isn't NaN", DescribeNegation(m3)); }
// Instantiate FloatingPointTest for testing floats with a user-specified
// max absolute error.
typedef FloatingPointNearTest<float> FloatNearTest;
TEST_F(FloatNearTest, FloatNearMatches) { TestNearMatches(&FloatNear); }
TEST_F(FloatNearTest, NanSensitiveFloatNearApproximatelyMatchesFloats) { TestNearMatches(&NanSensitiveFloatNear); }
TEST_F(FloatNearTest, FloatNearCanDescribeSelf) { Matcher<float> m1 = FloatNear(2.0f, 0.5f); EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1)); EXPECT_EQ( "isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1));
Matcher<float> m2 = FloatNear(0.5f, 0.5f); EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2)); EXPECT_EQ( "isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2));
Matcher<float> m3 = FloatNear(nan1_, 0.0); EXPECT_EQ("never matches", Describe(m3)); EXPECT_EQ("is anything", DescribeNegation(m3)); }
TEST_F(FloatNearTest, NanSensitiveFloatNearCanDescribeSelf) { Matcher<float> m1 = NanSensitiveFloatNear(2.0f, 0.5f); EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1)); EXPECT_EQ( "isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1));
Matcher<float> m2 = NanSensitiveFloatNear(0.5f, 0.5f); EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2)); EXPECT_EQ( "isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2));
Matcher<float> m3 = NanSensitiveFloatNear(nan1_, 0.1f); EXPECT_EQ("is NaN", Describe(m3)); EXPECT_EQ("isn't NaN", DescribeNegation(m3)); }
TEST_F(FloatNearTest, FloatNearCannotMatchNaN) { // FloatNear never matches NaN.
Matcher<float> m = FloatNear(ParentType::nan1_, 0.1f); EXPECT_FALSE(m.Matches(nan1_)); EXPECT_FALSE(m.Matches(nan2_)); EXPECT_FALSE(m.Matches(1.0)); }
TEST_F(FloatNearTest, NanSensitiveFloatNearCanMatchNaN) { // NanSensitiveFloatNear will match NaN.
Matcher<float> m = NanSensitiveFloatNear(nan1_, 0.1f); EXPECT_TRUE(m.Matches(nan1_)); EXPECT_TRUE(m.Matches(nan2_)); EXPECT_FALSE(m.Matches(1.0)); }
// Instantiate FloatingPointTest for testing doubles.
typedef FloatingPointTest<double> DoubleTest;
TEST_F(DoubleTest, DoubleEqApproximatelyMatchesDoubles) { TestMatches(&DoubleEq); }
TEST_F(DoubleTest, NanSensitiveDoubleEqApproximatelyMatchesDoubles) { TestMatches(&NanSensitiveDoubleEq); }
TEST_F(DoubleTest, DoubleEqCannotMatchNaN) { // DoubleEq never matches NaN.
Matcher<double> m = DoubleEq(nan1_); EXPECT_FALSE(m.Matches(nan1_)); EXPECT_FALSE(m.Matches(nan2_)); EXPECT_FALSE(m.Matches(1.0)); }
TEST_F(DoubleTest, NanSensitiveDoubleEqCanMatchNaN) { // NanSensitiveDoubleEq will match NaN.
Matcher<double> m = NanSensitiveDoubleEq(nan1_); EXPECT_TRUE(m.Matches(nan1_)); EXPECT_TRUE(m.Matches(nan2_)); EXPECT_FALSE(m.Matches(1.0)); }
TEST_F(DoubleTest, DoubleEqCanDescribeSelf) { Matcher<double> m1 = DoubleEq(2.0); EXPECT_EQ("is approximately 2", Describe(m1)); EXPECT_EQ("isn't approximately 2", DescribeNegation(m1));
Matcher<double> m2 = DoubleEq(0.5); EXPECT_EQ("is approximately 0.5", Describe(m2)); EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2));
Matcher<double> m3 = DoubleEq(nan1_); EXPECT_EQ("never matches", Describe(m3)); EXPECT_EQ("is anything", DescribeNegation(m3)); }
TEST_F(DoubleTest, NanSensitiveDoubleEqCanDescribeSelf) { Matcher<double> m1 = NanSensitiveDoubleEq(2.0); EXPECT_EQ("is approximately 2", Describe(m1)); EXPECT_EQ("isn't approximately 2", DescribeNegation(m1));
Matcher<double> m2 = NanSensitiveDoubleEq(0.5); EXPECT_EQ("is approximately 0.5", Describe(m2)); EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2));
Matcher<double> m3 = NanSensitiveDoubleEq(nan1_); EXPECT_EQ("is NaN", Describe(m3)); EXPECT_EQ("isn't NaN", DescribeNegation(m3)); }
// Instantiate FloatingPointTest for testing floats with a user-specified
// max absolute error.
typedef FloatingPointNearTest<double> DoubleNearTest;
TEST_F(DoubleNearTest, DoubleNearMatches) { TestNearMatches(&DoubleNear); }
TEST_F(DoubleNearTest, NanSensitiveDoubleNearApproximatelyMatchesDoubles) { TestNearMatches(&NanSensitiveDoubleNear); }
TEST_F(DoubleNearTest, DoubleNearCanDescribeSelf) { Matcher<double> m1 = DoubleNear(2.0, 0.5); EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1)); EXPECT_EQ( "isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1));
Matcher<double> m2 = DoubleNear(0.5, 0.5); EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2)); EXPECT_EQ( "isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2));
Matcher<double> m3 = DoubleNear(nan1_, 0.0); EXPECT_EQ("never matches", Describe(m3)); EXPECT_EQ("is anything", DescribeNegation(m3)); }
TEST_F(DoubleNearTest, ExplainsResultWhenMatchFails) { EXPECT_EQ("", Explain(DoubleNear(2.0, 0.1), 2.05)); EXPECT_EQ("which is 0.2 from 2", Explain(DoubleNear(2.0, 0.1), 2.2)); EXPECT_EQ("which is -0.3 from 2", Explain(DoubleNear(2.0, 0.1), 1.7));
const std::string explanation = Explain(DoubleNear(2.1, 1e-10), 2.1 + 1.2e-10); // Different C++ implementations may print floating-point numbers
// slightly differently.
EXPECT_TRUE(explanation == "which is 1.2e-10 from 2.1" || // GCC
explanation == "which is 1.2e-010 from 2.1") // MSVC
<< " where explanation is \"" << explanation << "\"."; }
TEST_F(DoubleNearTest, NanSensitiveDoubleNearCanDescribeSelf) { Matcher<double> m1 = NanSensitiveDoubleNear(2.0, 0.5); EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1)); EXPECT_EQ( "isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1));
Matcher<double> m2 = NanSensitiveDoubleNear(0.5, 0.5); EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2)); EXPECT_EQ( "isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2));
Matcher<double> m3 = NanSensitiveDoubleNear(nan1_, 0.1); EXPECT_EQ("is NaN", Describe(m3)); EXPECT_EQ("isn't NaN", DescribeNegation(m3)); }
TEST_F(DoubleNearTest, DoubleNearCannotMatchNaN) { // DoubleNear never matches NaN.
Matcher<double> m = DoubleNear(ParentType::nan1_, 0.1); EXPECT_FALSE(m.Matches(nan1_)); EXPECT_FALSE(m.Matches(nan2_)); EXPECT_FALSE(m.Matches(1.0)); }
TEST_F(DoubleNearTest, NanSensitiveDoubleNearCanMatchNaN) { // NanSensitiveDoubleNear will match NaN.
Matcher<double> m = NanSensitiveDoubleNear(nan1_, 0.1); EXPECT_TRUE(m.Matches(nan1_)); EXPECT_TRUE(m.Matches(nan2_)); EXPECT_FALSE(m.Matches(1.0)); }
TEST(PointeeTest, RawPointer) { const Matcher<int*> m = Pointee(Ge(0));
int n = 1; EXPECT_TRUE(m.Matches(&n)); n = -1; EXPECT_FALSE(m.Matches(&n)); EXPECT_FALSE(m.Matches(nullptr)); }
TEST(PointeeTest, RawPointerToConst) { const Matcher<const double*> m = Pointee(Ge(0));
double x = 1; EXPECT_TRUE(m.Matches(&x)); x = -1; EXPECT_FALSE(m.Matches(&x)); EXPECT_FALSE(m.Matches(nullptr)); }
TEST(PointeeTest, ReferenceToConstRawPointer) { const Matcher<int* const &> m = Pointee(Ge(0));
int n = 1; EXPECT_TRUE(m.Matches(&n)); n = -1; EXPECT_FALSE(m.Matches(&n)); EXPECT_FALSE(m.Matches(nullptr)); }
TEST(PointeeTest, ReferenceToNonConstRawPointer) { const Matcher<double* &> m = Pointee(Ge(0));
double x = 1.0; double* p = &x; EXPECT_TRUE(m.Matches(p)); x = -1; EXPECT_FALSE(m.Matches(p)); p = nullptr; EXPECT_FALSE(m.Matches(p)); }
MATCHER_P(FieldIIs, inner_matcher, "") { return ExplainMatchResult(inner_matcher, arg.i, result_listener); }
#if GTEST_HAS_RTTI
TEST(WhenDynamicCastToTest, SameType) { Derived derived; derived.i = 4;
// Right type. A pointer is passed down.
Base* as_base_ptr = &derived; EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(Not(IsNull()))); EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(Pointee(FieldIIs(4)))); EXPECT_THAT(as_base_ptr, Not(WhenDynamicCastTo<Derived*>(Pointee(FieldIIs(5))))); }
TEST(WhenDynamicCastToTest, WrongTypes) { Base base; Derived derived; OtherDerived other_derived;
// Wrong types. NULL is passed.
EXPECT_THAT(&base, Not(WhenDynamicCastTo<Derived*>(Pointee(_)))); EXPECT_THAT(&base, WhenDynamicCastTo<Derived*>(IsNull())); Base* as_base_ptr = &derived; EXPECT_THAT(as_base_ptr, Not(WhenDynamicCastTo<OtherDerived*>(Pointee(_)))); EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<OtherDerived*>(IsNull())); as_base_ptr = &other_derived; EXPECT_THAT(as_base_ptr, Not(WhenDynamicCastTo<Derived*>(Pointee(_)))); EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(IsNull())); }
TEST(WhenDynamicCastToTest, AlreadyNull) { // Already NULL.
Base* as_base_ptr = nullptr; EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(IsNull())); }
struct AmbiguousCastTypes { class VirtualDerived : public virtual Base {}; class DerivedSub1 : public VirtualDerived {}; class DerivedSub2 : public VirtualDerived {}; class ManyDerivedInHierarchy : public DerivedSub1, public DerivedSub2 {}; };
TEST(WhenDynamicCastToTest, AmbiguousCast) { AmbiguousCastTypes::DerivedSub1 sub1; AmbiguousCastTypes::ManyDerivedInHierarchy many_derived; // Multiply derived from Base. dynamic_cast<> returns NULL.
Base* as_base_ptr = static_cast<AmbiguousCastTypes::DerivedSub1*>(&many_derived); EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<AmbiguousCastTypes::VirtualDerived*>(IsNull())); as_base_ptr = &sub1; EXPECT_THAT( as_base_ptr, WhenDynamicCastTo<AmbiguousCastTypes::VirtualDerived*>(Not(IsNull()))); }
TEST(WhenDynamicCastToTest, Describe) { Matcher<Base*> matcher = WhenDynamicCastTo<Derived*>(Pointee(_)); const std::string prefix = "when dynamic_cast to " + internal::GetTypeName<Derived*>() + ", "; EXPECT_EQ(prefix + "points to a value that is anything", Describe(matcher)); EXPECT_EQ(prefix + "does not point to a value that is anything", DescribeNegation(matcher)); }
TEST(WhenDynamicCastToTest, Explain) { Matcher<Base*> matcher = WhenDynamicCastTo<Derived*>(Pointee(_)); Base* null = nullptr; EXPECT_THAT(Explain(matcher, null), HasSubstr("NULL")); Derived derived; EXPECT_TRUE(matcher.Matches(&derived)); EXPECT_THAT(Explain(matcher, &derived), HasSubstr("which points to "));
// With references, the matcher itself can fail. Test for that one.
Matcher<const Base&> ref_matcher = WhenDynamicCastTo<const OtherDerived&>(_); EXPECT_THAT(Explain(ref_matcher, derived), HasSubstr("which cannot be dynamic_cast")); }
TEST(WhenDynamicCastToTest, GoodReference) { Derived derived; derived.i = 4; Base& as_base_ref = derived; EXPECT_THAT(as_base_ref, WhenDynamicCastTo<const Derived&>(FieldIIs(4))); EXPECT_THAT(as_base_ref, WhenDynamicCastTo<const Derived&>(Not(FieldIIs(5)))); }
TEST(WhenDynamicCastToTest, BadReference) { Derived derived; Base& as_base_ref = derived; EXPECT_THAT(as_base_ref, Not(WhenDynamicCastTo<const OtherDerived&>(_))); } #endif // GTEST_HAS_RTTI
// Minimal const-propagating pointer.
template <typename T> class ConstPropagatingPtr { public: typedef T element_type;
ConstPropagatingPtr() : val_() {} explicit ConstPropagatingPtr(T* t) : val_(t) {} ConstPropagatingPtr(const ConstPropagatingPtr& other) : val_(other.val_) {}
T* get() { return val_; } T& operator*() { return *val_; } // Most smart pointers return non-const T* and T& from the next methods.
const T* get() const { return val_; } const T& operator*() const { return *val_; }
private: T* val_; };
TEST(PointeeTest, WorksWithConstPropagatingPointers) { const Matcher< ConstPropagatingPtr<int> > m = Pointee(Lt(5)); int three = 3; const ConstPropagatingPtr<int> co(&three); ConstPropagatingPtr<int> o(&three); EXPECT_TRUE(m.Matches(o)); EXPECT_TRUE(m.Matches(co)); *o = 6; EXPECT_FALSE(m.Matches(o)); EXPECT_FALSE(m.Matches(ConstPropagatingPtr<int>())); }
TEST(PointeeTest, NeverMatchesNull) { const Matcher<const char*> m = Pointee(_); EXPECT_FALSE(m.Matches(nullptr)); }
// Tests that we can write Pointee(value) instead of Pointee(Eq(value)).
TEST(PointeeTest, MatchesAgainstAValue) { const Matcher<int*> m = Pointee(5);
int n = 5; EXPECT_TRUE(m.Matches(&n)); n = -1; EXPECT_FALSE(m.Matches(&n)); EXPECT_FALSE(m.Matches(nullptr)); }
TEST(PointeeTest, CanDescribeSelf) { const Matcher<int*> m = Pointee(Gt(3)); EXPECT_EQ("points to a value that is > 3", Describe(m)); EXPECT_EQ("does not point to a value that is > 3", DescribeNegation(m)); }
TEST(PointeeTest, CanExplainMatchResult) { const Matcher<const std::string*> m = Pointee(StartsWith("Hi"));
EXPECT_EQ("", Explain(m, static_cast<const std::string*>(nullptr)));
const Matcher<long*> m2 = Pointee(GreaterThan(1)); // NOLINT
long n = 3; // NOLINT
EXPECT_EQ("which points to 3" + OfType("long") + ", which is 2 more than 1", Explain(m2, &n)); }
TEST(PointeeTest, AlwaysExplainsPointee) { const Matcher<int*> m = Pointee(0); int n = 42; EXPECT_EQ("which points to 42" + OfType("int"), Explain(m, &n)); }
// An uncopyable class.
class Uncopyable { public: Uncopyable() : value_(-1) {} explicit Uncopyable(int a_value) : value_(a_value) {}
int value() const { return value_; } void set_value(int i) { value_ = i; }
private: int value_; GTEST_DISALLOW_COPY_AND_ASSIGN_(Uncopyable); };
// Returns true if and only if x.value() is positive.
bool ValueIsPositive(const Uncopyable& x) { return x.value() > 0; }
MATCHER_P(UncopyableIs, inner_matcher, "") { return ExplainMatchResult(inner_matcher, arg.value(), result_listener); }
// A user-defined struct for testing Field().
struct AStruct { AStruct() : x(0), y(1.0), z(5), p(nullptr) {} AStruct(const AStruct& rhs) : x(rhs.x), y(rhs.y), z(rhs.z.value()), p(rhs.p) {}
int x; // A non-const field.
const double y; // A const field.
