|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
template<typename ArrayType> void array(const ArrayType& m) { typedef typename ArrayType::Index Index; typedef typename ArrayType::Scalar Scalar; typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType; typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType;
Index rows = m.rows(); Index cols = m.cols();
ArrayType m1 = ArrayType::Random(rows, cols), m2 = ArrayType::Random(rows, cols), m3(rows, cols); ArrayType m4 = m1; // copy constructor
VERIFY_IS_APPROX(m1, m4);
ColVectorType cv1 = ColVectorType::Random(rows); RowVectorType rv1 = RowVectorType::Random(cols);
Scalar s1 = internal::random<Scalar>(), s2 = internal::random<Scalar>();
// scalar addition
VERIFY_IS_APPROX(m1 + s1, s1 + m1); VERIFY_IS_APPROX(m1 + s1, ArrayType::Constant(rows,cols,s1) + m1); VERIFY_IS_APPROX(s1 - m1, (-m1)+s1 ); VERIFY_IS_APPROX(m1 - s1, m1 - ArrayType::Constant(rows,cols,s1)); VERIFY_IS_APPROX(s1 - m1, ArrayType::Constant(rows,cols,s1) - m1); VERIFY_IS_APPROX((m1*Scalar(2)) - s2, (m1+m1) - ArrayType::Constant(rows,cols,s2) ); m3 = m1; m3 += s2; VERIFY_IS_APPROX(m3, m1 + s2); m3 = m1; m3 -= s1; VERIFY_IS_APPROX(m3, m1 - s1); // scalar operators via Maps
m3 = m1; ArrayType::Map(m1.data(), m1.rows(), m1.cols()) -= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m1, m3 - m2); m3 = m1; ArrayType::Map(m1.data(), m1.rows(), m1.cols()) += ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m1, m3 + m2); m3 = m1; ArrayType::Map(m1.data(), m1.rows(), m1.cols()) *= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m1, m3 * m2); m3 = m1; m2 = ArrayType::Random(rows,cols); m2 = (m2==0).select(1,m2); ArrayType::Map(m1.data(), m1.rows(), m1.cols()) /= ArrayType::Map(m2.data(), m2.rows(), m2.cols()); VERIFY_IS_APPROX(m1, m3 / m2);
// reductions
VERIFY_IS_APPROX(m1.abs().colwise().sum().sum(), m1.abs().sum()); VERIFY_IS_APPROX(m1.abs().rowwise().sum().sum(), m1.abs().sum()); using std::abs; VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.colwise().sum().sum() - m1.sum()), m1.abs().sum()); VERIFY_IS_MUCH_SMALLER_THAN(abs(m1.rowwise().sum().sum() - m1.sum()), m1.abs().sum()); if (!internal::isMuchSmallerThan(abs(m1.sum() - (m1+m2).sum()), m1.abs().sum(), test_precision<Scalar>())) VERIFY_IS_NOT_APPROX(((m1+m2).rowwise().sum()).sum(), m1.sum()); VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar>()));
// vector-wise ops
m3 = m1; VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1); m3 = m1; VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1); m3 = m1; VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1); m3 = m1; VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1); // Conversion from scalar
VERIFY_IS_APPROX((m3 = s1), ArrayType::Constant(rows,cols,s1)); VERIFY_IS_APPROX((m3 = 1), ArrayType::Constant(rows,cols,1)); VERIFY_IS_APPROX((m3.topLeftCorner(rows,cols) = 1), ArrayType::Constant(rows,cols,1)); typedef Array<Scalar, ArrayType::RowsAtCompileTime==Dynamic?2:ArrayType::RowsAtCompileTime, ArrayType::ColsAtCompileTime==Dynamic?2:ArrayType::ColsAtCompileTime, ArrayType::Options> FixedArrayType; FixedArrayType f1(s1); VERIFY_IS_APPROX(f1, FixedArrayType::Constant(s1)); FixedArrayType f2(numext::real(s1)); VERIFY_IS_APPROX(f2, FixedArrayType::Constant(numext::real(s1))); FixedArrayType f3((int)100*numext::real(s1)); VERIFY_IS_APPROX(f3, FixedArrayType::Constant((int)100*numext::real(s1))); f1.setRandom(); FixedArrayType f4(f1.data()); VERIFY_IS_APPROX(f4, f1); // Check possible conflicts with 1D ctor
