|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// discard stack allocation as that too bypasses malloc
#define EIGEN_STACK_ALLOCATION_LIMIT 0
#define EIGEN_RUNTIME_NO_MALLOC
#include "main.h"
#include <Eigen/SVD>
template<typename MatrixType, int QRPreconditioner> void jacobisvd_check_full(const MatrixType& m, const JacobiSVD<MatrixType, QRPreconditioner>& svd) { typedef typename MatrixType::Index Index; Index rows = m.rows(); Index cols = m.cols();
enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime };
typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType; typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType; typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType; typedef Matrix<Scalar, ColsAtCompileTime, 1> InputVectorType;
MatrixType sigma = MatrixType::Zero(rows,cols); sigma.diagonal() = svd.singularValues().template cast<Scalar>(); MatrixUType u = svd.matrixU(); MatrixVType v = svd.matrixV();
VERIFY_IS_APPROX(m, u * sigma * v.adjoint()); VERIFY_IS_UNITARY(u); VERIFY_IS_UNITARY(v); }
template<typename MatrixType, int QRPreconditioner> void jacobisvd_compare_to_full(const MatrixType& m, unsigned int computationOptions, const JacobiSVD<MatrixType, QRPreconditioner>& referenceSvd) { typedef typename MatrixType::Index Index; Index rows = m.rows(); Index cols = m.cols(); Index diagSize = (std::min)(rows, cols);
JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions);
VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues()); if(computationOptions & ComputeFullU) VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU()); if(computationOptions & ComputeThinU) VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize)); if(computationOptions & ComputeFullV) VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV()); if(computationOptions & ComputeThinV) VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize)); }
template<typename MatrixType, int QRPreconditioner> void jacobisvd_solve(const MatrixType& m, unsigned int computationOptions) { typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::Index Index; Index rows = m.rows(); Index cols = m.cols();
enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime };
typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType; typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols)); JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions); SolutionType x = svd.solve(rhs); // evaluate normal equation which works also for least-squares solutions
VERIFY_IS_APPROX(m.adjoint()*m*x,m.adjoint()*rhs); }
template<typename MatrixType, int QRPreconditioner> void jacobisvd_test_all_computation_options(const MatrixType& m) { if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols()) return; JacobiSVD<MatrixType, QRPreconditioner> fullSvd(m, ComputeFullU|ComputeFullV);
jacobisvd_check_full(m, fullSvd); jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeFullV);
if(QRPreconditioner == FullPivHouseholderQRPreconditioner) return;
jacobisvd_compare_to_full(m, ComputeFullU, fullSvd); jacobisvd_compare_to_full(m, ComputeFullV, fullSvd); jacobisvd_compare_to_full(m, 0, fullSvd);
if (MatrixType::ColsAtCompileTime == Dynamic) { // thin U/V are only available with dynamic number of columns
jacobisvd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd); jacobisvd_compare_to_full(m, ComputeThinV, fullSvd); jacobisvd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd); jacobisvd_compare_to_full(m, ComputeThinU , fullSvd); jacobisvd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd); jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeThinV); jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeFullV); jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeThinV);
// test reconstruction
typedef typename MatrixType::Index Index; Index diagSize = (std::min)(m.rows(), m.cols()); JacobiSVD<MatrixType, QRPreconditioner> svd(m, ComputeThinU | ComputeThinV); VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint()); } }
template<typename MatrixType> void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true) { MatrixType m = pickrandom ? MatrixType::Random(a.rows(), a.cols()) : a;
jacobisvd_test_all_computation_options<MatrixType, FullPivHouseholderQRPreconditioner>(m); jacobisvd_test_all_computation_options<MatrixType, ColPivHouseholderQRPreconditioner>(m); jacobisvd_test_all_computation_options<MatrixType, HouseholderQRPreconditioner>(m); jacobisvd_test_all_computation_options<MatrixType, NoQRPreconditioner>(m); }
template<typename MatrixType> void jacobisvd_verify_assert(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::Index Index; Index rows = m.rows(); Index cols = m.cols();
enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime };
typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType;
RhsType rhs(rows);
JacobiSVD<MatrixType> svd; VERIFY_RAISES_ASSERT(svd.matrixU()) VERIFY_RAISES_ASSERT(svd.singularValues()) VERIFY_RAISES_ASSERT(svd.matrixV()) VERIFY_RAISES_ASSERT(svd.solve(rhs))
MatrixType a = MatrixType::Zero(rows, cols); a.setZero(); svd.compute(a, 0); VERIFY_RAISES_ASSERT(svd.matrixU()) VERIFY_RAISES_ASSERT(svd.matrixV()) svd.singularValues(); VERIFY_RAISES_ASSERT(svd.solve(rhs))
if (ColsAtCompileTime == Dynamic) { svd.compute(a, ComputeThinU); svd.matrixU(); VERIFY_RAISES_ASSERT(svd.matrixV()) VERIFY_RAISES_ASSERT(svd.solve(rhs))
svd.compute(a, ComputeThinV); svd.matrixV(); VERIFY_RAISES_ASSERT(svd.matrixU()) VERIFY_RAISES_ASSERT(svd.solve(rhs))
JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner> svd_fullqr; VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeFullU|ComputeThinV)) VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeThinV)) VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeFullV)) } else { VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU)) VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV)) } }
template<typename MatrixType> void jacobisvd_method() { enum { Size = MatrixType::RowsAtCompileTime }; typedef typename MatrixType::RealScalar RealScalar; typedef Matrix<RealScalar, Size, 1> RealVecType; MatrixType m = MatrixType::Identity(); VERIFY_IS_APPROX(m.jacobiSvd().singularValues(), RealVecType::Ones()); VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixU()); VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixV()); VERIFY_IS_APPROX(m.jacobiSvd(ComputeFullU|ComputeFullV).solve(m), m); }
// work around stupid msvc error when constructing at compile time an expression that involves
// a division by zero, even if the numeric type has floating point
template<typename Scalar> EIGEN_DONT_INLINE Scalar zero() { return Scalar(0); }
// workaround aggressive optimization in ICC
template<typename T> EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; }
template<typename MatrixType> void jacobisvd_inf_nan() { // all this function does is verify we don't iterate infinitely on nan/inf values
JacobiSVD<MatrixType> svd; typedef typename MatrixType::Scalar Scalar; Scalar some_inf = Scalar(1) / zero<Scalar>(); VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf)); svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV);
Scalar some_nan = zero<Scalar>() / zero<Scalar>(); VERIFY(some_nan != some_nan); svd.compute(MatrixType::Constant(10,10,some_nan), ComputeFullU | ComputeFullV);
MatrixType m = MatrixType::Zero(10,10); m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf; svd.compute(m, ComputeFullU | ComputeFullV);
m = MatrixType::Zero(10,10); m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_nan; svd.compute(m, ComputeFullU | ComputeFullV); }
// Regression test for bug 286: JacobiSVD loops indefinitely with some
// matrices containing denormal numbers.