Uncopyable z; // An uncopyable field.
const char* p; // A pointer field.
private: GTEST_DISALLOW_ASSIGN_(AStruct); };
// A derived struct for testing Field().
struct DerivedStruct : public AStruct { char ch;
private: GTEST_DISALLOW_ASSIGN_(DerivedStruct); };
// Tests that Field(&Foo::field, ...) works when field is non-const.
TEST(FieldTest, WorksForNonConstField) { Matcher<AStruct> m = Field(&AStruct::x, Ge(0)); Matcher<AStruct> m_with_name = Field("x", &AStruct::x, Ge(0));
AStruct a; EXPECT_TRUE(m.Matches(a)); EXPECT_TRUE(m_with_name.Matches(a)); a.x = -1; EXPECT_FALSE(m.Matches(a)); EXPECT_FALSE(m_with_name.Matches(a)); }
// Tests that Field(&Foo::field, ...) works when field is const.
TEST(FieldTest, WorksForConstField) { AStruct a;
Matcher<AStruct> m = Field(&AStruct::y, Ge(0.0)); Matcher<AStruct> m_with_name = Field("y", &AStruct::y, Ge(0.0)); EXPECT_TRUE(m.Matches(a)); EXPECT_TRUE(m_with_name.Matches(a)); m = Field(&AStruct::y, Le(0.0)); m_with_name = Field("y", &AStruct::y, Le(0.0)); EXPECT_FALSE(m.Matches(a)); EXPECT_FALSE(m_with_name.Matches(a)); }
// Tests that Field(&Foo::field, ...) works when field is not copyable.
TEST(FieldTest, WorksForUncopyableField) { AStruct a;
Matcher<AStruct> m = Field(&AStruct::z, Truly(ValueIsPositive)); EXPECT_TRUE(m.Matches(a)); m = Field(&AStruct::z, Not(Truly(ValueIsPositive))); EXPECT_FALSE(m.Matches(a)); }
// Tests that Field(&Foo::field, ...) works when field is a pointer.
TEST(FieldTest, WorksForPointerField) { // Matching against NULL.
Matcher<AStruct> m = Field(&AStruct::p, static_cast<const char*>(nullptr)); AStruct a; EXPECT_TRUE(m.Matches(a)); a.p = "hi"; EXPECT_FALSE(m.Matches(a));
// Matching a pointer that is not NULL.
m = Field(&AStruct::p, StartsWith("hi")); a.p = "hill"; EXPECT_TRUE(m.Matches(a)); a.p = "hole"; EXPECT_FALSE(m.Matches(a)); }
// Tests that Field() works when the object is passed by reference.
TEST(FieldTest, WorksForByRefArgument) { Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0));
AStruct a; EXPECT_TRUE(m.Matches(a)); a.x = -1; EXPECT_FALSE(m.Matches(a)); }
// Tests that Field(&Foo::field, ...) works when the argument's type
// is a sub-type of Foo.
TEST(FieldTest, WorksForArgumentOfSubType) { // Note that the matcher expects DerivedStruct but we say AStruct
// inside Field().
Matcher<const DerivedStruct&> m = Field(&AStruct::x, Ge(0));
DerivedStruct d; EXPECT_TRUE(m.Matches(d)); d.x = -1; EXPECT_FALSE(m.Matches(d)); }
// Tests that Field(&Foo::field, m) works when field's type and m's
// argument type are compatible but not the same.
TEST(FieldTest, WorksForCompatibleMatcherType) { // The field is an int, but the inner matcher expects a signed char.
Matcher<const AStruct&> m = Field(&AStruct::x, Matcher<signed char>(Ge(0)));
AStruct a; EXPECT_TRUE(m.Matches(a)); a.x = -1; EXPECT_FALSE(m.Matches(a)); }
// Tests that Field() can describe itself.
TEST(FieldTest, CanDescribeSelf) { Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0));
EXPECT_EQ("is an object whose given field is >= 0", Describe(m)); EXPECT_EQ("is an object whose given field isn't >= 0", DescribeNegation(m)); }
TEST(FieldTest, CanDescribeSelfWithFieldName) { Matcher<const AStruct&> m = Field("field_name", &AStruct::x, Ge(0));
EXPECT_EQ("is an object whose field `field_name` is >= 0", Describe(m)); EXPECT_EQ("is an object whose field `field_name` isn't >= 0", DescribeNegation(m)); }
// Tests that Field() can explain the match result.
TEST(FieldTest, CanExplainMatchResult) { Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0));
AStruct a; a.x = 1; EXPECT_EQ("whose given field is 1" + OfType("int"), Explain(m, a));
m = Field(&AStruct::x, GreaterThan(0)); EXPECT_EQ( "whose given field is 1" + OfType("int") + ", which is 1 more than 0", Explain(m, a)); }
TEST(FieldTest, CanExplainMatchResultWithFieldName) { Matcher<const AStruct&> m = Field("field_name", &AStruct::x, Ge(0));
AStruct a; a.x = 1; EXPECT_EQ("whose field `field_name` is 1" + OfType("int"), Explain(m, a));
m = Field("field_name", &AStruct::x, GreaterThan(0)); EXPECT_EQ("whose field `field_name` is 1" + OfType("int") + ", which is 1 more than 0", Explain(m, a)); }
// Tests that Field() works when the argument is a pointer to const.
TEST(FieldForPointerTest, WorksForPointerToConst) { Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0));
AStruct a; EXPECT_TRUE(m.Matches(&a)); a.x = -1; EXPECT_FALSE(m.Matches(&a)); }
// Tests that Field() works when the argument is a pointer to non-const.
TEST(FieldForPointerTest, WorksForPointerToNonConst) { Matcher<AStruct*> m = Field(&AStruct::x, Ge(0));
AStruct a; EXPECT_TRUE(m.Matches(&a)); a.x = -1; EXPECT_FALSE(m.Matches(&a)); }
// Tests that Field() works when the argument is a reference to a const pointer.
TEST(FieldForPointerTest, WorksForReferenceToConstPointer) { Matcher<AStruct* const&> m = Field(&AStruct::x, Ge(0));
AStruct a; EXPECT_TRUE(m.Matches(&a)); a.x = -1; EXPECT_FALSE(m.Matches(&a)); }
// Tests that Field() does not match the NULL pointer.
TEST(FieldForPointerTest, DoesNotMatchNull) { Matcher<const AStruct*> m = Field(&AStruct::x, _); EXPECT_FALSE(m.Matches(nullptr)); }
// Tests that Field(&Foo::field, ...) works when the argument's type
// is a sub-type of const Foo*.
TEST(FieldForPointerTest, WorksForArgumentOfSubType) { // Note that the matcher expects DerivedStruct but we say AStruct
// inside Field().
Matcher<DerivedStruct*> m = Field(&AStruct::x, Ge(0));
DerivedStruct d; EXPECT_TRUE(m.Matches(&d)); d.x = -1; EXPECT_FALSE(m.Matches(&d)); }
// Tests that Field() can describe itself when used to match a pointer.
TEST(FieldForPointerTest, CanDescribeSelf) { Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0));
EXPECT_EQ("is an object whose given field is >= 0", Describe(m)); EXPECT_EQ("is an object whose given field isn't >= 0", DescribeNegation(m)); }
TEST(FieldForPointerTest, CanDescribeSelfWithFieldName) { Matcher<const AStruct*> m = Field("field_name", &AStruct::x, Ge(0));
EXPECT_EQ("is an object whose field `field_name` is >= 0", Describe(m)); EXPECT_EQ("is an object whose field `field_name` isn't >= 0", DescribeNegation(m)); }
// Tests that Field() can explain the result of matching a pointer.
TEST(FieldForPointerTest, CanExplainMatchResult) { Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0));
AStruct a; a.x = 1; EXPECT_EQ("", Explain(m, static_cast<const AStruct*>(nullptr))); EXPECT_EQ("which points to an object whose given field is 1" + OfType("int"), Explain(m, &a));
m = Field(&AStruct::x, GreaterThan(0)); EXPECT_EQ("which points to an object whose given field is 1" + OfType("int") + ", which is 1 more than 0", Explain(m, &a)); }
TEST(FieldForPointerTest, CanExplainMatchResultWithFieldName) { Matcher<const AStruct*> m = Field("field_name", &AStruct::x, Ge(0));
AStruct a; a.x = 1; EXPECT_EQ("", Explain(m, static_cast<const AStruct*>(nullptr))); EXPECT_EQ( "which points to an object whose field `field_name` is 1" + OfType("int"), Explain(m, &a));
m = Field("field_name", &AStruct::x, GreaterThan(0)); EXPECT_EQ("which points to an object whose field `field_name` is 1" + OfType("int") + ", which is 1 more than 0", Explain(m, &a)); }
// A user-defined class for testing Property().
class AClass { public: AClass() : n_(0) {}
// A getter that returns a non-reference.
int n() const { return n_; }
void set_n(int new_n) { n_ = new_n; }
// A getter that returns a reference to const.
const std::string& s() const { return s_; }
const std::string& s_ref() const & { return s_; }
void set_s(const std::string& new_s) { s_ = new_s; }
// A getter that returns a reference to non-const.
double& x() const { return x_; }
private: int n_; std::string s_;
static double x_; };
double AClass::x_ = 0.0;
// A derived class for testing Property().
class DerivedClass : public AClass { public: int k() const { return k_; } private: int k_; };
// Tests that Property(&Foo::property, ...) works when property()
// returns a non-reference.
TEST(PropertyTest, WorksForNonReferenceProperty) { Matcher<const AClass&> m = Property(&AClass::n, Ge(0)); Matcher<const AClass&> m_with_name = Property("n", &AClass::n, Ge(0));
AClass a; a.set_n(1); EXPECT_TRUE(m.Matches(a)); EXPECT_TRUE(m_with_name.Matches(a));
a.set_n(-1); EXPECT_FALSE(m.Matches(a)); EXPECT_FALSE(m_with_name.Matches(a)); }
// Tests that Property(&Foo::property, ...) works when property()
// returns a reference to const.
TEST(PropertyTest, WorksForReferenceToConstProperty) { Matcher<const AClass&> m = Property(&AClass::s, StartsWith("hi")); Matcher<const AClass&> m_with_name = Property("s", &AClass::s, StartsWith("hi"));
AClass a; a.set_s("hill"); EXPECT_TRUE(m.Matches(a)); EXPECT_TRUE(m_with_name.Matches(a));
a.set_s("hole"); EXPECT_FALSE(m.Matches(a)); EXPECT_FALSE(m_with_name.Matches(a)); }
// Tests that Property(&Foo::property, ...) works when property() is
// ref-qualified.
TEST(PropertyTest, WorksForRefQualifiedProperty) { Matcher<const AClass&> m = Property(&AClass::s_ref, StartsWith("hi")); Matcher<const AClass&> m_with_name = Property("s", &AClass::s_ref, StartsWith("hi"));
AClass a; a.set_s("hill"); EXPECT_TRUE(m.Matches(a)); EXPECT_TRUE(m_with_name.Matches(a));
a.set_s("hole"); EXPECT_FALSE(m.Matches(a)); EXPECT_FALSE(m_with_name.Matches(a)); }
// Tests that Property(&Foo::property, ...) works when property()
// returns a reference to non-const.
TEST(PropertyTest, WorksForReferenceToNonConstProperty) { double x = 0.0; AClass a;
Matcher<const AClass&> m = Property(&AClass::x, Ref(x)); EXPECT_FALSE(m.Matches(a));
m = Property(&AClass::x, Not(Ref(x))); EXPECT_TRUE(m.Matches(a)); }
// Tests that Property(&Foo::property, ...) works when the argument is
// passed by value.
TEST(PropertyTest, WorksForByValueArgument) { Matcher<AClass> m = Property(&AClass::s, StartsWith("hi"));
AClass a; a.set_s("hill"); EXPECT_TRUE(m.Matches(a));
a.set_s("hole"); EXPECT_FALSE(m.Matches(a)); }
// Tests that Property(&Foo::property, ...) works when the argument's
// type is a sub-type of Foo.
TEST(PropertyTest, WorksForArgumentOfSubType) { // The matcher expects a DerivedClass, but inside the Property() we
// say AClass.
Matcher<const DerivedClass&> m = Property(&AClass::n, Ge(0));
DerivedClass d; d.set_n(1); EXPECT_TRUE(m.Matches(d));
d.set_n(-1); EXPECT_FALSE(m.Matches(d)); }
// Tests that Property(&Foo::property, m) works when property()'s type
// and m's argument type are compatible but different.
TEST(PropertyTest, WorksForCompatibleMatcherType) { // n() returns an int but the inner matcher expects a signed char.
Matcher<const AClass&> m = Property(&AClass::n, Matcher<signed char>(Ge(0)));
Matcher<const AClass&> m_with_name = Property("n", &AClass::n, Matcher<signed char>(Ge(0)));
AClass a; EXPECT_TRUE(m.Matches(a)); EXPECT_TRUE(m_with_name.Matches(a)); a.set_n(-1); EXPECT_FALSE(m.Matches(a)); EXPECT_FALSE(m_with_name.Matches(a)); }
// Tests that Property() can describe itself.
TEST(PropertyTest, CanDescribeSelf) { Matcher<const AClass&> m = Property(&AClass::n, Ge(0));
EXPECT_EQ("is an object whose given property is >= 0", Describe(m)); EXPECT_EQ("is an object whose given property isn't >= 0", DescribeNegation(m)); }
TEST(PropertyTest, CanDescribeSelfWithPropertyName) { Matcher<const AClass&> m = Property("fancy_name", &AClass::n, Ge(0));
EXPECT_EQ("is an object whose property `fancy_name` is >= 0", Describe(m)); EXPECT_EQ("is an object whose property `fancy_name` isn't >= 0", DescribeNegation(m)); }
// Tests that Property() can explain the match result.
TEST(PropertyTest, CanExplainMatchResult) { Matcher<const AClass&> m = Property(&AClass::n, Ge(0));
AClass a; a.set_n(1); EXPECT_EQ("whose given property is 1" + OfType("int"), Explain(m, a));
m = Property(&AClass::n, GreaterThan(0)); EXPECT_EQ( "whose given property is 1" + OfType("int") + ", which is 1 more than 0", Explain(m, a)); }
TEST(PropertyTest, CanExplainMatchResultWithPropertyName) { Matcher<const AClass&> m = Property("fancy_name", &AClass::n, Ge(0));
AClass a; a.set_n(1); EXPECT_EQ("whose property `fancy_name` is 1" + OfType("int"), Explain(m, a));
m = Property("fancy_name", &AClass::n, GreaterThan(0)); EXPECT_EQ("whose property `fancy_name` is 1" + OfType("int") + ", which is 1 more than 0", Explain(m, a)); }
// Tests that Property() works when the argument is a pointer to const.
TEST(PropertyForPointerTest, WorksForPointerToConst) { Matcher<const AClass*> m = Property(&AClass::n, Ge(0));
AClass a; a.set_n(1); EXPECT_TRUE(m.Matches(&a));
a.set_n(-1); EXPECT_FALSE(m.Matches(&a)); }
// Tests that Property() works when the argument is a pointer to non-const.
TEST(PropertyForPointerTest, WorksForPointerToNonConst) { Matcher<AClass*> m = Property(&AClass::s, StartsWith("hi"));
AClass a; a.set_s("hill"); EXPECT_TRUE(m.Matches(&a));
a.set_s("hole"); EXPECT_FALSE(m.Matches(&a)); }
// Tests that Property() works when the argument is a reference to a
// const pointer.
TEST(PropertyForPointerTest, WorksForReferenceToConstPointer) { Matcher<AClass* const&> m = Property(&AClass::s, StartsWith("hi"));
AClass a; a.set_s("hill"); EXPECT_TRUE(m.Matches(&a));
a.set_s("hole"); EXPECT_FALSE(m.Matches(&a)); }
// Tests that Property() does not match the NULL pointer.
TEST(PropertyForPointerTest, WorksForReferenceToNonConstProperty) { Matcher<const AClass*> m = Property(&AClass::x, _); EXPECT_FALSE(m.Matches(nullptr)); }
// Tests that Property(&Foo::property, ...) works when the argument's
// type is a sub-type of const Foo*.
TEST(PropertyForPointerTest, WorksForArgumentOfSubType) { // The matcher expects a DerivedClass, but inside the Property() we
// say AClass.
Matcher<const DerivedClass*> m = Property(&AClass::n, Ge(0));
DerivedClass d; d.set_n(1); EXPECT_TRUE(m.Matches(&d));
d.set_n(-1); EXPECT_FALSE(m.Matches(&d)); }
// Tests that Property() can describe itself when used to match a pointer.