typedef Array<Scalar, Dynamic, 1> OneDArrayType; OneDArrayType o1(rows); VERIFY(o1.size()==rows); OneDArrayType o4((int)rows); VERIFY(o4.size()==rows); }
template<typename ArrayType> void comparisons(const ArrayType& m) { using std::abs; typedef typename ArrayType::Index Index; typedef typename ArrayType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar;
Index rows = m.rows(); Index cols = m.cols();
Index r = internal::random<Index>(0, rows-1), c = internal::random<Index>(0, cols-1);
ArrayType m1 = ArrayType::Random(rows, cols), m2 = ArrayType::Random(rows, cols), m3(rows, cols), m4 = m1; m4 = (m4.abs()==Scalar(0)).select(1,m4);
VERIFY(((m1 + Scalar(1)) > m1).all()); VERIFY(((m1 - Scalar(1)) < m1).all()); if (rows*cols>1) { m3 = m1; m3(r,c) += 1; VERIFY(! (m1 < m3).all() ); VERIFY(! (m1 > m3).all() ); } VERIFY(!(m1 > m2 && m1 < m2).any()); VERIFY((m1 <= m2 || m1 >= m2).all());
// comparisons array to scalar
VERIFY( (m1 != (m1(r,c)+1) ).any() ); VERIFY( (m1 > (m1(r,c)-1) ).any() ); VERIFY( (m1 < (m1(r,c)+1) ).any() ); VERIFY( (m1 == m1(r,c) ).any() );
// comparisons scalar to array
VERIFY( ( (m1(r,c)+1) != m1).any() ); VERIFY( ( (m1(r,c)-1) < m1).any() ); VERIFY( ( (m1(r,c)+1) > m1).any() ); VERIFY( ( m1(r,c) == m1).any() );
// test Select
VERIFY_IS_APPROX( (m1<m2).select(m1,m2), m1.cwiseMin(m2) ); VERIFY_IS_APPROX( (m1>m2).select(m1,m2), m1.cwiseMax(m2) ); Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2); for (int j=0; j<cols; ++j) for (int i=0; i<rows; ++i) m3(i,j) = abs(m1(i,j))<mid ? 0 : m1(i,j); VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid)) .select(ArrayType::Zero(rows,cols),m1), m3); // shorter versions:
VERIFY_IS_APPROX( (m1.abs()<ArrayType::Constant(rows,cols,mid)) .select(0,m1), m3); VERIFY_IS_APPROX( (m1.abs()>=ArrayType::Constant(rows,cols,mid)) .select(m1,0), m3); // even shorter version:
VERIFY_IS_APPROX( (m1.abs()<mid).select(0,m1), m3);
// count
VERIFY(((m1.abs()+1)>RealScalar(0.1)).count() == rows*cols);
// and/or
VERIFY( (m1<RealScalar(0) && m1>RealScalar(0)).count() == 0); VERIFY( (m1<RealScalar(0) || m1>=RealScalar(0)).count() == rows*cols); RealScalar a = m1.abs().mean(); VERIFY( (m1<-a || m1>a).count() == (m1.abs()>a).count());
typedef Array<typename ArrayType::Index, Dynamic, 1> ArrayOfIndices;
// TODO allows colwise/rowwise for array
VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).colwise().count(), ArrayOfIndices::Constant(cols,rows).transpose()); VERIFY_IS_APPROX(((m1.abs()+1)>RealScalar(0.1)).rowwise().count(), ArrayOfIndices::Constant(rows, cols)); }
template<typename ArrayType> void array_real(const ArrayType& m) { using std::abs; using std::sqrt; typedef typename ArrayType::Index Index; typedef typename ArrayType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar;
Index rows = m.rows(); Index cols = m.cols();
ArrayType m1 = ArrayType::Random(rows, cols), m2 = ArrayType::Random(rows, cols), m3(rows, cols), m4 = m1;
m4 = (m4.abs()==Scalar(0)).select(1,m4);
Scalar s1 = internal::random<Scalar>();
// these tests are mostly to check possible compilation issues with free-functions.
