|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <StormEigen/Geometry>
#include <StormEigen/LU>
#include <StormEigen/SVD>
template<typename Scalar> void verify_euler(const Matrix<Scalar,3,1>& ea, int i, int j, int k) { typedef Matrix<Scalar,3,3> Matrix3; typedef Matrix<Scalar,3,1> Vector3; typedef AngleAxis<Scalar> AngleAxisx; using std::abs; Matrix3 m(AngleAxisx(ea[0], Vector3::Unit(i)) * AngleAxisx(ea[1], Vector3::Unit(j)) * AngleAxisx(ea[2], Vector3::Unit(k))); Vector3 eabis = m.eulerAngles(i, j, k); Matrix3 mbis(AngleAxisx(eabis[0], Vector3::Unit(i)) * AngleAxisx(eabis[1], Vector3::Unit(j)) * AngleAxisx(eabis[2], Vector3::Unit(k))); VERIFY_IS_APPROX(m, mbis); /* If I==K, and ea[1]==0, then there no unique solution. */ /* The remark apply in the case where I!=K, and |ea[1]| is close to pi/2. */ if( (i!=k || ea[1]!=0) && (i==k || !internal::isApprox(abs(ea[1]),Scalar(STORMEIGEN_PI/2),test_precision<Scalar>())) ) VERIFY((ea-eabis).norm() <= test_precision<Scalar>()); // approx_or_less_than does not work for 0
VERIFY(0 < eabis[0] || test_isMuchSmallerThan(eabis[0], Scalar(1))); VERIFY_IS_APPROX_OR_LESS_THAN(eabis[0], Scalar(STORMEIGEN_PI)); VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(STORMEIGEN_PI), eabis[1]); VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(STORMEIGEN_PI)); VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(STORMEIGEN_PI), eabis[2]); VERIFY_IS_APPROX_OR_LESS_THAN(eabis[2], Scalar(STORMEIGEN_PI)); }
template<typename Scalar> void check_all_var(const Matrix<Scalar,3,1>& ea) { verify_euler(ea, 0,1,2); verify_euler(ea, 0,1,0); verify_euler(ea, 0,2,1); verify_euler(ea, 0,2,0);
verify_euler(ea, 1,2,0); verify_euler(ea, 1,2,1); verify_euler(ea, 1,0,2); verify_euler(ea, 1,0,1);
verify_euler(ea, 2,0,1); verify_euler(ea, 2,0,2); verify_euler(ea, 2,1,0); verify_euler(ea, 2,1,2); }
template<typename Scalar> void eulerangles() { typedef Matrix<Scalar,3,3> Matrix3; typedef Matrix<Scalar,3,1> Vector3; typedef Array<Scalar,3,1> Array3; typedef Quaternion<Scalar> Quaternionx; typedef AngleAxis<Scalar> AngleAxisx;
Scalar a = internal::random<Scalar>(-Scalar(STORMEIGEN_PI), Scalar(STORMEIGEN_PI)); Quaternionx q1; q1 = AngleAxisx(a, Vector3::Random().normalized()); Matrix3 m; m = q1; Vector3 ea = m.eulerAngles(0,1,2); check_all_var(ea); ea = m.eulerAngles(0,1,0); check_all_var(ea); // Check with purely random Quaternion:
q1.coeffs() = Quaternionx::Coefficients::Random().normalized(); m = q1; ea = m.eulerAngles(0,1,2); check_all_var(ea); ea = m.eulerAngles(0,1,0); check_all_var(ea); // Check with random angles in range [0:pi]x[-pi:pi]x[-pi:pi].
ea = (Array3::Random() + Array3(1,0,0))*Scalar(STORMEIGEN_PI)*Array3(0.5,1,1); check_all_var(ea); ea[2] = ea[0] = internal::random<Scalar>(0,Scalar(STORMEIGEN_PI)); check_all_var(ea); ea[0] = ea[1] = internal::random<Scalar>(0,Scalar(STORMEIGEN_PI)); check_all_var(ea); ea[1] = 0; check_all_var(ea); ea.head(2).setZero(); check_all_var(ea); ea.setZero(); check_all_var(ea); }
void test_geo_eulerangles() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( eulerangles<float>() ); CALL_SUBTEST_2( eulerangles<double>() ); } }
|