TEST(PropertyForPointerTest, CanDescribeSelf) { Matcher<const AClass*> m = Property(&AClass::n, Ge(0));
EXPECT_EQ("is an object whose given property is >= 0", Describe(m)); EXPECT_EQ("is an object whose given property isn't >= 0", DescribeNegation(m)); }
TEST(PropertyForPointerTest, CanDescribeSelfWithPropertyDescription) { Matcher<const AClass*> m = Property("fancy_name", &AClass::n, Ge(0));
EXPECT_EQ("is an object whose property `fancy_name` is >= 0", Describe(m)); EXPECT_EQ("is an object whose property `fancy_name` isn't >= 0", DescribeNegation(m)); }
// Tests that Property() can explain the result of matching a pointer.
TEST(PropertyForPointerTest, CanExplainMatchResult) { Matcher<const AClass*> m = Property(&AClass::n, Ge(0));
AClass a; a.set_n(1); EXPECT_EQ("", Explain(m, static_cast<const AClass*>(nullptr))); EXPECT_EQ( "which points to an object whose given property is 1" + OfType("int"), Explain(m, &a));
m = Property(&AClass::n, GreaterThan(0)); EXPECT_EQ("which points to an object whose given property is 1" + OfType("int") + ", which is 1 more than 0", Explain(m, &a)); }
TEST(PropertyForPointerTest, CanExplainMatchResultWithPropertyName) { Matcher<const AClass*> m = Property("fancy_name", &AClass::n, Ge(0));
AClass a; a.set_n(1); EXPECT_EQ("", Explain(m, static_cast<const AClass*>(nullptr))); EXPECT_EQ("which points to an object whose property `fancy_name` is 1" + OfType("int"), Explain(m, &a));
m = Property("fancy_name", &AClass::n, GreaterThan(0)); EXPECT_EQ("which points to an object whose property `fancy_name` is 1" + OfType("int") + ", which is 1 more than 0", Explain(m, &a)); }
// Tests ResultOf.
// Tests that ResultOf(f, ...) compiles and works as expected when f is a
// function pointer.
std::string IntToStringFunction(int input) { return input == 1 ? "foo" : "bar"; }
TEST(ResultOfTest, WorksForFunctionPointers) { Matcher<int> matcher = ResultOf(&IntToStringFunction, Eq(std::string("foo")));
EXPECT_TRUE(matcher.Matches(1)); EXPECT_FALSE(matcher.Matches(2)); }
// Tests that ResultOf() can describe itself.
TEST(ResultOfTest, CanDescribeItself) { Matcher<int> matcher = ResultOf(&IntToStringFunction, StrEq("foo"));
EXPECT_EQ("is mapped by the given callable to a value that " "is equal to \"foo\"", Describe(matcher)); EXPECT_EQ("is mapped by the given callable to a value that " "isn't equal to \"foo\"", DescribeNegation(matcher)); }
// Tests that ResultOf() can explain the match result.
int IntFunction(int input) { return input == 42 ? 80 : 90; }
TEST(ResultOfTest, CanExplainMatchResult) { Matcher<int> matcher = ResultOf(&IntFunction, Ge(85)); EXPECT_EQ("which is mapped by the given callable to 90" + OfType("int"), Explain(matcher, 36));
matcher = ResultOf(&IntFunction, GreaterThan(85)); EXPECT_EQ("which is mapped by the given callable to 90" + OfType("int") + ", which is 5 more than 85", Explain(matcher, 36)); }
// Tests that ResultOf(f, ...) compiles and works as expected when f(x)
// returns a non-reference.
TEST(ResultOfTest, WorksForNonReferenceResults) { Matcher<int> matcher = ResultOf(&IntFunction, Eq(80));
EXPECT_TRUE(matcher.Matches(42)); EXPECT_FALSE(matcher.Matches(36)); }
// Tests that ResultOf(f, ...) compiles and works as expected when f(x)
// returns a reference to non-const.
double& DoubleFunction(double& input) { return input; } // NOLINT
Uncopyable& RefUncopyableFunction(Uncopyable& obj) { // NOLINT
return obj; }
TEST(ResultOfTest, WorksForReferenceToNonConstResults) { double x = 3.14; double x2 = x; Matcher<double&> matcher = ResultOf(&DoubleFunction, Ref(x));
EXPECT_TRUE(matcher.Matches(x)); EXPECT_FALSE(matcher.Matches(x2));
// Test that ResultOf works with uncopyable objects
Uncopyable obj(0); Uncopyable obj2(0); Matcher<Uncopyable&> matcher2 = ResultOf(&RefUncopyableFunction, Ref(obj));
EXPECT_TRUE(matcher2.Matches(obj)); EXPECT_FALSE(matcher2.Matches(obj2)); }
// Tests that ResultOf(f, ...) compiles and works as expected when f(x)
// returns a reference to const.
const std::string& StringFunction(const std::string& input) { return input; }
TEST(ResultOfTest, WorksForReferenceToConstResults) { std::string s = "foo"; std::string s2 = s; Matcher<const std::string&> matcher = ResultOf(&StringFunction, Ref(s));
EXPECT_TRUE(matcher.Matches(s)); EXPECT_FALSE(matcher.Matches(s2)); }
// Tests that ResultOf(f, m) works when f(x) and m's
// argument types are compatible but different.
TEST(ResultOfTest, WorksForCompatibleMatcherTypes) { // IntFunction() returns int but the inner matcher expects a signed char.
Matcher<int> matcher = ResultOf(IntFunction, Matcher<signed char>(Ge(85)));
EXPECT_TRUE(matcher.Matches(36)); EXPECT_FALSE(matcher.Matches(42)); }
// Tests that the program aborts when ResultOf is passed
// a NULL function pointer.
TEST(ResultOfDeathTest, DiesOnNullFunctionPointers) { EXPECT_DEATH_IF_SUPPORTED( ResultOf(static_cast<std::string (*)(int dummy)>(nullptr), Eq(std::string("foo"))), "NULL function pointer is passed into ResultOf\\(\\)\\."); }
// Tests that ResultOf(f, ...) compiles and works as expected when f is a
// function reference.
TEST(ResultOfTest, WorksForFunctionReferences) { Matcher<int> matcher = ResultOf(IntToStringFunction, StrEq("foo")); EXPECT_TRUE(matcher.Matches(1)); EXPECT_FALSE(matcher.Matches(2)); }
// Tests that ResultOf(f, ...) compiles and works as expected when f is a
// function object.
struct Functor { std::string operator()(int input) const { return IntToStringFunction(input); } };
TEST(ResultOfTest, WorksForFunctors) { Matcher<int> matcher = ResultOf(Functor(), Eq(std::string("foo")));
EXPECT_TRUE(matcher.Matches(1)); EXPECT_FALSE(matcher.Matches(2)); }
// Tests that ResultOf(f, ...) compiles and works as expected when f is a
// functor with more than one operator() defined. ResultOf() must work
// for each defined operator().
struct PolymorphicFunctor { typedef int result_type; int operator()(int n) { return n; } int operator()(const char* s) { return static_cast<int>(strlen(s)); } std::string operator()(int *p) { return p ? "good ptr" : "null"; } };
TEST(ResultOfTest, WorksForPolymorphicFunctors) { Matcher<int> matcher_int = ResultOf(PolymorphicFunctor(), Ge(5));
EXPECT_TRUE(matcher_int.Matches(10)); EXPECT_FALSE(matcher_int.Matches(2));
Matcher<const char*> matcher_string = ResultOf(PolymorphicFunctor(), Ge(5));
EXPECT_TRUE(matcher_string.Matches("long string")); EXPECT_FALSE(matcher_string.Matches("shrt")); }
TEST(ResultOfTest, WorksForPolymorphicFunctorsIgnoringResultType) { Matcher<int*> matcher = ResultOf(PolymorphicFunctor(), "good ptr");
int n = 0; EXPECT_TRUE(matcher.Matches(&n)); EXPECT_FALSE(matcher.Matches(nullptr)); }
TEST(ResultOfTest, WorksForLambdas) { Matcher<int> matcher = ResultOf( [](int str_len) { return std::string(static_cast<size_t>(str_len), 'x'); }, "xxx"); EXPECT_TRUE(matcher.Matches(3)); EXPECT_FALSE(matcher.Matches(1)); }
TEST(ResultOfTest, WorksForNonCopyableArguments) { Matcher<std::unique_ptr<int>> matcher = ResultOf( [](const std::unique_ptr<int>& str_len) { return std::string(static_cast<size_t>(*str_len), 'x'); }, "xxx"); EXPECT_TRUE(matcher.Matches(std::unique_ptr<int>(new int(3)))); EXPECT_FALSE(matcher.Matches(std::unique_ptr<int>(new int(1)))); }
const int* ReferencingFunction(const int& n) { return &n; }
struct ReferencingFunctor { typedef const int* result_type; result_type operator()(const int& n) { return &n; } };
TEST(ResultOfTest, WorksForReferencingCallables) { const int n = 1; const int n2 = 1; Matcher<const int&> matcher2 = ResultOf(ReferencingFunction, Eq(&n)); EXPECT_TRUE(matcher2.Matches(n)); EXPECT_FALSE(matcher2.Matches(n2));
Matcher<const int&> matcher3 = ResultOf(ReferencingFunctor(), Eq(&n)); EXPECT_TRUE(matcher3.Matches(n)); EXPECT_FALSE(matcher3.Matches(n2)); }
class DivisibleByImpl { public: explicit DivisibleByImpl(int a_divider) : divider_(a_divider) {}
// For testing using ExplainMatchResultTo() with polymorphic matchers.
template <typename T> bool MatchAndExplain(const T& n, MatchResultListener* listener) const { *listener << "which is " << (n % divider_) << " modulo " << divider_; return (n % divider_) == 0; }
void DescribeTo(ostream* os) const { *os << "is divisible by " << divider_; }
void DescribeNegationTo(ostream* os) const { *os << "is not divisible by " << divider_; }
void set_divider(int a_divider) { divider_ = a_divider; } int divider() const { return divider_; }
private: int divider_; };
PolymorphicMatcher<DivisibleByImpl> DivisibleBy(int n) { return MakePolymorphicMatcher(DivisibleByImpl(n)); }
// Tests that when AllOf() fails, only the first failing matcher is
// asked to explain why.
TEST(ExplainMatchResultTest, AllOf_False_False) { const Matcher<int> m = AllOf(DivisibleBy(4), DivisibleBy(3)); EXPECT_EQ("which is 1 modulo 4", Explain(m, 5)); }
// Tests that when AllOf() fails, only the first failing matcher is
// asked to explain why.
TEST(ExplainMatchResultTest, AllOf_False_True) { const Matcher<int> m = AllOf(DivisibleBy(4), DivisibleBy(3)); EXPECT_EQ("which is 2 modulo 4", Explain(m, 6)); }
// Tests that when AllOf() fails, only the first failing matcher is
// asked to explain why.
TEST(ExplainMatchResultTest, AllOf_True_False) { const Matcher<int> m = AllOf(Ge(1), DivisibleBy(3)); EXPECT_EQ("which is 2 modulo 3", Explain(m, 5)); }
// Tests that when AllOf() succeeds, all matchers are asked to explain
// why.
TEST(ExplainMatchResultTest, AllOf_True_True) { const Matcher<int> m = AllOf(DivisibleBy(2), DivisibleBy(3)); EXPECT_EQ("which is 0 modulo 2, and which is 0 modulo 3", Explain(m, 6)); }
TEST(ExplainMatchResultTest, AllOf_True_True_2) { const Matcher<int> m = AllOf(Ge(2), Le(3)); EXPECT_EQ("", Explain(m, 2)); }
TEST(ExplainmatcherResultTest, MonomorphicMatcher) { const Matcher<int> m = GreaterThan(5); EXPECT_EQ("which is 1 more than 5", Explain(m, 6)); }
// The following two tests verify that values without a public copy
// ctor can be used as arguments to matchers like Eq(), Ge(), and etc
// with the help of ByRef().
class NotCopyable { public: explicit NotCopyable(int a_value) : value_(a_value) {}
int value() const { return value_; }
bool operator==(const NotCopyable& rhs) const { return value() == rhs.value(); }
bool operator>=(const NotCopyable& rhs) const { return value() >= rhs.value(); } private: int value_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(NotCopyable); };
TEST(ByRefTest, AllowsNotCopyableConstValueInMatchers) { const NotCopyable const_value1(1); const Matcher<const NotCopyable&> m = Eq(ByRef(const_value1));
const NotCopyable n1(1), n2(2); EXPECT_TRUE(m.Matches(n1)); EXPECT_FALSE(m.Matches(n2)); }
TEST(ByRefTest, AllowsNotCopyableValueInMatchers) { NotCopyable value2(2); const Matcher<NotCopyable&> m = Ge(ByRef(value2));
NotCopyable n1(1), n2(2); EXPECT_FALSE(m.Matches(n1)); EXPECT_TRUE(m.Matches(n2)); }
TEST(IsEmptyTest, ImplementsIsEmpty) { vector<int> container; EXPECT_THAT(container, IsEmpty()); container.push_back(0); EXPECT_THAT(container, Not(IsEmpty())); container.push_back(1); EXPECT_THAT(container, Not(IsEmpty())); }
TEST(IsEmptyTest, WorksWithString) { std::string text; EXPECT_THAT(text, IsEmpty()); text = "foo"; EXPECT_THAT(text, Not(IsEmpty())); text = std::string("\0", 1); EXPECT_THAT(text, Not(IsEmpty())); }
TEST(IsEmptyTest, CanDescribeSelf) { Matcher<vector<int> > m = IsEmpty(); EXPECT_EQ("is empty", Describe(m)); EXPECT_EQ("isn't empty", DescribeNegation(m)); }
TEST(IsEmptyTest, ExplainsResult) { Matcher<vector<int> > m = IsEmpty(); vector<int> container; EXPECT_EQ("", Explain(m, container)); container.push_back(0); EXPECT_EQ("whose size is 1", Explain(m, container)); }
TEST(IsEmptyTest, WorksWithMoveOnly) { ContainerHelper helper; EXPECT_CALL(helper, Call(IsEmpty())); helper.Call({}); }
TEST(IsTrueTest, IsTrueIsFalse) { EXPECT_THAT(true, IsTrue()); EXPECT_THAT(false, IsFalse()); EXPECT_THAT(true, Not(IsFalse())); EXPECT_THAT(false, Not(IsTrue())); EXPECT_THAT(0, Not(IsTrue())); EXPECT_THAT(0, IsFalse()); EXPECT_THAT(nullptr, Not(IsTrue())); EXPECT_THAT(nullptr, IsFalse()); EXPECT_THAT(-1, IsTrue()); EXPECT_THAT(-1, Not(IsFalse())); EXPECT_THAT(1, IsTrue()); EXPECT_THAT(1, Not(IsFalse())); EXPECT_THAT(2, IsTrue()); EXPECT_THAT(2, Not(IsFalse())); int a = 42; EXPECT_THAT(a, IsTrue()); EXPECT_THAT(a, Not(IsFalse())); EXPECT_THAT(&a, IsTrue()); EXPECT_THAT(&a, Not(IsFalse())); EXPECT_THAT(false, Not(IsTrue())); EXPECT_THAT(true, Not(IsFalse())); EXPECT_THAT(std::true_type(), IsTrue()); EXPECT_THAT(std::true_type(), Not(IsFalse())); EXPECT_THAT(std::false_type(), IsFalse()); EXPECT_THAT(std::false_type(), Not(IsTrue())); EXPECT_THAT(nullptr, Not(IsTrue())); EXPECT_THAT(nullptr, IsFalse()); std::unique_ptr<int> null_unique; std::unique_ptr<int> nonnull_unique(new int(0)); EXPECT_THAT(null_unique, Not(IsTrue())); EXPECT_THAT(null_unique, IsFalse()); EXPECT_THAT(nonnull_unique, IsTrue()); EXPECT_THAT(nonnull_unique, Not(IsFalse())); }
TEST(SizeIsTest, ImplementsSizeIs) { vector<int> container; EXPECT_THAT(container, SizeIs(0)); EXPECT_THAT(container, Not(SizeIs(1))); container.push_back(0); EXPECT_THAT(container, Not(SizeIs(0))); EXPECT_THAT(container, SizeIs(1)); container.push_back(0); EXPECT_THAT(container, Not(SizeIs(0))); EXPECT_THAT(container, SizeIs(2)); }
TEST(SizeIsTest, WorksWithMap) { map<std::string, int> container; EXPECT_THAT(container, SizeIs(0)); EXPECT_THAT(container, Not(SizeIs(1))); container.insert(make_pair("foo", 1)); EXPECT_THAT(container, Not(SizeIs(0))); EXPECT_THAT(container, SizeIs(1)); container.insert(make_pair("bar", 2)); EXPECT_THAT(container, Not(SizeIs(0))); EXPECT_THAT(container, SizeIs(2)); }
TEST(SizeIsTest, WorksWithReferences) { vector<int> container; Matcher<const vector<int>&> m = SizeIs(1); EXPECT_THAT(container, Not(m)); container.push_back(0); EXPECT_THAT(container, m); }
TEST(SizeIsTest, WorksWithMoveOnly) { ContainerHelper helper; EXPECT_CALL(helper, Call(SizeIs(3))); helper.Call(MakeUniquePtrs({1, 2, 3})); }
// SizeIs should work for any type that provides a size() member function.