VERIFY_IS_APPROX(m1.sin(), sin(m1)); VERIFY_IS_APPROX(m1.cos(), cos(m1)); VERIFY_IS_APPROX(m1.tan(), tan(m1)); VERIFY_IS_APPROX(m1.asin(), asin(m1)); VERIFY_IS_APPROX(m1.acos(), acos(m1)); VERIFY_IS_APPROX(m1.atan(), atan(m1)); VERIFY_IS_APPROX(m1.sinh(), sinh(m1)); VERIFY_IS_APPROX(m1.cosh(), cosh(m1)); VERIFY_IS_APPROX(m1.tanh(), tanh(m1)); #ifdef STORMEIGEN_HAS_C99_MATH
VERIFY_IS_APPROX(m1.lgamma(), lgamma(m1)); VERIFY_IS_APPROX(m1.erf(), erf(m1)); VERIFY_IS_APPROX(m1.erfc(), erfc(m1)); #endif // STORMEIGEN_HAS_C99_MATH
VERIFY_IS_APPROX(m1.arg(), arg(m1)); VERIFY_IS_APPROX(m1.round(), round(m1)); VERIFY_IS_APPROX(m1.floor(), floor(m1)); VERIFY_IS_APPROX(m1.ceil(), ceil(m1)); VERIFY((m1.isNaN() == (StormEigen::isnan)(m1)).all()); VERIFY((m1.isInf() == (StormEigen::isinf)(m1)).all()); VERIFY((m1.isFinite() == (StormEigen::isfinite)(m1)).all()); VERIFY_IS_APPROX(m1.inverse(), inverse(m1)); VERIFY_IS_APPROX(m1.abs(), abs(m1)); VERIFY_IS_APPROX(m1.abs2(), abs2(m1)); VERIFY_IS_APPROX(m1.square(), square(m1)); VERIFY_IS_APPROX(m1.cube(), cube(m1)); VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval())); VERIFY_IS_APPROX(m1.sign(), sign(m1));
// avoid NaNs with abs() so verification doesn't fail
m3 = m1.abs(); VERIFY_IS_APPROX(m3.sqrt(), sqrt(abs(m1))); VERIFY_IS_APPROX(m3.rsqrt(), Scalar(1)/sqrt(abs(m1))); VERIFY_IS_APPROX(m3.log(), log(m3)); VERIFY_IS_APPROX(m3.log10(), log10(m3));
VERIFY((!(m1>m2) == (m1<=m2)).all());
VERIFY_IS_APPROX(sin(m1.asin()), m1); VERIFY_IS_APPROX(cos(m1.acos()), m1); VERIFY_IS_APPROX(tan(m1.atan()), m1); VERIFY_IS_APPROX(sinh(m1), 0.5*(exp(m1)-exp(-m1))); VERIFY_IS_APPROX(cosh(m1), 0.5*(exp(m1)+exp(-m1))); VERIFY_IS_APPROX(tanh(m1), (0.5*(exp(m1)-exp(-m1)))/(0.5*(exp(m1)+exp(-m1)))); VERIFY_IS_APPROX(arg(m1), ((m1<0).template cast<Scalar>())*std::acos(-1.0)); VERIFY((round(m1) <= ceil(m1) && round(m1) >= floor(m1)).all()); VERIFY((StormEigen::isnan)((m1*0.0)/0.0).all()); VERIFY((StormEigen::isinf)(m4/0.0).all()); VERIFY(((StormEigen::isfinite)(m1) && (!(StormEigen::isfinite)(m1*0.0/0.0)) && (!(Eigen::isfinite)(m4/0.0))).all()); VERIFY_IS_APPROX(inverse(inverse(m1)),m1); VERIFY((abs(m1) == m1 || abs(m1) == -m1).all()); VERIFY_IS_APPROX(m3, sqrt(abs2(m1))); VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() ); VERIFY_IS_APPROX( m1*m1.sign(),m1.abs()); VERIFY_IS_APPROX(m1.sign() * m1.abs(), m1);
VERIFY_IS_APPROX(numext::abs2(numext::real(m1)) + numext::abs2(numext::imag(m1)), numext::abs2(m1)); VERIFY_IS_APPROX(numext::abs2(real(m1)) + numext::abs2(imag(m1)), numext::abs2(m1)); if(!NumTraits<Scalar>::IsComplex) VERIFY_IS_APPROX(numext::real(m1), m1);
