|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
template<typename T> bool isNotNaN(const T& x) { return x==x; }
// workaround aggressive optimization in ICC
template<typename T> EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; }
template<typename T> bool isFinite(const T& x) { return isNotNaN(sub(x,x)); }
template<typename T> EIGEN_DONT_INLINE T copy(const T& x) { return x; }
template<typename MatrixType> void stable_norm(const MatrixType& m) { /* this test covers the following files:
StableNorm.h */ typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar;
// Check the basic machine-dependent constants.
{ int ibeta, it, iemin, iemax;
ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers
it = std::numeric_limits<RealScalar>::digits; // number of base-beta digits in mantissa
iemin = std::numeric_limits<RealScalar>::min_exponent; // minimum exponent
iemax = std::numeric_limits<RealScalar>::max_exponent; // maximum exponent
VERIFY( (!(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) || (it<=4 && ibeta <= 3 ) || it<2)) && "the stable norm algorithm cannot be guaranteed on this computer"); }
Index rows = m.rows(); Index cols = m.cols();
Scalar big = internal::random<Scalar>() * ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4)); Scalar small = internal::random<Scalar>() * ((std::numeric_limits<RealScalar>::min)() * RealScalar(1e4));
MatrixType vzero = MatrixType::Zero(rows, cols), vrand = MatrixType::Random(rows, cols), vbig(rows, cols), vsmall(rows,cols);
vbig.fill(big); vsmall.fill(small);
VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1)); VERIFY_IS_APPROX(vrand.stableNorm(), vrand.norm()); VERIFY_IS_APPROX(vrand.blueNorm(), vrand.norm()); VERIFY_IS_APPROX(vrand.hypotNorm(), vrand.norm());
RealScalar size = static_cast<RealScalar>(m.size());
// test isFinite
VERIFY(!isFinite( std::numeric_limits<RealScalar>::infinity())); VERIFY(!isFinite(internal::sqrt(-internal::abs(big))));
// test overflow
VERIFY(isFinite(internal::sqrt(size)*internal::abs(big))); VERIFY_IS_NOT_APPROX(internal::sqrt(copy(vbig.squaredNorm())), internal::abs(internal::sqrt(size)*big)); // here the default norm must fail
VERIFY_IS_APPROX(vbig.stableNorm(), internal::sqrt(size)*internal::abs(big)); VERIFY_IS_APPROX(vbig.blueNorm(), internal::sqrt(size)*internal::abs(big)); VERIFY_IS_APPROX(vbig.hypotNorm(), internal::sqrt(size)*internal::abs(big));
// test underflow
VERIFY(isFinite(internal::sqrt(size)*internal::abs(small))); VERIFY_IS_NOT_APPROX(internal::sqrt(copy(vsmall.squaredNorm())), internal::abs(internal::sqrt(size)*small)); // here the default norm must fail
VERIFY_IS_APPROX(vsmall.stableNorm(), internal::sqrt(size)*internal::abs(small)); VERIFY_IS_APPROX(vsmall.blueNorm(), internal::sqrt(size)*internal::abs(small)); VERIFY_IS_APPROX(vsmall.hypotNorm(), internal::sqrt(size)*internal::abs(small));
// Test compilation of cwise() version
VERIFY_IS_APPROX(vrand.colwise().stableNorm(), vrand.colwise().norm()); VERIFY_IS_APPROX(vrand.colwise().blueNorm(), vrand.colwise().norm()); VERIFY_IS_APPROX(vrand.colwise().hypotNorm(), vrand.colwise().norm()); VERIFY_IS_APPROX(vrand.rowwise().stableNorm(), vrand.rowwise().norm()); VERIFY_IS_APPROX(vrand.rowwise().blueNorm(), vrand.rowwise().norm()); VERIFY_IS_APPROX(vrand.rowwise().hypotNorm(), vrand.rowwise().norm()); }
void test_stable_norm() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( stable_norm(Matrix<float, 1, 1>()) ); CALL_SUBTEST_2( stable_norm(Vector4d()) ); CALL_SUBTEST_3( stable_norm(VectorXd(internal::random<int>(10,2000))) ); CALL_SUBTEST_4( stable_norm(VectorXf(internal::random<int>(10,2000))) ); CALL_SUBTEST_5( stable_norm(VectorXcd(internal::random<int>(10,2000))) ); } }
|