// For example, a size_type member type should not need to be provided.
struct MinimalistCustomType { int size() const { return 1; } }; TEST(SizeIsTest, WorksWithMinimalistCustomType) { MinimalistCustomType container; EXPECT_THAT(container, SizeIs(1)); EXPECT_THAT(container, Not(SizeIs(0))); }
TEST(SizeIsTest, CanDescribeSelf) { Matcher<vector<int> > m = SizeIs(2); EXPECT_EQ("size is equal to 2", Describe(m)); EXPECT_EQ("size isn't equal to 2", DescribeNegation(m)); }
TEST(SizeIsTest, ExplainsResult) { Matcher<vector<int> > m1 = SizeIs(2); Matcher<vector<int> > m2 = SizeIs(Lt(2u)); Matcher<vector<int> > m3 = SizeIs(AnyOf(0, 3)); Matcher<vector<int> > m4 = SizeIs(GreaterThan(1)); vector<int> container; EXPECT_EQ("whose size 0 doesn't match", Explain(m1, container)); EXPECT_EQ("whose size 0 matches", Explain(m2, container)); EXPECT_EQ("whose size 0 matches", Explain(m3, container)); EXPECT_EQ("whose size 0 doesn't match, which is 1 less than 1", Explain(m4, container)); container.push_back(0); container.push_back(0); EXPECT_EQ("whose size 2 matches", Explain(m1, container)); EXPECT_EQ("whose size 2 doesn't match", Explain(m2, container)); EXPECT_EQ("whose size 2 doesn't match", Explain(m3, container)); EXPECT_EQ("whose size 2 matches, which is 1 more than 1", Explain(m4, container)); }
#if GTEST_HAS_TYPED_TEST
// Tests ContainerEq with different container types, and
// different element types.
template <typename T> class ContainerEqTest : public testing::Test {};
typedef testing::Types< set<int>, vector<size_t>, multiset<size_t>, list<int> > ContainerEqTestTypes;
TYPED_TEST_SUITE(ContainerEqTest, ContainerEqTestTypes);
// Tests that the filled container is equal to itself.
TYPED_TEST(ContainerEqTest, EqualsSelf) { static const int vals[] = {1, 1, 2, 3, 5, 8}; TypeParam my_set(vals, vals + 6); const Matcher<TypeParam> m = ContainerEq(my_set); EXPECT_TRUE(m.Matches(my_set)); EXPECT_EQ("", Explain(m, my_set)); }
// Tests that missing values are reported.
TYPED_TEST(ContainerEqTest, ValueMissing) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {2, 1, 8, 5}; TypeParam my_set(vals, vals + 6); TypeParam test_set(test_vals, test_vals + 4); const Matcher<TypeParam> m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which doesn't have these expected elements: 3", Explain(m, test_set)); }
// Tests that added values are reported.
TYPED_TEST(ContainerEqTest, ValueAdded) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 3, 5, 8, 46}; TypeParam my_set(vals, vals + 6); TypeParam test_set(test_vals, test_vals + 6); const Matcher<const TypeParam&> m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which has these unexpected elements: 46", Explain(m, test_set)); }
// Tests that added and missing values are reported together.
TYPED_TEST(ContainerEqTest, ValueAddedAndRemoved) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 3, 8, 46}; TypeParam my_set(vals, vals + 6); TypeParam test_set(test_vals, test_vals + 5); const Matcher<TypeParam> m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which has these unexpected elements: 46,\n" "and doesn't have these expected elements: 5", Explain(m, test_set)); }
// Tests duplicated value -- expect no explanation.
TYPED_TEST(ContainerEqTest, DuplicateDifference) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 3, 5, 8}; TypeParam my_set(vals, vals + 6); TypeParam test_set(test_vals, test_vals + 5); const Matcher<const TypeParam&> m = ContainerEq(my_set); // Depending on the container, match may be true or false
// But in any case there should be no explanation.
EXPECT_EQ("", Explain(m, test_set)); } #endif // GTEST_HAS_TYPED_TEST
// Tests that multiple missing values are reported.
// Using just vector here, so order is predictable.
TEST(ContainerEqExtraTest, MultipleValuesMissing) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {2, 1, 5}; vector<int> my_set(vals, vals + 6); vector<int> test_set(test_vals, test_vals + 3); const Matcher<vector<int> > m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which doesn't have these expected elements: 3, 8", Explain(m, test_set)); }
// Tests that added values are reported.
// Using just vector here, so order is predictable.
TEST(ContainerEqExtraTest, MultipleValuesAdded) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 92, 3, 5, 8, 46}; list<size_t> my_set(vals, vals + 6); list<size_t> test_set(test_vals, test_vals + 7); const Matcher<const list<size_t>&> m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which has these unexpected elements: 92, 46", Explain(m, test_set)); }
// Tests that added and missing values are reported together.
TEST(ContainerEqExtraTest, MultipleValuesAddedAndRemoved) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 3, 92, 46}; list<size_t> my_set(vals, vals + 6); list<size_t> test_set(test_vals, test_vals + 5); const Matcher<const list<size_t> > m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which has these unexpected elements: 92, 46,\n" "and doesn't have these expected elements: 5, 8", Explain(m, test_set)); }
// Tests to see that duplicate elements are detected,
// but (as above) not reported in the explanation.
TEST(ContainerEqExtraTest, MultiSetOfIntDuplicateDifference) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 3, 5, 8}; vector<int> my_set(vals, vals + 6); vector<int> test_set(test_vals, test_vals + 5); const Matcher<vector<int> > m = ContainerEq(my_set); EXPECT_TRUE(m.Matches(my_set)); EXPECT_FALSE(m.Matches(test_set)); // There is nothing to report when both sets contain all the same values.
EXPECT_EQ("", Explain(m, test_set)); }
// Tests that ContainerEq works for non-trivial associative containers,
// like maps.
TEST(ContainerEqExtraTest, WorksForMaps) { map<int, std::string> my_map; my_map[0] = "a"; my_map[1] = "b";
map<int, std::string> test_map; test_map[0] = "aa"; test_map[1] = "b";
const Matcher<const map<int, std::string>&> m = ContainerEq(my_map); EXPECT_TRUE(m.Matches(my_map)); EXPECT_FALSE(m.Matches(test_map));
EXPECT_EQ("which has these unexpected elements: (0, \"aa\"),\n" "and doesn't have these expected elements: (0, \"a\")", Explain(m, test_map)); }
TEST(ContainerEqExtraTest, WorksForNativeArray) { int a1[] = {1, 2, 3}; int a2[] = {1, 2, 3}; int b[] = {1, 2, 4};
EXPECT_THAT(a1, ContainerEq(a2)); EXPECT_THAT(a1, Not(ContainerEq(b))); }
TEST(ContainerEqExtraTest, WorksForTwoDimensionalNativeArray) { const char a1[][3] = {"hi", "lo"}; const char a2[][3] = {"hi", "lo"}; const char b[][3] = {"lo", "hi"};
// Tests using ContainerEq() in the first dimension.
EXPECT_THAT(a1, ContainerEq(a2)); EXPECT_THAT(a1, Not(ContainerEq(b)));
// Tests using ContainerEq() in the second dimension.
EXPECT_THAT(a1, ElementsAre(ContainerEq(a2[0]), ContainerEq(a2[1]))); EXPECT_THAT(a1, ElementsAre(Not(ContainerEq(b[0])), ContainerEq(a2[1]))); }
TEST(ContainerEqExtraTest, WorksForNativeArrayAsTuple) { const int a1[] = {1, 2, 3}; const int a2[] = {1, 2, 3}; const int b[] = {1, 2, 3, 4};
const int* const p1 = a1; EXPECT_THAT(std::make_tuple(p1, 3), ContainerEq(a2)); EXPECT_THAT(std::make_tuple(p1, 3), Not(ContainerEq(b)));
const int c[] = {1, 3, 2}; EXPECT_THAT(std::make_tuple(p1, 3), Not(ContainerEq(c))); }
TEST(ContainerEqExtraTest, CopiesNativeArrayParameter) { std::string a1[][3] = { {"hi", "hello", "ciao"}, {"bye", "see you", "ciao"} };
std::string a2[][3] = { {"hi", "hello", "ciao"}, {"bye", "see you", "ciao"} };
const Matcher<const std::string(&)[2][3]> m = ContainerEq(a2); EXPECT_THAT(a1, m);
a2[0][0] = "ha"; EXPECT_THAT(a1, m); }
TEST(WhenSortedByTest, WorksForEmptyContainer) { const vector<int> numbers; EXPECT_THAT(numbers, WhenSortedBy(less<int>(), ElementsAre())); EXPECT_THAT(numbers, Not(WhenSortedBy(less<int>(), ElementsAre(1)))); }
TEST(WhenSortedByTest, WorksForNonEmptyContainer) { vector<unsigned> numbers; numbers.push_back(3); numbers.push_back(1); numbers.push_back(2); numbers.push_back(2); EXPECT_THAT(numbers, WhenSortedBy(greater<unsigned>(), ElementsAre(3, 2, 2, 1))); EXPECT_THAT(numbers, Not(WhenSortedBy(greater<unsigned>(), ElementsAre(1, 2, 2, 3)))); }
TEST(WhenSortedByTest, WorksForNonVectorContainer) { list<std::string> words; words.push_back("say"); words.push_back("hello"); words.push_back("world"); EXPECT_THAT(words, WhenSortedBy(less<std::string>(), ElementsAre("hello", "say", "world"))); EXPECT_THAT(words, Not(WhenSortedBy(less<std::string>(), ElementsAre("say", "hello", "world")))); }
TEST(WhenSortedByTest, WorksForNativeArray) { const int numbers[] = {1, 3, 2, 4}; const int sorted_numbers[] = {1, 2, 3, 4}; EXPECT_THAT(numbers, WhenSortedBy(less<int>(), ElementsAre(1, 2, 3, 4))); EXPECT_THAT(numbers, WhenSortedBy(less<int>(), ElementsAreArray(sorted_numbers))); EXPECT_THAT(numbers, Not(WhenSortedBy(less<int>(), ElementsAre(1, 3, 2, 4)))); }
TEST(WhenSortedByTest, CanDescribeSelf) { const Matcher<vector<int> > m = WhenSortedBy(less<int>(), ElementsAre(1, 2)); EXPECT_EQ("(when sorted) has 2 elements where\n" "element #0 is equal to 1,\n" "element #1 is equal to 2", Describe(m)); EXPECT_EQ("(when sorted) doesn't have 2 elements, or\n" "element #0 isn't equal to 1, or\n" "element #1 isn't equal to 2", DescribeNegation(m)); }
TEST(WhenSortedByTest, ExplainsMatchResult) { const int a[] = {2, 1}; EXPECT_EQ("which is { 1, 2 } when sorted, whose element #0 doesn't match", Explain(WhenSortedBy(less<int>(), ElementsAre(2, 3)), a)); EXPECT_EQ("which is { 1, 2 } when sorted", Explain(WhenSortedBy(less<int>(), ElementsAre(1, 2)), a)); }
// WhenSorted() is a simple wrapper on WhenSortedBy(). Hence we don't
// need to test it as exhaustively as we test the latter.
TEST(WhenSortedTest, WorksForEmptyContainer) { const vector<int> numbers; EXPECT_THAT(numbers, WhenSorted(ElementsAre())); EXPECT_THAT(numbers, Not(WhenSorted(ElementsAre(1)))); }
TEST(WhenSortedTest, WorksForNonEmptyContainer) { list<std::string> words; words.push_back("3"); words.push_back("1"); words.push_back("2"); words.push_back("2"); EXPECT_THAT(words, WhenSorted(ElementsAre("1", "2", "2", "3"))); EXPECT_THAT(words, Not(WhenSorted(ElementsAre("3", "1", "2", "2")))); }
TEST(WhenSortedTest, WorksForMapTypes) { map<std::string, int> word_counts; word_counts["and"] = 1; word_counts["the"] = 1; word_counts["buffalo"] = 2; EXPECT_THAT(word_counts, WhenSorted(ElementsAre(Pair("and", 1), Pair("buffalo", 2), Pair("the", 1)))); EXPECT_THAT(word_counts, Not(WhenSorted(ElementsAre(Pair("and", 1), Pair("the", 1), Pair("buffalo", 2))))); }
TEST(WhenSortedTest, WorksForMultiMapTypes) { multimap<int, int> ifib; ifib.insert(make_pair(8, 6)); ifib.insert(make_pair(2, 3)); ifib.insert(make_pair(1, 1)); ifib.insert(make_pair(3, 4)); ifib.insert(make_pair(1, 2)); ifib.insert(make_pair(5, 5)); EXPECT_THAT(ifib, WhenSorted(ElementsAre(Pair(1, 1), Pair(1, 2), Pair(2, 3), Pair(3, 4), Pair(5, 5), Pair(8, 6)))); EXPECT_THAT(ifib, Not(WhenSorted(ElementsAre(Pair(8, 6), Pair(2, 3), Pair(1, 1), Pair(3, 4), Pair(1, 2), Pair(5, 5))))); }
TEST(WhenSortedTest, WorksForPolymorphicMatcher) { std::deque<int> d; d.push_back(2); d.push_back(1); EXPECT_THAT(d, WhenSorted(ElementsAre(1, 2))); EXPECT_THAT(d, Not(WhenSorted(ElementsAre(2, 1)))); }
TEST(WhenSortedTest, WorksForVectorConstRefMatcher) { std::deque<int> d; d.push_back(2); d.push_back(1); Matcher<const std::vector<int>&> vector_match = ElementsAre(1, 2); EXPECT_THAT(d, WhenSorted(vector_match)); Matcher<const std::vector<int>&> not_vector_match = ElementsAre(2, 1); EXPECT_THAT(d, Not(WhenSorted(not_vector_match))); }
// Deliberately bare pseudo-container.
// Offers only begin() and end() accessors, yielding InputIterator.
template <typename T> class Streamlike { private: class ConstIter; public: typedef ConstIter const_iterator; typedef T value_type;
template <typename InIter> Streamlike(InIter first, InIter last) : remainder_(first, last) {}
const_iterator begin() const { return const_iterator(this, remainder_.begin()); } const_iterator end() const { return const_iterator(this, remainder_.end()); }
private: class ConstIter : public std::iterator<std::input_iterator_tag, value_type, ptrdiff_t, const value_type*, const value_type&> { public: ConstIter(const Streamlike* s, typename std::list<value_type>::iterator pos) : s_(s), pos_(pos) {}
const value_type& operator*() const { return *pos_; } const value_type* operator->() const { return &*pos_; } ConstIter& operator++() { s_->remainder_.erase(pos_++); return *this; }
// *iter++ is required to work (see std::istreambuf_iterator).