// shift argument of logarithm so that it is not zero
Scalar smallNumber = NumTraits<Scalar>::dummy_precision(); VERIFY_IS_APPROX((m3 + smallNumber).log() , log(abs(m1) + smallNumber));
VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2)); VERIFY_IS_APPROX(m1.exp(), exp(m1)); VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp());
VERIFY_IS_APPROX(m1.pow(2), m1.square()); VERIFY_IS_APPROX(pow(m1,2), m1.square()); VERIFY_IS_APPROX(m1.pow(3), m1.cube()); VERIFY_IS_APPROX(pow(m1,3), m1.cube()); VERIFY_IS_APPROX((-m1).pow(3), -m1.cube()); VERIFY_IS_APPROX(pow(2*m1,3), 8*m1.cube());
ArrayType exponents = ArrayType::Constant(rows, cols, RealScalar(2)); VERIFY_IS_APPROX(StormEigen::pow(m1,exponents), m1.square()); VERIFY_IS_APPROX(m1.pow(exponents), m1.square()); VERIFY_IS_APPROX(StormEigen::pow(2*m1,exponents), 4*m1.square()); VERIFY_IS_APPROX((2*m1).pow(exponents), 4*m1.square()); VERIFY_IS_APPROX(StormEigen::pow(m1,2*exponents), m1.square().square()); VERIFY_IS_APPROX(m1.pow(2*exponents), m1.square().square()); VERIFY_IS_APPROX(pow(m1(0,0), exponents), ArrayType::Constant(rows,cols,m1(0,0)*m1(0,0)));
VERIFY_IS_APPROX(m3.pow(RealScalar(0.5)), m3.sqrt()); VERIFY_IS_APPROX(pow(m3,RealScalar(0.5)), m3.sqrt());
VERIFY_IS_APPROX(m3.pow(RealScalar(-0.5)), m3.rsqrt()); VERIFY_IS_APPROX(pow(m3,RealScalar(-0.5)), m3.rsqrt());
VERIFY_IS_APPROX(log10(m3), log(m3)/log(10));
// scalar by array division
const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon()); s1 += Scalar(tiny); m1 += ArrayType::Constant(rows,cols,Scalar(tiny)); VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse()); // check inplace transpose
m3 = m1; m3.transposeInPlace(); VERIFY_IS_APPROX(m3, m1.transpose()); m3.transposeInPlace(); VERIFY_IS_APPROX(m3, m1); }
template<typename ArrayType> void array_complex(const ArrayType& m) { typedef typename ArrayType::Index Index; typedef typename ArrayType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar;
Index rows = m.rows(); Index cols = m.cols();
ArrayType m1 = ArrayType::Random(rows, cols), m2(rows, cols), m4 = m1; m4.real() = (m4.real().abs()==RealScalar(0)).select(RealScalar(1),m4.real()); m4.imag() = (m4.imag().abs()==RealScalar(0)).select(RealScalar(1),m4.imag());
Array<RealScalar, -1, -1> m3(rows, cols);
Scalar s1 = internal::random<Scalar>();
for (Index i = 0; i < m.rows(); ++i) for (Index j = 0; j < m.cols(); ++j) m2(i,j) = sqrt(m1(i,j));
// these tests are mostly to check possible compilation issues with free-functions.
