|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <StormEigen/Geometry>
#include <StormEigen/LU>
#include <StormEigen/QR>
#include<iostream>
using namespace std;
template<typename T> STORMEIGEN_DONT_INLINE void kill_extra_precision(T& x) { eigen_assert((void*)(&x) != (void*)0); }
template<typename BoxType> void alignedbox(const BoxType& _box) { /* this test covers the following files:
AlignedBox.h */ typedef typename BoxType::Index Index; typedef typename BoxType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;
const Index dim = _box.dim();
VectorType p0 = VectorType::Random(dim); VectorType p1 = VectorType::Random(dim); while( p1 == p0 ){ p1 = VectorType::Random(dim); } RealScalar s1 = internal::random<RealScalar>(0,1);
BoxType b0(dim); BoxType b1(VectorType::Random(dim),VectorType::Random(dim)); BoxType b2; kill_extra_precision(b1); kill_extra_precision(p0); kill_extra_precision(p1);
b0.extend(p0); b0.extend(p1); VERIFY(b0.contains(p0*s1+(Scalar(1)-s1)*p1));
(b2 = b0).extend(b1); VERIFY(b2.contains(b0)); VERIFY(b2.contains(b1)); VERIFY_IS_APPROX(b2.clamp(b0), b0);
// intersection
BoxType box1(VectorType::Random(dim)); box1.extend(VectorType::Random(dim)); BoxType box2(VectorType::Random(dim)); box2.extend(VectorType::Random(dim));
VERIFY(box1.intersects(box2) == !box1.intersection(box2).isEmpty());
// alignment -- make sure there is no memory alignment assertion
BoxType *bp0 = new BoxType(dim); BoxType *bp1 = new BoxType(dim); bp0->extend(*bp1); delete bp0; delete bp1;
// sampling
for( int i=0; i<10; ++i ) { VectorType r = b0.sample(); VERIFY(b0.contains(r)); }
}
template<typename BoxType> void alignedboxCastTests(const BoxType& _box) { // casting
typedef typename BoxType::Index Index; typedef typename BoxType::Scalar Scalar; typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;
const Index dim = _box.dim();
VectorType p0 = VectorType::Random(dim); VectorType p1 = VectorType::Random(dim);
BoxType b0(dim);
b0.extend(p0); b0.extend(p1);
const int Dim = BoxType::AmbientDimAtCompileTime; typedef typename GetDifferentType<Scalar>::type OtherScalar; AlignedBox<OtherScalar,Dim> hp1f = b0.template cast<OtherScalar>(); VERIFY_IS_APPROX(hp1f.template cast<Scalar>(),b0); AlignedBox<Scalar,Dim> hp1d = b0.template cast<Scalar>(); VERIFY_IS_APPROX(hp1d.template cast<Scalar>(),b0); }
void specificTest1() { Vector2f m; m << -1.0f, -2.0f; Vector2f M; M << 1.0f, 5.0f;
typedef AlignedBox2f BoxType; BoxType box( m, M );
Vector2f sides = M-m; VERIFY_IS_APPROX(sides, box.sizes() ); VERIFY_IS_APPROX(sides[1], box.sizes()[1] ); VERIFY_IS_APPROX(sides[1], box.sizes().maxCoeff() ); VERIFY_IS_APPROX(sides[0], box.sizes().minCoeff() );
VERIFY_IS_APPROX( 14.0f, box.volume() ); VERIFY_IS_APPROX( 53.0f, box.diagonal().squaredNorm() ); VERIFY_IS_APPROX( std::sqrt( 53.0f ), box.diagonal().norm() );
VERIFY_IS_APPROX( m, box.corner( BoxType::BottomLeft ) ); VERIFY_IS_APPROX( M, box.corner( BoxType::TopRight ) ); Vector2f bottomRight; bottomRight << M[0], m[1]; Vector2f topLeft; topLeft << m[0], M[1]; VERIFY_IS_APPROX( bottomRight, box.corner( BoxType::BottomRight ) ); VERIFY_IS_APPROX( topLeft, box.corner( BoxType::TopLeft ) ); }
void specificTest2() { Vector3i m; m << -1, -2, 0; Vector3i M; M << 1, 5, 3;
typedef AlignedBox3i BoxType; BoxType box( m, M );
Vector3i sides = M-m; VERIFY_IS_APPROX(sides, box.sizes() ); VERIFY_IS_APPROX(sides[1], box.sizes()[1] ); VERIFY_IS_APPROX(sides[1], box.sizes().maxCoeff() ); VERIFY_IS_APPROX(sides[0], box.sizes().minCoeff() );
VERIFY_IS_APPROX( 42, box.volume() ); VERIFY_IS_APPROX( 62, box.diagonal().squaredNorm() );
VERIFY_IS_APPROX( m, box.corner( BoxType::BottomLeftFloor ) ); VERIFY_IS_APPROX( M, box.corner( BoxType::TopRightCeil ) ); Vector3i bottomRightFloor; bottomRightFloor << M[0], m[1], m[2]; Vector3i topLeftFloor; topLeftFloor << m[0], M[1], m[2]; VERIFY_IS_APPROX( bottomRightFloor, box.corner( BoxType::BottomRightFloor ) ); VERIFY_IS_APPROX( topLeftFloor, box.corner( BoxType::TopLeftFloor ) ); }
void test_geo_alignedbox() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( alignedbox(AlignedBox2f()) ); CALL_SUBTEST_2( alignedboxCastTests(AlignedBox2f()) );
CALL_SUBTEST_3( alignedbox(AlignedBox3f()) ); CALL_SUBTEST_4( alignedboxCastTests(AlignedBox3f()) );
CALL_SUBTEST_5( alignedbox(AlignedBox4d()) ); CALL_SUBTEST_6( alignedboxCastTests(AlignedBox4d()) );
CALL_SUBTEST_7( alignedbox(AlignedBox1d()) ); CALL_SUBTEST_8( alignedboxCastTests(AlignedBox1d()) );
CALL_SUBTEST_9( alignedbox(AlignedBox1i()) ); CALL_SUBTEST_10( alignedbox(AlignedBox2i()) ); CALL_SUBTEST_11( alignedbox(AlignedBox3i()) );
CALL_SUBTEST_14( alignedbox(AlignedBox<double,Dynamic>(4)) ); } CALL_SUBTEST_12( specificTest1() ); CALL_SUBTEST_13( specificTest2() ); }
|