// (void)iter++ is also required to work.
class PostIncrProxy { public: explicit PostIncrProxy(const value_type& value) : value_(value) {} value_type operator*() const { return value_; } private: value_type value_; }; PostIncrProxy operator++(int) { PostIncrProxy proxy(**this); ++(*this); return proxy; }
friend bool operator==(const ConstIter& a, const ConstIter& b) { return a.s_ == b.s_ && a.pos_ == b.pos_; } friend bool operator!=(const ConstIter& a, const ConstIter& b) { return !(a == b); }
private: const Streamlike* s_; typename std::list<value_type>::iterator pos_; };
friend std::ostream& operator<<(std::ostream& os, const Streamlike& s) { os << "["; typedef typename std::list<value_type>::const_iterator Iter; const char* sep = ""; for (Iter it = s.remainder_.begin(); it != s.remainder_.end(); ++it) { os << sep << *it; sep = ","; } os << "]"; return os; }
mutable std::list<value_type> remainder_; // modified by iteration
};
TEST(StreamlikeTest, Iteration) { const int a[5] = {2, 1, 4, 5, 3}; Streamlike<int> s(a, a + 5); Streamlike<int>::const_iterator it = s.begin(); const int* ip = a; while (it != s.end()) { SCOPED_TRACE(ip - a); EXPECT_EQ(*ip++, *it++); } }
TEST(BeginEndDistanceIsTest, WorksWithForwardList) { std::forward_list<int> container; EXPECT_THAT(container, BeginEndDistanceIs(0)); EXPECT_THAT(container, Not(BeginEndDistanceIs(1))); container.push_front(0); EXPECT_THAT(container, Not(BeginEndDistanceIs(0))); EXPECT_THAT(container, BeginEndDistanceIs(1)); container.push_front(0); EXPECT_THAT(container, Not(BeginEndDistanceIs(0))); EXPECT_THAT(container, BeginEndDistanceIs(2)); }
TEST(BeginEndDistanceIsTest, WorksWithNonStdList) { const int a[5] = {1, 2, 3, 4, 5}; Streamlike<int> s(a, a + 5); EXPECT_THAT(s, BeginEndDistanceIs(5)); }
TEST(BeginEndDistanceIsTest, CanDescribeSelf) { Matcher<vector<int> > m = BeginEndDistanceIs(2); EXPECT_EQ("distance between begin() and end() is equal to 2", Describe(m)); EXPECT_EQ("distance between begin() and end() isn't equal to 2", DescribeNegation(m)); }
TEST(BeginEndDistanceIsTest, WorksWithMoveOnly) { ContainerHelper helper; EXPECT_CALL(helper, Call(BeginEndDistanceIs(2))); helper.Call(MakeUniquePtrs({1, 2})); }
TEST(BeginEndDistanceIsTest, ExplainsResult) { Matcher<vector<int> > m1 = BeginEndDistanceIs(2); Matcher<vector<int> > m2 = BeginEndDistanceIs(Lt(2)); Matcher<vector<int> > m3 = BeginEndDistanceIs(AnyOf(0, 3)); Matcher<vector<int> > m4 = BeginEndDistanceIs(GreaterThan(1)); vector<int> container; EXPECT_EQ("whose distance between begin() and end() 0 doesn't match", Explain(m1, container)); EXPECT_EQ("whose distance between begin() and end() 0 matches", Explain(m2, container)); EXPECT_EQ("whose distance between begin() and end() 0 matches", Explain(m3, container)); EXPECT_EQ( "whose distance between begin() and end() 0 doesn't match, which is 1 " "less than 1", Explain(m4, container)); container.push_back(0); container.push_back(0); EXPECT_EQ("whose distance between begin() and end() 2 matches", Explain(m1, container)); EXPECT_EQ("whose distance between begin() and end() 2 doesn't match", Explain(m2, container)); EXPECT_EQ("whose distance between begin() and end() 2 doesn't match", Explain(m3, container)); EXPECT_EQ( "whose distance between begin() and end() 2 matches, which is 1 more " "than 1", Explain(m4, container)); }
TEST(WhenSortedTest, WorksForStreamlike) { // Streamlike 'container' provides only minimal iterator support.
// Its iterators are tagged with input_iterator_tag.
const int a[5] = {2, 1, 4, 5, 3}; Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a)); EXPECT_THAT(s, WhenSorted(ElementsAre(1, 2, 3, 4, 5))); EXPECT_THAT(s, Not(WhenSorted(ElementsAre(2, 1, 4, 5, 3)))); }
TEST(WhenSortedTest, WorksForVectorConstRefMatcherOnStreamlike) { const int a[] = {2, 1, 4, 5, 3}; Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a)); Matcher<const std::vector<int>&> vector_match = ElementsAre(1, 2, 3, 4, 5); EXPECT_THAT(s, WhenSorted(vector_match)); EXPECT_THAT(s, Not(WhenSorted(ElementsAre(2, 1, 4, 5, 3)))); }
TEST(IsSupersetOfTest, WorksForNativeArray) { const int subset[] = {1, 4}; const int superset[] = {1, 2, 4}; const int disjoint[] = {1, 0, 3}; EXPECT_THAT(subset, IsSupersetOf(subset)); EXPECT_THAT(subset, Not(IsSupersetOf(superset))); EXPECT_THAT(superset, IsSupersetOf(subset)); EXPECT_THAT(subset, Not(IsSupersetOf(disjoint))); EXPECT_THAT(disjoint, Not(IsSupersetOf(subset))); }
TEST(IsSupersetOfTest, WorksWithDuplicates) { const int not_enough[] = {1, 2}; const int enough[] = {1, 1, 2}; const int expected[] = {1, 1}; EXPECT_THAT(not_enough, Not(IsSupersetOf(expected))); EXPECT_THAT(enough, IsSupersetOf(expected)); }
TEST(IsSupersetOfTest, WorksForEmpty) { vector<int> numbers; vector<int> expected; EXPECT_THAT(numbers, IsSupersetOf(expected)); expected.push_back(1); EXPECT_THAT(numbers, Not(IsSupersetOf(expected))); expected.clear(); numbers.push_back(1); numbers.push_back(2); EXPECT_THAT(numbers, IsSupersetOf(expected)); expected.push_back(1); EXPECT_THAT(numbers, IsSupersetOf(expected)); expected.push_back(2); EXPECT_THAT(numbers, IsSupersetOf(expected)); expected.push_back(3); EXPECT_THAT(numbers, Not(IsSupersetOf(expected))); }
TEST(IsSupersetOfTest, WorksForStreamlike) { const int a[5] = {1, 2, 3, 4, 5}; Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a));
vector<int> expected; expected.push_back(1); expected.push_back(2); expected.push_back(5); EXPECT_THAT(s, IsSupersetOf(expected));
expected.push_back(0); EXPECT_THAT(s, Not(IsSupersetOf(expected))); }
TEST(IsSupersetOfTest, TakesStlContainer) { const int actual[] = {3, 1, 2};
::std::list<int> expected; expected.push_back(1); expected.push_back(3); EXPECT_THAT(actual, IsSupersetOf(expected));
expected.push_back(4); EXPECT_THAT(actual, Not(IsSupersetOf(expected))); }
TEST(IsSupersetOfTest, Describe) { typedef std::vector<int> IntVec; IntVec expected; expected.push_back(111); expected.push_back(222); expected.push_back(333); EXPECT_THAT( Describe<IntVec>(IsSupersetOf(expected)), Eq("a surjection from elements to requirements exists such that:\n" " - an element is equal to 111\n" " - an element is equal to 222\n" " - an element is equal to 333")); }
TEST(IsSupersetOfTest, DescribeNegation) { typedef std::vector<int> IntVec; IntVec expected; expected.push_back(111); expected.push_back(222); expected.push_back(333); EXPECT_THAT( DescribeNegation<IntVec>(IsSupersetOf(expected)), Eq("no surjection from elements to requirements exists such that:\n" " - an element is equal to 111\n" " - an element is equal to 222\n" " - an element is equal to 333")); }
TEST(IsSupersetOfTest, MatchAndExplain) { std::vector<int> v; v.push_back(2); v.push_back(3); std::vector<int> expected; expected.push_back(1); expected.push_back(2); StringMatchResultListener listener; ASSERT_FALSE(ExplainMatchResult(IsSupersetOf(expected), v, &listener)) << listener.str(); EXPECT_THAT(listener.str(), Eq("where the following matchers don't match any elements:\n" "matcher #0: is equal to 1"));
v.push_back(1); listener.Clear(); ASSERT_TRUE(ExplainMatchResult(IsSupersetOf(expected), v, &listener)) << listener.str(); EXPECT_THAT(listener.str(), Eq("where:\n" " - element #0 is matched by matcher #1,\n" " - element #2 is matched by matcher #0")); }
TEST(IsSupersetOfTest, WorksForRhsInitializerList) { const int numbers[] = {1, 3, 6, 2, 4, 5}; EXPECT_THAT(numbers, IsSupersetOf({1, 2})); EXPECT_THAT(numbers, Not(IsSupersetOf({3, 0}))); }
TEST(IsSupersetOfTest, WorksWithMoveOnly) { ContainerHelper helper; EXPECT_CALL(helper, Call(IsSupersetOf({Pointee(1)}))); helper.Call(MakeUniquePtrs({1, 2})); EXPECT_CALL(helper, Call(Not(IsSupersetOf({Pointee(1), Pointee(2)})))); helper.Call(MakeUniquePtrs({2})); }
TEST(IsSubsetOfTest, WorksForNativeArray) { const int subset[] = {1, 4}; const int superset[] = {1, 2, 4}; const int disjoint[] = {1, 0, 3}; EXPECT_THAT(subset, IsSubsetOf(subset)); EXPECT_THAT(subset, IsSubsetOf(superset)); EXPECT_THAT(superset, Not(IsSubsetOf(subset))); EXPECT_THAT(subset, Not(IsSubsetOf(disjoint))); EXPECT_THAT(disjoint, Not(IsSubsetOf(subset))); }
TEST(IsSubsetOfTest, WorksWithDuplicates) { const int not_enough[] = {1, 2}; const int enough[] = {1, 1, 2}; const int actual[] = {1, 1}; EXPECT_THAT(actual, Not(IsSubsetOf(not_enough))); EXPECT_THAT(actual, IsSubsetOf(enough)); }
TEST(IsSubsetOfTest, WorksForEmpty) { vector<int> numbers; vector<int> expected; EXPECT_THAT(numbers, IsSubsetOf(expected)); expected.push_back(1); EXPECT_THAT(numbers, IsSubsetOf(expected)); expected.clear(); numbers.push_back(1); numbers.push_back(2); EXPECT_THAT(numbers, Not(IsSubsetOf(expected))); expected.push_back(1); EXPECT_THAT(numbers, Not(IsSubsetOf(expected))); expected.push_back(2); EXPECT_THAT(numbers, IsSubsetOf(expected)); expected.push_back(3); EXPECT_THAT(numbers, IsSubsetOf(expected)); }
TEST(IsSubsetOfTest, WorksForStreamlike) { const int a[5] = {1, 2}; Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a));
vector<int> expected; expected.push_back(1); EXPECT_THAT(s, Not(IsSubsetOf(expected))); expected.push_back(2); expected.push_back(5); EXPECT_THAT(s, IsSubsetOf(expected)); }
TEST(IsSubsetOfTest, TakesStlContainer) { const int actual[] = {3, 1, 2};
::std::list<int> expected; expected.push_back(1); expected.push_back(3); EXPECT_THAT(actual, Not(IsSubsetOf(expected)));
expected.push_back(2); expected.push_back(4); EXPECT_THAT(actual, IsSubsetOf(expected)); }
TEST(IsSubsetOfTest, Describe) { typedef std::vector<int> IntVec; IntVec expected; expected.push_back(111); expected.push_back(222); expected.push_back(333);
EXPECT_THAT( Describe<IntVec>(IsSubsetOf(expected)), Eq("an injection from elements to requirements exists such that:\n" " - an element is equal to 111\n" " - an element is equal to 222\n" " - an element is equal to 333")); }
TEST(IsSubsetOfTest, DescribeNegation) { typedef std::vector<int> IntVec; IntVec expected; expected.push_back(111); expected.push_back(222); expected.push_back(333); EXPECT_THAT( DescribeNegation<IntVec>(IsSubsetOf(expected)), Eq("no injection from elements to requirements exists such that:\n" " - an element is equal to 111\n" " - an element is equal to 222\n" " - an element is equal to 333")); }
TEST(IsSubsetOfTest, MatchAndExplain) { std::vector<int> v; v.push_back(2); v.push_back(3); std::vector<int> expected; expected.push_back(1); expected.push_back(2); StringMatchResultListener listener; ASSERT_FALSE(ExplainMatchResult(IsSubsetOf(expected), v, &listener)) << listener.str(); EXPECT_THAT(listener.str(), Eq("where the following elements don't match any matchers:\n" "element #1: 3"));
expected.push_back(3); listener.Clear(); ASSERT_TRUE(ExplainMatchResult(IsSubsetOf(expected), v, &listener)) << listener.str(); EXPECT_THAT(listener.str(), Eq("where:\n" " - element #0 is matched by matcher #1,\n" " - element #1 is matched by matcher #2")); }
TEST(IsSubsetOfTest, WorksForRhsInitializerList) { const int numbers[] = {1, 2, 3}; EXPECT_THAT(numbers, IsSubsetOf({1, 2, 3, 4})); EXPECT_THAT(numbers, Not(IsSubsetOf({1, 2}))); }
TEST(IsSubsetOfTest, WorksWithMoveOnly) { ContainerHelper helper; EXPECT_CALL(helper, Call(IsSubsetOf({Pointee(1), Pointee(2)}))); helper.Call(MakeUniquePtrs({1})); EXPECT_CALL(helper, Call(Not(IsSubsetOf({Pointee(1)})))); helper.Call(MakeUniquePtrs({2})); }
// Tests using ElementsAre() and ElementsAreArray() with stream-like
// "containers".
TEST(ElemensAreStreamTest, WorksForStreamlike) { const int a[5] = {1, 2, 3, 4, 5}; Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a)); EXPECT_THAT(s, ElementsAre(1, 2, 3, 4, 5)); EXPECT_THAT(s, Not(ElementsAre(2, 1, 4, 5, 3))); }
TEST(ElemensAreArrayStreamTest, WorksForStreamlike) { const int a[5] = {1, 2, 3, 4, 5}; Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a));
vector<int> expected; expected.push_back(1); expected.push_back(2); expected.push_back(3); expected.push_back(4); expected.push_back(5); EXPECT_THAT(s, ElementsAreArray(expected));
expected[3] = 0; EXPECT_THAT(s, Not(ElementsAreArray(expected))); }
TEST(ElementsAreTest, WorksWithUncopyable) { Uncopyable objs[2]; objs[0].set_value(-3); objs[1].set_value(1); EXPECT_THAT(objs, ElementsAre(UncopyableIs(-3), Truly(ValueIsPositive))); }
TEST(ElementsAreTest, WorksWithMoveOnly) { ContainerHelper helper; EXPECT_CALL(helper, Call(ElementsAre(Pointee(1), Pointee(2)))); helper.Call(MakeUniquePtrs({1, 2}));
EXPECT_CALL(helper, Call(ElementsAreArray({Pointee(3), Pointee(4)}))); helper.Call(MakeUniquePtrs({3, 4})); }
TEST(ElementsAreTest, TakesStlContainer) { const int actual[] = {3, 1, 2};
::std::list<int> expected; expected.push_back(3); expected.push_back(1); expected.push_back(2); EXPECT_THAT(actual, ElementsAreArray(expected));
expected.push_back(4); EXPECT_THAT(actual, Not(ElementsAreArray(expected))); }
// Tests for UnorderedElementsAreArray()
TEST(UnorderedElementsAreArrayTest, SucceedsWhenExpected) { const int a[] = {0, 1, 2, 3, 4}; std::vector<int> s(a, a + GTEST_ARRAY_SIZE_(a)); do { StringMatchResultListener listener; EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(a), s, &listener)) << listener.str(); } while (std::next_permutation(s.begin(), s.end())); }
TEST(UnorderedElementsAreArrayTest, VectorBool) { const bool a[] = {0, 1, 0, 1, 1}; const bool b[] = {1, 0, 1, 1, 0}; std::vector<bool> expected(a, a + GTEST_ARRAY_SIZE_(a)); std::vector<bool> actual(b, b + GTEST_ARRAY_SIZE_(b)); StringMatchResultListener listener; EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(expected), actual, &listener)) << listener.str(); }
TEST(UnorderedElementsAreArrayTest, WorksForStreamlike) { // Streamlike 'container' provides only minimal iterator support.