VERIFY_IS_APPROX(m1.sin(), sin(m1)); VERIFY_IS_APPROX(m1.cos(), cos(m1)); VERIFY_IS_APPROX(m1.tan(), tan(m1)); VERIFY_IS_APPROX(m1.sinh(), sinh(m1)); VERIFY_IS_APPROX(m1.cosh(), cosh(m1)); VERIFY_IS_APPROX(m1.tanh(), tanh(m1)); VERIFY_IS_APPROX(m1.arg(), arg(m1)); VERIFY((m1.isNaN() == (StormEigen::isnan)(m1)).all()); VERIFY((m1.isInf() == (StormEigen::isinf)(m1)).all()); VERIFY((m1.isFinite() == (StormEigen::isfinite)(m1)).all()); VERIFY_IS_APPROX(m1.inverse(), inverse(m1)); VERIFY_IS_APPROX(m1.log(), log(m1)); VERIFY_IS_APPROX(m1.log10(), log10(m1)); VERIFY_IS_APPROX(m1.abs(), abs(m1)); VERIFY_IS_APPROX(m1.abs2(), abs2(m1)); VERIFY_IS_APPROX(m1.sqrt(), sqrt(m1)); VERIFY_IS_APPROX(m1.square(), square(m1)); VERIFY_IS_APPROX(m1.cube(), cube(m1)); VERIFY_IS_APPROX(cos(m1+RealScalar(3)*m2), cos((m1+RealScalar(3)*m2).eval())); VERIFY_IS_APPROX(m1.sign(), sign(m1));
VERIFY_IS_APPROX(m1.exp() * m2.exp(), exp(m1+m2)); VERIFY_IS_APPROX(m1.exp(), exp(m1)); VERIFY_IS_APPROX(m1.exp() / m2.exp(),(m1-m2).exp());
VERIFY_IS_APPROX(sinh(m1), 0.5*(exp(m1)-exp(-m1))); VERIFY_IS_APPROX(cosh(m1), 0.5*(exp(m1)+exp(-m1))); VERIFY_IS_APPROX(tanh(m1), (0.5*(exp(m1)-exp(-m1)))/(0.5*(exp(m1)+exp(-m1))));
for (Index i = 0; i < m.rows(); ++i) for (Index j = 0; j < m.cols(); ++j) m3(i,j) = std::atan2(imag(m1(i,j)), real(m1(i,j))); VERIFY_IS_APPROX(arg(m1), m3);
std::complex<RealScalar> zero(0.0,0.0); VERIFY((StormEigen::isnan)(m1*zero/zero).all()); #if STORMEIGEN_COMP_MSVC
// msvc complex division is not robust
VERIFY((StormEigen::isinf)(m4/RealScalar(0)).all()); #else
#if STORMEIGEN_COMP_CLANG
// clang's complex division is notoriously broken too
if((numext::isinf)(m4(0,0)/RealScalar(0))) { #endif
VERIFY((StormEigen::isinf)(m4/zero).all()); #if STORMEIGEN_COMP_CLANG
} else { VERIFY((StormEigen::isinf)(m4.real()/zero.real()).all()); } #endif
#endif // MSVC
VERIFY(((StormEigen::isfinite)(m1) && (!(StormEigen::isfinite)(m1*zero/zero)) && (!(Eigen::isfinite)(m1/zero))).all());
VERIFY_IS_APPROX(inverse(inverse(m1)),m1); VERIFY_IS_APPROX(conj(m1.conjugate()), m1); VERIFY_IS_APPROX(abs(m1), sqrt(square(real(m1))+square(imag(m1)))); VERIFY_IS_APPROX(abs(m1), sqrt(abs2(m1))); VERIFY_IS_APPROX(log10(m1), log(m1)/log(10));
VERIFY_IS_APPROX( m1.sign(), -(-m1).sign() ); VERIFY_IS_APPROX( m1.sign() * m1.abs(), m1);
// scalar by array division
const RealScalar tiny = sqrt(std::numeric_limits<RealScalar>::epsilon()); s1 += Scalar(tiny); m1 += ArrayType::Constant(rows,cols,Scalar(tiny)); VERIFY_IS_APPROX(s1/m1, s1 * m1.inverse());
// check inplace transpose
m2 = m1; m2.transposeInPlace(); VERIFY_IS_APPROX(m2, m1.transpose()); m2.transposeInPlace(); VERIFY_IS_APPROX(m2, m1);
}
template<typename ArrayType> void min_max(const ArrayType& m) { typedef typename ArrayType::Index Index; typedef typename ArrayType::Scalar Scalar;
Index rows = m.rows(); Index cols = m.cols();
ArrayType m1 = ArrayType::Random(rows, cols);
// min/max with array
Scalar maxM1 = m1.maxCoeff(); Scalar minM1 = m1.minCoeff();
VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)(ArrayType::Constant(rows,cols, minM1))); VERIFY_IS_APPROX(m1, (m1.min)(ArrayType::Constant(rows,cols, maxM1)));
VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)(ArrayType::Constant(rows,cols, maxM1))); VERIFY_IS_APPROX(m1, (m1.max)(ArrayType::Constant(rows,cols, minM1)));
// min/max with scalar input
VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, minM1), (m1.min)( minM1)); VERIFY_IS_APPROX(m1, (m1.min)( maxM1));
VERIFY_IS_APPROX(ArrayType::Constant(rows,cols, maxM1), (m1.max)( maxM1)); VERIFY_IS_APPROX(m1, (m1.max)( minM1));
}
void test_array() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( array(Array<float, 1, 1>()) ); CALL_SUBTEST_2( array(Array22f()) ); CALL_SUBTEST_3( array(Array44d()) ); CALL_SUBTEST_4( array(ArrayXXcf(internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE), internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_5( array(ArrayXXf(internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE), internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_6( array(ArrayXXi(internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE), internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE))) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( comparisons(Array<float, 1, 1>()) ); CALL_SUBTEST_2( comparisons(Array22f()) ); CALL_SUBTEST_3( comparisons(Array44d()) ); CALL_SUBTEST_5( comparisons(ArrayXXf(internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE), internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_6( comparisons(ArrayXXi(internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE), internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE))) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( min_max(Array<float, 1, 1>()) ); CALL_SUBTEST_2( min_max(Array22f()) ); CALL_SUBTEST_3( min_max(Array44d()) ); CALL_SUBTEST_5( min_max(ArrayXXf(internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE), internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE))) ); CALL_SUBTEST_6( min_max(ArrayXXi(internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE), internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE))) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( array_real(Array<float, 1, 1>()) ); CALL_SUBTEST_2( array_real(Array22f()) ); CALL_SUBTEST_3( array_real(Array44d()) ); CALL_SUBTEST_5( array_real(ArrayXXf(internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE), internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE))) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_4( array_complex(ArrayXXcf(internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE), internal::random<int>(1,STORMEIGEN_TEST_MAX_SIZE))) ); }
VERIFY((internal::is_same< internal::global_math_functions_filtering_base<int>::type, int >::value)); VERIFY((internal::is_same< internal::global_math_functions_filtering_base<float>::type, float >::value)); VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Array2i>::type, ArrayBase<Array2i> >::value)); typedef CwiseUnaryOp<internal::scalar_multiple_op<double>, ArrayXd > Xpr; VERIFY((internal::is_same< internal::global_math_functions_filtering_base<Xpr>::type, ArrayBase<Xpr> >::value)); }
|