// Its iterators are tagged with input_iterator_tag, and it has no
// size() or empty() methods.
const int a[5] = {2, 1, 4, 5, 3}; Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a));
::std::vector<int> expected; expected.push_back(1); expected.push_back(2); expected.push_back(3); expected.push_back(4); expected.push_back(5); EXPECT_THAT(s, UnorderedElementsAreArray(expected));
expected.push_back(6); EXPECT_THAT(s, Not(UnorderedElementsAreArray(expected))); }
TEST(UnorderedElementsAreArrayTest, TakesStlContainer) { const int actual[] = {3, 1, 2};
::std::list<int> expected; expected.push_back(1); expected.push_back(2); expected.push_back(3); EXPECT_THAT(actual, UnorderedElementsAreArray(expected));
expected.push_back(4); EXPECT_THAT(actual, Not(UnorderedElementsAreArray(expected))); }
TEST(UnorderedElementsAreArrayTest, TakesInitializerList) { const int a[5] = {2, 1, 4, 5, 3}; EXPECT_THAT(a, UnorderedElementsAreArray({1, 2, 3, 4, 5})); EXPECT_THAT(a, Not(UnorderedElementsAreArray({1, 2, 3, 4, 6}))); }
TEST(UnorderedElementsAreArrayTest, TakesInitializerListOfCStrings) { const std::string a[5] = {"a", "b", "c", "d", "e"}; EXPECT_THAT(a, UnorderedElementsAreArray({"a", "b", "c", "d", "e"})); EXPECT_THAT(a, Not(UnorderedElementsAreArray({"a", "b", "c", "d", "ef"}))); }
TEST(UnorderedElementsAreArrayTest, TakesInitializerListOfSameTypedMatchers) { const int a[5] = {2, 1, 4, 5, 3}; EXPECT_THAT(a, UnorderedElementsAreArray( {Eq(1), Eq(2), Eq(3), Eq(4), Eq(5)})); EXPECT_THAT(a, Not(UnorderedElementsAreArray( {Eq(1), Eq(2), Eq(3), Eq(4), Eq(6)}))); }
TEST(UnorderedElementsAreArrayTest, TakesInitializerListOfDifferentTypedMatchers) { const int a[5] = {2, 1, 4, 5, 3}; // The compiler cannot infer the type of the initializer list if its
// elements have different types. We must explicitly specify the
// unified element type in this case.
EXPECT_THAT(a, UnorderedElementsAreArray<Matcher<int> >( {Eq(1), Ne(-2), Ge(3), Le(4), Eq(5)})); EXPECT_THAT(a, Not(UnorderedElementsAreArray<Matcher<int> >( {Eq(1), Ne(-2), Ge(3), Le(4), Eq(6)}))); }
TEST(UnorderedElementsAreArrayTest, WorksWithMoveOnly) { ContainerHelper helper; EXPECT_CALL(helper, Call(UnorderedElementsAreArray({Pointee(1), Pointee(2)}))); helper.Call(MakeUniquePtrs({2, 1})); }
class UnorderedElementsAreTest : public testing::Test { protected: typedef std::vector<int> IntVec; };
TEST_F(UnorderedElementsAreTest, WorksWithUncopyable) { Uncopyable objs[2]; objs[0].set_value(-3); objs[1].set_value(1); EXPECT_THAT(objs, UnorderedElementsAre(Truly(ValueIsPositive), UncopyableIs(-3))); }
TEST_F(UnorderedElementsAreTest, SucceedsWhenExpected) { const int a[] = {1, 2, 3}; std::vector<int> s(a, a + GTEST_ARRAY_SIZE_(a)); do { StringMatchResultListener listener; EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAre(1, 2, 3), s, &listener)) << listener.str(); } while (std::next_permutation(s.begin(), s.end())); }
TEST_F(UnorderedElementsAreTest, FailsWhenAnElementMatchesNoMatcher) { const int a[] = {1, 2, 3}; std::vector<int> s(a, a + GTEST_ARRAY_SIZE_(a)); std::vector<Matcher<int> > mv; mv.push_back(1); mv.push_back(2); mv.push_back(2); // The element with value '3' matches nothing: fail fast.
StringMatchResultListener listener; EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAreArray(mv), s, &listener)) << listener.str(); }
TEST_F(UnorderedElementsAreTest, WorksForStreamlike) { // Streamlike 'container' provides only minimal iterator support.
// Its iterators are tagged with input_iterator_tag, and it has no
// size() or empty() methods.
const int a[5] = {2, 1, 4, 5, 3}; Streamlike<int> s(a, a + GTEST_ARRAY_SIZE_(a));
EXPECT_THAT(s, UnorderedElementsAre(1, 2, 3, 4, 5)); EXPECT_THAT(s, Not(UnorderedElementsAre(2, 2, 3, 4, 5))); }
TEST_F(UnorderedElementsAreTest, WorksWithMoveOnly) { ContainerHelper helper; EXPECT_CALL(helper, Call(UnorderedElementsAre(Pointee(1), Pointee(2)))); helper.Call(MakeUniquePtrs({2, 1})); }
// One naive implementation of the matcher runs in O(N!) time, which is too
// slow for many real-world inputs. This test shows that our matcher can match
// 100 inputs very quickly (a few milliseconds). An O(100!) is 10^158
// iterations and obviously effectively incomputable.
// [ RUN ] UnorderedElementsAreTest.Performance
// [ OK ] UnorderedElementsAreTest.Performance (4 ms)
TEST_F(UnorderedElementsAreTest, Performance) { std::vector<int> s; std::vector<Matcher<int> > mv; for (int i = 0; i < 100; ++i) { s.push_back(i); mv.push_back(_); } mv[50] = Eq(0); StringMatchResultListener listener; EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(mv), s, &listener)) << listener.str(); }
// Another variant of 'Performance' with similar expectations.
// [ RUN ] UnorderedElementsAreTest.PerformanceHalfStrict
// [ OK ] UnorderedElementsAreTest.PerformanceHalfStrict (4 ms)
TEST_F(UnorderedElementsAreTest, PerformanceHalfStrict) { std::vector<int> s; std::vector<Matcher<int> > mv; for (int i = 0; i < 100; ++i) { s.push_back(i); if (i & 1) { mv.push_back(_); } else { mv.push_back(i); } } StringMatchResultListener listener; EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(mv), s, &listener)) << listener.str(); }
TEST_F(UnorderedElementsAreTest, FailMessageCountWrong) { std::vector<int> v; v.push_back(4); StringMatchResultListener listener; EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2, 3), v, &listener)) << listener.str(); EXPECT_THAT(listener.str(), Eq("which has 1 element")); }
TEST_F(UnorderedElementsAreTest, FailMessageCountWrongZero) { std::vector<int> v; StringMatchResultListener listener; EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2, 3), v, &listener)) << listener.str(); EXPECT_THAT(listener.str(), Eq("")); }
TEST_F(UnorderedElementsAreTest, FailMessageUnmatchedMatchers) { std::vector<int> v; v.push_back(1); v.push_back(1); StringMatchResultListener listener; EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2), v, &listener)) << listener.str(); EXPECT_THAT( listener.str(), Eq("where the following matchers don't match any elements:\n" "matcher #1: is equal to 2")); }
TEST_F(UnorderedElementsAreTest, FailMessageUnmatchedElements) { std::vector<int> v; v.push_back(1); v.push_back(2); StringMatchResultListener listener; EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 1), v, &listener)) << listener.str(); EXPECT_THAT( listener.str(), Eq("where the following elements don't match any matchers:\n" "element #1: 2")); }
TEST_F(UnorderedElementsAreTest, FailMessageUnmatchedMatcherAndElement) { std::vector<int> v; v.push_back(2); v.push_back(3); StringMatchResultListener listener; EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2), v, &listener)) << listener.str(); EXPECT_THAT( listener.str(), Eq("where" " the following matchers don't match any elements:\n" "matcher #0: is equal to 1\n" "and" " where" " the following elements don't match any matchers:\n" "element #1: 3")); }
// Test helper for formatting element, matcher index pairs in expectations.
static std::string EMString(int element, int matcher) { stringstream ss; ss << "(element #" << element << ", matcher #" << matcher << ")"; return ss.str(); }
TEST_F(UnorderedElementsAreTest, FailMessageImperfectMatchOnly) { // A situation where all elements and matchers have a match
// associated with them, but the max matching is not perfect.
std::vector<std::string> v; v.push_back("a"); v.push_back("b"); v.push_back("c"); StringMatchResultListener listener; EXPECT_FALSE(ExplainMatchResult( UnorderedElementsAre("a", "a", AnyOf("b", "c")), v, &listener)) << listener.str();
std::string prefix = "where no permutation of the elements can satisfy all matchers, " "and the closest match is 2 of 3 matchers with the " "pairings:\n";
// We have to be a bit loose here, because there are 4 valid max matches.
EXPECT_THAT( listener.str(), AnyOf(prefix + "{\n " + EMString(0, 0) + ",\n " + EMString(1, 2) + "\n}", prefix + "{\n " + EMString(0, 1) + ",\n " + EMString(1, 2) + "\n}", prefix + "{\n " + EMString(0, 0) + ",\n " + EMString(2, 2) + "\n}", prefix + "{\n " + EMString(0, 1) + ",\n " + EMString(2, 2) + "\n}")); }
TEST_F(UnorderedElementsAreTest, Describe) { EXPECT_THAT(Describe<IntVec>(UnorderedElementsAre()), Eq("is empty")); EXPECT_THAT( Describe<IntVec>(UnorderedElementsAre(345)), Eq("has 1 element and that element is equal to 345")); EXPECT_THAT( Describe<IntVec>(UnorderedElementsAre(111, 222, 333)), Eq("has 3 elements and there exists some permutation " "of elements such that:\n" " - element #0 is equal to 111, and\n" " - element #1 is equal to 222, and\n" " - element #2 is equal to 333")); }
TEST_F(UnorderedElementsAreTest, DescribeNegation) { EXPECT_THAT(DescribeNegation<IntVec>(UnorderedElementsAre()), Eq("isn't empty")); EXPECT_THAT( DescribeNegation<IntVec>(UnorderedElementsAre(345)), Eq("doesn't have 1 element, or has 1 element that isn't equal to 345")); EXPECT_THAT( DescribeNegation<IntVec>(UnorderedElementsAre(123, 234, 345)), Eq("doesn't have 3 elements, or there exists no permutation " "of elements such that:\n" " - element #0 is equal to 123, and\n" " - element #1 is equal to 234, and\n" " - element #2 is equal to 345")); }
namespace {
// Used as a check on the more complex max flow method used in the
// real testing::internal::FindMaxBipartiteMatching. This method is
// compatible but runs in worst-case factorial time, so we only
// use it in testing for small problem sizes.
template <typename Graph> class BacktrackingMaxBPMState { public: // Does not take ownership of 'g'.
explicit BacktrackingMaxBPMState(const Graph* g) : graph_(g) { }
ElementMatcherPairs Compute() { if (graph_->LhsSize() == 0 || graph_->RhsSize() == 0) { return best_so_far_; } lhs_used_.assign(graph_->LhsSize(), kUnused); rhs_used_.assign(graph_->RhsSize(), kUnused); for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) { matches_.clear(); RecurseInto(irhs); if (best_so_far_.size() == graph_->RhsSize()) break; } return best_so_far_; }
private: static const size_t kUnused = static_cast<size_t>(-1);
void PushMatch(size_t lhs, size_t rhs) { matches_.push_back(ElementMatcherPair(lhs, rhs)); lhs_used_[lhs] = rhs; rhs_used_[rhs] = lhs; if (matches_.size() > best_so_far_.size()) { best_so_far_ = matches_; } }
void PopMatch() { const ElementMatcherPair& back = matches_.back(); lhs_used_[back.first] = kUnused; rhs_used_[back.second] = kUnused; matches_.pop_back(); }
bool RecurseInto(size_t irhs) { if (rhs_used_[irhs] != kUnused) { return true; } for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) { if (lhs_used_[ilhs] != kUnused) { continue; } if (!graph_->HasEdge(ilhs, irhs)) { continue; } PushMatch(ilhs, irhs); if (best_so_far_.size() == graph_->RhsSize()) { return false; } for (size_t mi = irhs + 1; mi < graph_->RhsSize(); ++mi) { if (!RecurseInto(mi)) return false; } PopMatch(); } return true; }
const Graph* graph_; // not owned
std::vector<size_t> lhs_used_; std::vector<size_t> rhs_used_; ElementMatcherPairs matches_; ElementMatcherPairs best_so_far_; };
template <typename Graph> const size_t BacktrackingMaxBPMState<Graph>::kUnused;
} // namespace
// Implement a simple backtracking algorithm to determine if it is possible
// to find one element per matcher, without reusing elements.
template <typename Graph> ElementMatcherPairs FindBacktrackingMaxBPM(const Graph& g) { return BacktrackingMaxBPMState<Graph>(&g).Compute(); }
class BacktrackingBPMTest : public ::testing::Test { };
// Tests the MaxBipartiteMatching algorithm with square matrices.
// The single int param is the # of nodes on each of the left and right sides.
class BipartiteTest : public ::testing::TestWithParam<size_t> {};
// Verify all match graphs up to some moderate number of edges.
TEST_P(BipartiteTest, Exhaustive) { size_t nodes = GetParam(); MatchMatrix graph(nodes, nodes); do { ElementMatcherPairs matches = internal::FindMaxBipartiteMatching(graph); EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(), matches.size()) << "graph: " << graph.DebugString(); // Check that all elements of matches are in the graph.
// Check that elements of first and second are unique.
std::vector<bool> seen_element(graph.LhsSize()); std::vector<bool> seen_matcher(graph.RhsSize()); SCOPED_TRACE(PrintToString(matches)); for (size_t i = 0; i < matches.size(); ++i) { size_t ilhs = matches[i].first; size_t irhs = matches[i].second; EXPECT_TRUE(graph.HasEdge(ilhs, irhs)); EXPECT_FALSE(seen_element[ilhs]); EXPECT_FALSE(seen_matcher[irhs]); seen_element[ilhs] = true; seen_matcher[irhs] = true; } } while (graph.NextGraph()); }
INSTANTIATE_TEST_SUITE_P(AllGraphs, BipartiteTest, ::testing::Range(size_t{0}, size_t{5}));
// Parameterized by a pair interpreted as (LhsSize, RhsSize).
class BipartiteNonSquareTest : public ::testing::TestWithParam<std::pair<size_t, size_t> > { };
TEST_F(BipartiteNonSquareTest, SimpleBacktracking) { // .......
// 0:-----\ :
// 1:---\ | :
// 2:---\ | :
// 3:-\ | | :
// :.......:
// 0 1 2
MatchMatrix g(4, 3); static const size_t kEdges[][2] = {{0, 2}, {1, 1}, {2, 1}, {3, 0}}; for (size_t i = 0; i < GTEST_ARRAY_SIZE_(kEdges); ++i) { g.SetEdge(kEdges[i][0], kEdges[i][1], true); } EXPECT_THAT(FindBacktrackingMaxBPM(g), ElementsAre(Pair(3, 0), Pair(AnyOf(1, 2), 1), Pair(0, 2))) << g.DebugString(); }
// Verify a few nonsquare matrices.
TEST_P(BipartiteNonSquareTest, Exhaustive) { size_t nlhs = GetParam().first; size_t nrhs = GetParam().second; MatchMatrix graph(nlhs, nrhs); do { EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(), internal::FindMaxBipartiteMatching(graph).size()) << "graph: " << graph.DebugString() << "\nbacktracking: " << PrintToString(FindBacktrackingMaxBPM(graph)) << "\nmax flow: " << PrintToString(internal::FindMaxBipartiteMatching(graph)); } while (graph.NextGraph()); }
INSTANTIATE_TEST_SUITE_P(AllGraphs, BipartiteNonSquareTest, testing::Values( std::make_pair(1, 2), std::make_pair(2, 1), std::make_pair(3, 2), std::make_pair(2, 3), std::make_pair(4, 1), std::make_pair(1, 4), std::make_pair(4, 3), std::make_pair(3, 4)));
class BipartiteRandomTest : public ::testing::TestWithParam<std::pair<int, int> > { };
// Verifies a large sample of larger graphs.
TEST_P(BipartiteRandomTest, LargerNets) { int nodes = GetParam().first; int iters = GetParam().second; MatchMatrix graph(static_cast<size_t>(nodes), static_cast<size_t>(nodes));
auto seed = static_cast<testing::internal::UInt32>(GTEST_FLAG(random_seed)); if (seed == 0) { seed = static_cast<testing::internal::UInt32>(time(nullptr)); }
for (; iters > 0; --iters, ++seed) { srand(static_cast<unsigned int>(seed)); graph.Randomize(); EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(), internal::FindMaxBipartiteMatching(graph).size()) << " graph: " << graph.DebugString() << "\nTo reproduce the failure, rerun the test with the flag" " --" << GTEST_FLAG_PREFIX_ << "random_seed=" << seed; } }
// Test argument is a std::pair<int, int> representing (nodes, iters).
INSTANTIATE_TEST_SUITE_P(Samples, BipartiteRandomTest, testing::Values( std::make_pair(5, 10000), std::make_pair(6, 5000), std::make_pair(7, 2000), std::make_pair(8, 500), std::make_pair(9, 100)));
// Tests IsReadableTypeName().
TEST(IsReadableTypeNameTest, ReturnsTrueForShortNames) { EXPECT_TRUE(IsReadableTypeName("int")); EXPECT_TRUE(IsReadableTypeName("const unsigned char*")); EXPECT_TRUE(IsReadableTypeName("MyMap<int, void*>")); EXPECT_TRUE(IsReadableTypeName("void (*)(int, bool)")); }
TEST(IsReadableTypeNameTest, ReturnsTrueForLongNonTemplateNonFunctionNames) { EXPECT_TRUE(IsReadableTypeName("my_long_namespace::MyClassName")); EXPECT_TRUE(IsReadableTypeName("int [5][6][7][8][9][10][11]")); EXPECT_TRUE(IsReadableTypeName("my_namespace::MyOuterClass::MyInnerClass")); }
TEST(IsReadableTypeNameTest, ReturnsFalseForLongTemplateNames) { EXPECT_FALSE( IsReadableTypeName("basic_string<char, std::char_traits<char> >")); EXPECT_FALSE(IsReadableTypeName("std::vector<int, std::alloc_traits<int> >")); }
TEST(IsReadableTypeNameTest, ReturnsFalseForLongFunctionTypeNames) { EXPECT_FALSE(IsReadableTypeName("void (&)(int, bool, char, float)")); }
// Tests FormatMatcherDescription().
TEST(FormatMatcherDescriptionTest, WorksForEmptyDescription) { EXPECT_EQ("is even", FormatMatcherDescription(false, "IsEven", Strings())); EXPECT_EQ("not (is even)", FormatMatcherDescription(true, "IsEven", Strings()));
const char* params[] = {"5"}; EXPECT_EQ("equals 5", FormatMatcherDescription(false, "Equals", Strings(params, params + 1)));
const char* params2[] = {"5", "8"}; EXPECT_EQ("is in range (5, 8)", FormatMatcherDescription(false, "IsInRange", Strings(params2, params2 + 2))); }
// Tests PolymorphicMatcher::mutable_impl().
TEST(PolymorphicMatcherTest, CanAccessMutableImpl) { PolymorphicMatcher<DivisibleByImpl> m(DivisibleByImpl(42)); DivisibleByImpl& impl = m.mutable_impl(); EXPECT_EQ(42, impl.divider());
impl.set_divider(0); EXPECT_EQ(0, m.mutable_impl().divider()); }
// Tests PolymorphicMatcher::impl().
TEST(PolymorphicMatcherTest, CanAccessImpl) { const PolymorphicMatcher<DivisibleByImpl> m(DivisibleByImpl(42)); const DivisibleByImpl& impl = m.impl(); EXPECT_EQ(42, impl.divider()); }
TEST(MatcherTupleTest, ExplainsMatchFailure) { stringstream ss1; ExplainMatchFailureTupleTo( std::make_tuple(Matcher<char>(Eq('a')), GreaterThan(5)), std::make_tuple('a', 10), &ss1); EXPECT_EQ("", ss1.str()); // Successful match.
stringstream ss2; ExplainMatchFailureTupleTo( std::make_tuple(GreaterThan(5), Matcher<char>(Eq('a'))), std::make_tuple(2, 'b'), &ss2); EXPECT_EQ(" Expected arg #0: is > 5\n" " Actual: 2, which is 3 less than 5\n" " Expected arg #1: is equal to 'a' (97, 0x61)\n" " Actual: 'b' (98, 0x62)\n", ss2.str()); // Failed match where both arguments need explanation.
stringstream ss3; ExplainMatchFailureTupleTo( std::make_tuple(GreaterThan(5), Matcher<char>(Eq('a'))), std::make_tuple(2, 'a'), &ss3); EXPECT_EQ(" Expected arg #0: is > 5\n" " Actual: 2, which is 3 less than 5\n", ss3.str()); // Failed match where only one argument needs
// explanation.
}
// Tests Each().
TEST(EachTest, ExplainsMatchResultCorrectly) { set<int> a; // empty
Matcher<set<int> > m = Each(2); EXPECT_EQ("", Explain(m, a));
Matcher<const int(&)[1]> n = Each(1); // NOLINT
const int b[1] = {1}; EXPECT_EQ("", Explain(n, b));
n = Each(3); EXPECT_EQ("whose element #0 doesn't match", Explain(n, b));
a.insert(1); a.insert(2); a.insert(3); m = Each(GreaterThan(0)); EXPECT_EQ("", Explain(m, a));
m = Each(GreaterThan(10)); EXPECT_EQ("whose element #0 doesn't match, which is 9 less than 10", Explain(m, a)); }
TEST(EachTest, DescribesItselfCorrectly) { Matcher<vector<int> > m = Each(1); EXPECT_EQ("only contains elements that is equal to 1", Describe(m));
Matcher<vector<int> > m2 = Not(m); EXPECT_EQ("contains some element that isn't equal to 1", Describe(m2)); }
TEST(EachTest, MatchesVectorWhenAllElementsMatch) { vector<int> some_vector; EXPECT_THAT(some_vector, Each(1)); some_vector.push_back(3); EXPECT_THAT(some_vector, Not(Each(1))); EXPECT_THAT(some_vector, Each(3)); some_vector.push_back(1); some_vector.push_back(2); EXPECT_THAT(some_vector, Not(Each(3))); EXPECT_THAT(some_vector, Each(Lt(3.5)));
vector<std::string> another_vector; another_vector.push_back("fee"); EXPECT_THAT(another_vector, Each(std::string("fee"))); another_vector.push_back("fie"); another_vector.push_back("foe"); another_vector.push_back("fum"); EXPECT_THAT(another_vector, Not(Each(std::string("fee")))); }
TEST(EachTest, MatchesMapWhenAllElementsMatch) { map<const char*, int> my_map; const char* bar = "a string"; my_map[bar] = 2; EXPECT_THAT(my_map, Each(make_pair(bar, 2)));
map<std::string, int> another_map; EXPECT_THAT(another_map, Each(make_pair(std::string("fee"), 1))); another_map["fee"] = 1; EXPECT_THAT(another_map, Each(make_pair(std::string("fee"), 1))); another_map["fie"] = 2; another_map["foe"] = 3; another_map["fum"] = 4; EXPECT_THAT(another_map, Not(Each(make_pair(std::string("fee"), 1)))); EXPECT_THAT(another_map, Not(Each(make_pair(std::string("fum"), 1)))); EXPECT_THAT(another_map, Each(Pair(_, Gt(0)))); }
TEST(EachTest, AcceptsMatcher) { const int a[] = {1, 2, 3}; EXPECT_THAT(a, Each(Gt(0))); EXPECT_THAT(a, Not(Each(Gt(1)))); }
TEST(EachTest, WorksForNativeArrayAsTuple) { const int a[] = {1, 2}; const int* const pointer = a; EXPECT_THAT(std::make_tuple(pointer, 2), Each(Gt(0))); EXPECT_THAT(std::make_tuple(pointer, 2), Not(Each(Gt(1)))); }
TEST(EachTest, WorksWithMoveOnly) { ContainerHelper helper; EXPECT_CALL(helper, Call(Each(Pointee(Gt(0))))); helper.Call(MakeUniquePtrs({1, 2})); }
// For testing Pointwise().
class IsHalfOfMatcher { public: template <typename T1, typename T2> bool MatchAndExplain(const std::tuple<T1, T2>& a_pair, MatchResultListener* listener) const { if (std::get<0>(a_pair) == std::get<1>(a_pair) / 2) { *listener << "where the second is " << std::get<1>(a_pair); return true; } else { *listener << "where the second/2 is " << std::get<1>(a_pair) / 2; return false; } }
void DescribeTo(ostream* os) const { *os << "are a pair where the first is half of the second"; }
void DescribeNegationTo(ostream* os) const { *os << "are a pair where the first isn't half of the second"; } };
PolymorphicMatcher<IsHalfOfMatcher> IsHalfOf() { return MakePolymorphicMatcher(IsHalfOfMatcher()); }
TEST(PointwiseTest, DescribesSelf) { vector<int> rhs; rhs.push_back(1); rhs.push_back(2); rhs.push_back(3); const Matcher<const vector<int>&> m = Pointwise(IsHalfOf(), rhs); EXPECT_EQ("contains 3 values, where each value and its corresponding value " "in { 1, 2, 3 } are a pair where the first is half of the second", Describe(m)); EXPECT_EQ("doesn't contain exactly 3 values, or contains a value x at some " "index i where x and the i-th value of { 1, 2, 3 } are a pair " "where the first isn't half of the second", DescribeNegation(m)); }
TEST(PointwiseTest, MakesCopyOfRhs) { list<signed char> rhs; rhs.push_back(2); rhs.push_back(4);
int lhs[] = {1, 2}; const Matcher<const int (&)[2]> m = Pointwise(IsHalfOf(), rhs); EXPECT_THAT(lhs, m);
// Changing rhs now shouldn't affect m, which made a copy of rhs.
rhs.push_back(6); EXPECT_THAT(lhs, m); }
TEST(PointwiseTest, WorksForLhsNativeArray) { const int lhs[] = {1, 2, 3}; vector<int> rhs; rhs.push_back(2); rhs.push_back(4); rhs.push_back(6); EXPECT_THAT(lhs, Pointwise(Lt(), rhs)); EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs))); }
TEST(PointwiseTest, WorksForRhsNativeArray) { const int rhs[] = {1, 2, 3}; vector<int> lhs; lhs.push_back(2); lhs.push_back(4); lhs.push_back(6); EXPECT_THAT(lhs, Pointwise(Gt(), rhs)); EXPECT_THAT(lhs, Not(Pointwise(Lt(), rhs))); }
// Test is effective only with sanitizers.
TEST(PointwiseTest, WorksForVectorOfBool) { vector<bool> rhs(3, false); rhs[1] = true; vector<bool> lhs = rhs; EXPECT_THAT(lhs, Pointwise(Eq(), rhs)); rhs[0] = true; EXPECT_THAT(lhs, Not(Pointwise(Eq(), rhs))); }
TEST(PointwiseTest, WorksForRhsInitializerList) { const vector<int> lhs{2, 4, 6}; EXPECT_THAT(lhs, Pointwise(Gt(), {1, 2, 3})); EXPECT_THAT(lhs, Not(Pointwise(Lt(), {3, 3, 7}))); }
TEST(PointwiseTest, RejectsWrongSize) { const double lhs[2] = {1, 2}; const int rhs[1] = {0}; EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs))); EXPECT_EQ("which contains 2 values", Explain(Pointwise(Gt(), rhs), lhs));
const int rhs2[3] = {0, 1, 2}; EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs2))); }
TEST(PointwiseTest, RejectsWrongContent) { const double lhs[3] = {1, 2, 3}; const int rhs[3] = {2, 6, 4}; EXPECT_THAT(lhs, Not(Pointwise(IsHalfOf(), rhs))); EXPECT_EQ("where the value pair (2, 6) at index #1 don't match, " "where the second/2 is 3", Explain(Pointwise(IsHalfOf(), rhs), lhs)); }
TEST(PointwiseTest, AcceptsCorrectContent) { const double lhs[3] = {1, 2, 3}; const int rhs[3] = {2, 4, 6}; EXPECT_THAT(lhs, Pointwise(IsHalfOf(), rhs)); EXPECT_EQ("", Explain(Pointwise(IsHalfOf(), rhs), lhs)); }
TEST(PointwiseTest, AllowsMonomorphicInnerMatcher) { const double lhs[3] = {1, 2, 3}; const int rhs[3] = {2, 4, 6}; const Matcher<std::tuple<const double&, const int&>> m1 = IsHalfOf(); EXPECT_THAT(lhs, Pointwise(m1, rhs)); EXPECT_EQ("", Explain(Pointwise(m1, rhs), lhs));
// This type works as a std::tuple<const double&, const int&> can be
// implicitly cast to std::tuple<double, int>.
const Matcher<std::tuple<double, int>> m2 = IsHalfOf(); EXPECT_THAT(lhs, Pointwise(m2, rhs)); EXPECT_EQ("", Explain(Pointwise(m2, rhs), lhs)); }
MATCHER(PointeeEquals, "Points to an equal value") { return ExplainMatchResult(::testing::Pointee(::testing::get<1>(arg)), ::testing::get<0>(arg), result_listener); }
TEST(PointwiseTest, WorksWithMoveOnly) { ContainerHelper helper; EXPECT_CALL(helper, Call(Pointwise(PointeeEquals(), std::vector<int>{1, 2}))); helper.Call(MakeUniquePtrs({1, 2})); }
TEST(UnorderedPointwiseTest, DescribesSelf) { vector<int> rhs; rhs.push_back(1); rhs.push_back(2); rhs.push_back(3); const Matcher<const vector<int>&> m = UnorderedPointwise(IsHalfOf(), rhs); EXPECT_EQ( "has 3 elements and there exists some permutation of elements such " "that:\n" " - element #0 and 1 are a pair where the first is half of the second, " "and\n" " - element #1 and 2 are a pair where the first is half of the second, " "and\n" " - element #2 and 3 are a pair where the first is half of the second", Describe(m)); EXPECT_EQ( "doesn't have 3 elements, or there exists no permutation of elements " "such that:\n" " - element #0 and 1 are a pair where the first is half of the second, " "and\n" " - element #1 and 2 are a pair where the first is half of the second, " "and\n" " - element #2 and 3 are a pair where the first is half of the second", DescribeNegation(m)); }
TEST(UnorderedPointwiseTest, MakesCopyOfRhs) { list<signed char> rhs; rhs.push_back(2); rhs.push_back(4);
int lhs[] = {2, 1}; const Matcher<const int (&)[2]> m = UnorderedPointwise(IsHalfOf(), rhs); EXPECT_THAT(lhs, m);
// Changing rhs now shouldn't affect m, which made a copy of rhs.
rhs.push_back(6); EXPECT_THAT(lhs, m); }
TEST(UnorderedPointwiseTest, WorksForLhsNativeArray) { const int lhs[] = {1, 2, 3}; vector<int> rhs; rhs.push_back(4); rhs.push_back(6); rhs.push_back(2); EXPECT_THAT(lhs, UnorderedPointwise(Lt(), rhs)); EXPECT_THAT(lhs, Not(UnorderedPointwise(Gt(), rhs))); }
TEST(UnorderedPointwiseTest, WorksForRhsNativeArray) { const int rhs[] = {1, 2, 3}; vector<int> lhs; lhs.push_back(4); lhs.push_back(2); lhs.push_back(6); EXPECT_THAT(lhs, UnorderedPointwise(Gt(), rhs)); EXPECT_THAT(lhs, Not(UnorderedPointwise(Lt(), rhs))); }
TEST(UnorderedPointwiseTest, WorksForRhsInitializerList) { const vector<int> lhs{2, 4, 6}; EXPECT_THAT(lhs, UnorderedPointwise(Gt(), {5, 1, 3})); EXPECT_THAT(lhs, Not(UnorderedPointwise(Lt(), {1, 1, 7}))); }
TEST(UnorderedPointwiseTest, RejectsWrongSize) { const double lhs[2] = {1, 2}; const int rhs[1] = {0}; EXPECT_THAT(lhs, Not(UnorderedPointwise(Gt(), rhs))); EXPECT_EQ("which has 2 elements", Explain(UnorderedPointwise(Gt(), rhs), lhs));
const int rhs2[3] = {0, 1, 2}; EXPECT_THAT(lhs, Not(UnorderedPointwise(Gt(), rhs2))); }
TEST(UnorderedPointwiseTest, RejectsWrongContent) { const double lhs[3] = {1, 2, 3}; const int rhs[3] = {2, 6, 6}; EXPECT_THAT(lhs, Not(UnorderedPointwise(IsHalfOf(), rhs))); EXPECT_EQ("where the following elements don't match any matchers:\n" "element #1: 2", Explain(UnorderedPointwise(IsHalfOf(), rhs), lhs)); }
TEST(UnorderedPointwiseTest, AcceptsCorrectContentInSameOrder) { const double lhs[3] = {1, 2, 3}; const int rhs[3] = {2, 4, 6}; EXPECT_THAT(lhs, UnorderedPointwise(IsHalfOf(), rhs)); }
TEST(UnorderedPointwiseTest, AcceptsCorrectContentInDifferentOrder) { const double lhs[3] = {1, 2, 3}; const int rhs[3] = {6, 4, 2}; EXPECT_THAT(lhs, UnorderedPointwise(IsHalfOf(), rhs)); }
TEST(UnorderedPointwiseTest, AllowsMonomorphicInnerMatcher) { const double lhs[3] = {1, 2, 3}; const int rhs[3] = {4, 6, 2}; const Matcher<std::tuple<const double&, const int&>> m1 = IsHalfOf(); EXPECT_THAT(lhs, UnorderedPointwise(m1, rhs));
// This type works as a std::tuple<const double&, const int&> can be
// implicitly cast to std::tuple<double, int>.
const Matcher<std::tuple<double, int>> m2 = IsHalfOf(); EXPECT_THAT(lhs, UnorderedPointwise(m2, rhs)); }
TEST(UnorderedPointwiseTest, WorksWithMoveOnly) { ContainerHelper helper; EXPECT_CALL(helper, Call(UnorderedPointwise(PointeeEquals(), std::vector<int>{1, 2}))); helper.Call(MakeUniquePtrs({2, 1})); }
// Sample optional type implementation with minimal requirements for use with
// Optional matcher.
template <typename T> class SampleOptional { public: using value_type = T; explicit SampleOptional(T value) : value_(std::move(value)), has_value_(true) {} SampleOptional() : value_(), has_value_(false) {} operator bool() const { return has_value_; } const T& operator*() const { return value_; }
private: T value_; bool has_value_; };
TEST(OptionalTest, DescribesSelf) { const Matcher<SampleOptional<int>> m = Optional(Eq(1)); EXPECT_EQ("value is equal to 1", Describe(m)); }
TEST(OptionalTest, ExplainsSelf) { const Matcher<SampleOptional<int>> m = Optional(Eq(1)); EXPECT_EQ("whose value 1 matches", Explain(m, SampleOptional<int>(1))); EXPECT_EQ("whose value 2 doesn't match", Explain(m, SampleOptional<int>(2))); }
TEST(OptionalTest, MatchesNonEmptyOptional) { const Matcher<SampleOptional<int>> m1 = Optional(1); const Matcher<SampleOptional<int>> m2 = Optional(Eq(2)); const Matcher<SampleOptional<int>> m3 = Optional(Lt(3)); SampleOptional<int> opt(1); EXPECT_TRUE(m1.Matches(opt)); EXPECT_FALSE(m2.Matches(opt)); EXPECT_TRUE(m3.Matches(opt)); }
TEST(OptionalTest, DoesNotMatchNullopt) { const Matcher<SampleOptional<int>> m = Optional(1); SampleOptional<int> empty; EXPECT_FALSE(m.Matches(empty)); }
TEST(OptionalTest, WorksWithMoveOnly) { Matcher<SampleOptional<std::unique_ptr<int>>> m = Optional(Eq(nullptr)); EXPECT_TRUE(m.Matches(SampleOptional<std::unique_ptr<int>>(nullptr))); }
class SampleVariantIntString { public: SampleVariantIntString(int i) : i_(i), has_int_(true) {} SampleVariantIntString(const std::string& s) : s_(s), has_int_(false) {}
template <typename T> friend bool holds_alternative(const SampleVariantIntString& value) { return value.has_int_ == std::is_same<T, int>::value; }
template <typename T> friend const T& get(const SampleVariantIntString& value) { return value.get_impl(static_cast<T*>(nullptr)); }
private: const int& get_impl(int*) const { return i_; } const std::string& get_impl(std::string*) const { return s_; }
int i_; std::string s_; bool has_int_; };
TEST(VariantTest, DescribesSelf) { const Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1)); EXPECT_THAT(Describe(m), ContainsRegex("is a variant<> with value of type " "'.*' and the value is equal to 1")); }
TEST(VariantTest, ExplainsSelf) { const Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1)); EXPECT_THAT(Explain(m, SampleVariantIntString(1)), ContainsRegex("whose value 1")); EXPECT_THAT(Explain(m, SampleVariantIntString("A")), HasSubstr("whose value is not of type '")); EXPECT_THAT(Explain(m, SampleVariantIntString(2)), "whose value 2 doesn't match"); }
TEST(VariantTest, FullMatch) { Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1)); EXPECT_TRUE(m.Matches(SampleVariantIntString(1)));
m = VariantWith<std::string>(Eq("1")); EXPECT_TRUE(m.Matches(SampleVariantIntString("1"))); }
TEST(VariantTest, TypeDoesNotMatch) { Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1)); EXPECT_FALSE(m.Matches(SampleVariantIntString("1")));
m = VariantWith<std::string>(Eq("1")); EXPECT_FALSE(m.Matches(SampleVariantIntString(1))); }
TEST(VariantTest, InnerDoesNotMatch) { Matcher<SampleVariantIntString> m = VariantWith<int>(Eq(1)); EXPECT_FALSE(m.Matches(SampleVariantIntString(2)));
m = VariantWith<std::string>(Eq("1")); EXPECT_FALSE(m.Matches(SampleVariantIntString("2"))); }
class SampleAnyType { public: explicit SampleAnyType(int i) : index_(0), i_(i) {} explicit SampleAnyType(const std::string& s) : index_(1), s_(s) {}
template <typename T> friend const T* any_cast(const SampleAnyType* any) { return any->get_impl(static_cast<T*>(nullptr)); }
private: int index_; int i_; std::string s_;
const int* get_impl(int*) const { return index_ == 0 ? &i_ : nullptr; } const std::string* get_impl(std::string*) const { return index_ == 1 ? &s_ : nullptr; } };
TEST(AnyWithTest, FullMatch) { Matcher<SampleAnyType> m = AnyWith<int>(Eq(1)); EXPECT_TRUE(m.Matches(SampleAnyType(1))); }
TEST(AnyWithTest, TestBadCastType) { Matcher<SampleAnyType> m = AnyWith<std::string>(Eq("fail")); EXPECT_FALSE(m.Matches(SampleAnyType(1))); }
TEST(AnyWithTest, TestUseInContainers) { std::vector<SampleAnyType> a; a.emplace_back(1); a.emplace_back(2); a.emplace_back(3); EXPECT_THAT( a, ElementsAreArray({AnyWith<int>(1), AnyWith<int>(2), AnyWith<int>(3)}));
std::vector<SampleAnyType> b; b.emplace_back("hello"); b.emplace_back("merhaba"); b.emplace_back("salut"); EXPECT_THAT(b, ElementsAreArray({AnyWith<std::string>("hello"), AnyWith<std::string>("merhaba"), AnyWith<std::string>("salut")})); } TEST(AnyWithTest, TestCompare) { EXPECT_THAT(SampleAnyType(1), AnyWith<int>(Gt(0))); }
TEST(AnyWithTest, DescribesSelf) { const Matcher<const SampleAnyType&> m = AnyWith<int>(Eq(1)); EXPECT_THAT(Describe(m), ContainsRegex("is an 'any' type with value of type " "'.*' and the value is equal to 1")); }
TEST(AnyWithTest, ExplainsSelf) { const Matcher<const SampleAnyType&> m = AnyWith<int>(Eq(1));
EXPECT_THAT(Explain(m, SampleAnyType(1)), ContainsRegex("whose value 1")); EXPECT_THAT(Explain(m, SampleAnyType("A")), HasSubstr("whose value is not of type '")); EXPECT_THAT(Explain(m, SampleAnyType(2)), "whose value 2 doesn't match"); }
TEST(PointeeTest, WorksOnMoveOnlyType) { std::unique_ptr<int> p(new int(3)); EXPECT_THAT(p, Pointee(Eq(3))); EXPECT_THAT(p, Not(Pointee(Eq(2)))); }
TEST(NotTest, WorksOnMoveOnlyType) { std::unique_ptr<int> p(new int(3)); EXPECT_THAT(p, Pointee(Eq(3))); EXPECT_THAT(p, Not(Pointee(Eq(2)))); }
// Tests Args<k0, ..., kn>(m).
TEST(ArgsTest, AcceptsZeroTemplateArg) { const std::tuple<int, bool> t(5, true); EXPECT_THAT(t, Args<>(Eq(std::tuple<>()))); EXPECT_THAT(t, Not(Args<>(Ne(std::tuple<>())))); }
TEST(ArgsTest, AcceptsOneTemplateArg) { const std::tuple<int, bool> t(5, true); EXPECT_THAT(t, Args<0>(Eq(std::make_tuple(5)))); EXPECT_THAT(t, Args<1>(Eq(std::make_tuple(true)))); EXPECT_THAT(t, Not(Args<1>(Eq(std::make_tuple(false))))); }
TEST(ArgsTest, AcceptsTwoTemplateArgs) { const std::tuple<short, int, long> t(4, 5, 6L); // NOLINT
EXPECT_THAT(t, (Args<0, 1>(Lt()))); EXPECT_THAT(t, (Args<1, 2>(Lt()))); EXPECT_THAT(t, Not(Args<0, 2>(Gt()))); }
TEST(ArgsTest, AcceptsRepeatedTemplateArgs) { const std::tuple<short, int, long> t(4, 5, 6L); // NOLINT
EXPECT_THAT(t, (Args<0, 0>(Eq()))); EXPECT_THAT(t, Not(Args<1, 1>(Ne()))); }
TEST(ArgsTest, AcceptsDecreasingTemplateArgs) { const std::tuple<short, int, long> t(4, 5, 6L); // NOLINT
EXPECT_THAT(t, (Args<2, 0>(Gt()))); EXPECT_THAT(t, Not(Args<2, 1>(Lt()))); }
MATCHER(SumIsZero, "") { return std::get<0>(arg) + std::get<1>(arg) + std::get<2>(arg) == 0; }
TEST(ArgsTest, AcceptsMoreTemplateArgsThanArityOfOriginalTuple) { EXPECT_THAT(std::make_tuple(-1, 2), (Args<0, 0, 1>(SumIsZero()))); EXPECT_THAT(std::make_tuple(1, 2), Not(Args<0, 0, 1>(SumIsZero()))); }
TEST(ArgsTest, CanBeNested) { const std::tuple<short, int, long, int> t(4, 5, 6L, 6); // NOLINT
EXPECT_THAT(t, (Args<1, 2, 3>(Args<1, 2>(Eq())))); EXPECT_THAT(t, (Args<0, 1, 3>(Args<0, 2>(Lt())))); }
TEST(ArgsTest, CanMatchTupleByValue) { typedef std::tuple<char, int, int> Tuple3; const Matcher<Tuple3> m = Args<1, 2>(Lt()); EXPECT_TRUE(m.Matches(Tuple3('a', 1, 2))); EXPECT_FALSE(m.Matches(Tuple3('b', 2, 2))); }
TEST(ArgsTest, CanMatchTupleByReference) { typedef std::tuple<char, char, int> Tuple3; const Matcher<const Tuple3&> m = Args<0, 1>(Lt()); EXPECT_TRUE(m.Matches(Tuple3('a', 'b', 2))); EXPECT_FALSE(m.Matches(Tuple3('b', 'b', 2))); }
// Validates that arg is printed as str.
MATCHER_P(PrintsAs, str, "") { return testing::PrintToString(arg) == str; }
TEST(ArgsTest, AcceptsTenTemplateArgs) { EXPECT_THAT(std::make_tuple(0, 1L, 2, 3L, 4, 5, 6, 7, 8, 9), (Args<9, 8, 7, 6, 5, 4, 3, 2, 1, 0>( PrintsAs("(9, 8, 7, 6, 5, 4, 3, 2, 1, 0)")))); EXPECT_THAT(std::make_tuple(0, 1L, 2, 3L, 4, 5, 6, 7, 8, 9), Not(Args<9, 8, 7, 6, 5, 4, 3, 2, 1, 0>( PrintsAs("(0, 8, 7, 6, 5, 4, 3, 2, 1, 0)")))); }
TEST(ArgsTest, DescirbesSelfCorrectly) { const Matcher<std::tuple<int, bool, char> > m = Args<2, 0>(Lt()); EXPECT_EQ("are a tuple whose fields (#2, #0) are a pair where " "the first < the second", Describe(m)); }
TEST(ArgsTest, DescirbesNestedArgsCorrectly) { const Matcher<const std::tuple<int, bool, char, int>&> m = Args<0, 2, 3>(Args<2, 0>(Lt())); EXPECT_EQ("are a tuple whose fields (#0, #2, #3) are a tuple " "whose fields (#2, #0) are a pair where the first < the second", Describe(m)); }
TEST(ArgsTest, DescribesNegationCorrectly) { const Matcher<std::tuple<int, char> > m = Args<1, 0>(Gt()); EXPECT_EQ("are a tuple whose fields (#1, #0) aren't a pair " "where the first > the second", DescribeNegation(m)); }
TEST(ArgsTest, ExplainsMatchResultWithoutInnerExplanation) { const Matcher<std::tuple<bool, int, int> > m = Args<1, 2>(Eq()); EXPECT_EQ("whose fields (#1, #2) are (42, 42)", Explain(m, std::make_tuple(false, 42, 42))); EXPECT_EQ("whose fields (#1, #2) are (42, 43)", Explain(m, std::make_tuple(false, 42, 43))); }
// For testing Args<>'s explanation.
class LessThanMatcher : public MatcherInterface<std::tuple<char, int> > { public: void DescribeTo(::std::ostream* /*os*/) const override {}
bool MatchAndExplain(std::tuple<char, int> value, MatchResultListener* listener) const override { const int diff = std::get<0>(value) - std::get<1>(value); if (diff > 0) { *listener << "where the first value is " << diff << " more than the second"; } return diff < 0; } };
Matcher<std::tuple<char, int> > LessThan() { return MakeMatcher(new LessThanMatcher); }
TEST(ArgsTest, ExplainsMatchResultWithInnerExplanation) { const Matcher<std::tuple<char, int, int> > m = Args<0, 2>(LessThan()); EXPECT_EQ( "whose fields (#0, #2) are ('a' (97, 0x61), 42), " "where the first value is 55 more than the second", Explain(m, std::make_tuple('a', 42, 42))); EXPECT_EQ("whose fields (#0, #2) are ('\\0', 43)", Explain(m, std::make_tuple('\0', 42, 43))); }
class PredicateFormatterFromMatcherTest : public ::testing::Test { protected: enum Behavior { kInitialSuccess, kAlwaysFail, kFlaky };
// A matcher that can return different results when used multiple times on the
// same input. No real matcher should do this; but this lets us test that we
// detect such behavior and fail appropriately.
class MockMatcher : public MatcherInterface<Behavior> { public: bool MatchAndExplain(Behavior behavior, MatchResultListener* listener) const override { *listener << "[MatchAndExplain]"; switch (behavior) { case kInitialSuccess: // The first call to MatchAndExplain should use a "not interested"
// listener; so this is expected to return |true|. There should be no
// subsequent calls.
return !listener->IsInterested();
case kAlwaysFail: return false;
case kFlaky: // The first call to MatchAndExplain should use a "not interested"
// listener; so this will return |false|. Subsequent calls should have
// an "interested" listener; so this will return |true|, thus
// simulating a flaky matcher.
return listener->IsInterested(); }
GTEST_LOG_(FATAL) << "This should never be reached"; return false; }
void DescribeTo(ostream* os) const override { *os << "[DescribeTo]"; }
void DescribeNegationTo(ostream* os) const override { *os << "[DescribeNegationTo]"; } };
AssertionResult RunPredicateFormatter(Behavior behavior) { auto matcher = MakeMatcher(new MockMatcher); PredicateFormatterFromMatcher<Matcher<Behavior>> predicate_formatter( matcher); return predicate_formatter("dummy-name", behavior); } };
TEST_F(PredicateFormatterFromMatcherTest, ShortCircuitOnSuccess) { AssertionResult result = RunPredicateFormatter(kInitialSuccess); EXPECT_TRUE(result); // Implicit cast to bool.
std::string expect; EXPECT_EQ(expect, result.message()); }
TEST_F(PredicateFormatterFromMatcherTest, NoShortCircuitOnFailure) { AssertionResult result = RunPredicateFormatter(kAlwaysFail); EXPECT_FALSE(result); // Implicit cast to bool.
std::string expect = "Value of: dummy-name\nExpected: [DescribeTo]\n" " Actual: 1, [MatchAndExplain]"; EXPECT_EQ(expect, result.message()); }
TEST_F(PredicateFormatterFromMatcherTest, DetectsFlakyShortCircuit) { AssertionResult result = RunPredicateFormatter(kFlaky); EXPECT_FALSE(result); // Implicit cast to bool.
std::string expect = "Value of: dummy-name\nExpected: [DescribeTo]\n" " The matcher failed on the initial attempt; but passed when rerun to " "generate the explanation.\n" " Actual: 2, [MatchAndExplain]"; EXPECT_EQ(expect, result.message()); }
} // namespace
} // namespace gmock_matchers_test
} // namespace testing
#ifdef _MSC_VER
# pragma warning(pop)
#endif
|