void jacobisvd_bug286() { #if defined __INTEL_COMPILER
// shut up warning #239: floating point underflow
#pragma warning push
#pragma warning disable 239
#endif
Matrix2d M; M << -7.90884e-313, -4.94e-324, 0, 5.60844e-313; #if defined __INTEL_COMPILER
#pragma warning pop
#endif
JacobiSVD<Matrix2d> svd; svd.compute(M); // just check we don't loop indefinitely
}
void jacobisvd_preallocate() { Vector3f v(3.f, 2.f, 1.f); MatrixXf m = v.asDiagonal();
internal::set_is_malloc_allowed(false); VERIFY_RAISES_ASSERT(VectorXf v(10);) JacobiSVD<MatrixXf> svd; internal::set_is_malloc_allowed(true); svd.compute(m); VERIFY_IS_APPROX(svd.singularValues(), v);
JacobiSVD<MatrixXf> svd2(3,3); internal::set_is_malloc_allowed(false); svd2.compute(m); internal::set_is_malloc_allowed(true); VERIFY_IS_APPROX(svd2.singularValues(), v); VERIFY_RAISES_ASSERT(svd2.matrixU()); VERIFY_RAISES_ASSERT(svd2.matrixV()); svd2.compute(m, ComputeFullU | ComputeFullV); VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity()); VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity()); internal::set_is_malloc_allowed(false); svd2.compute(m); internal::set_is_malloc_allowed(true);
JacobiSVD<MatrixXf> svd3(3,3,ComputeFullU|ComputeFullV); internal::set_is_malloc_allowed(false); svd2.compute(m); internal::set_is_malloc_allowed(true); VERIFY_IS_APPROX(svd2.singularValues(), v); VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity()); VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity()); internal::set_is_malloc_allowed(false); svd2.compute(m, ComputeFullU|ComputeFullV); internal::set_is_malloc_allowed(true); }
void test_jacobisvd() { CALL_SUBTEST_3(( jacobisvd_verify_assert(Matrix3f()) )); CALL_SUBTEST_4(( jacobisvd_verify_assert(Matrix4d()) )); CALL_SUBTEST_7(( jacobisvd_verify_assert(MatrixXf(10,12)) )); CALL_SUBTEST_8(( jacobisvd_verify_assert(MatrixXcd(7,5)) ));
for(int i = 0; i < g_repeat; i++) { Matrix2cd m; m << 0, 1, 0, 1; CALL_SUBTEST_1(( jacobisvd(m, false) )); m << 1, 0, 1, 0; CALL_SUBTEST_1(( jacobisvd(m, false) ));
Matrix2d n; n << 0, 0, 0, 0; CALL_SUBTEST_2(( jacobisvd(n, false) )); n << 0, 0, 0, 1; CALL_SUBTEST_2(( jacobisvd(n, false) )); CALL_SUBTEST_3(( jacobisvd<Matrix3f>() )); CALL_SUBTEST_4(( jacobisvd<Matrix4d>() )); CALL_SUBTEST_5(( jacobisvd<Matrix<float,3,5> >() )); CALL_SUBTEST_6(( jacobisvd<Matrix<double,Dynamic,2> >(Matrix<double,Dynamic,2>(10,2)) ));
int r = internal::random<int>(1, 30), c = internal::random<int>(1, 30); CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(r,c)) )); CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(r,c)) )); (void) r; (void) c;
// Test on inf/nan matrix
CALL_SUBTEST_7( jacobisvd_inf_nan<MatrixXf>() ); }
CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) )); CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3))) ));
// test matrixbase method
CALL_SUBTEST_1(( jacobisvd_method<Matrix2cd>() )); CALL_SUBTEST_3(( jacobisvd_method<Matrix3f>() ));
// Test problem size constructors
CALL_SUBTEST_7( JacobiSVD<MatrixXf>(10,10) );
// Check that preallocation avoids subsequent mallocs
CALL_SUBTEST_9( jacobisvd_preallocate() );
// Regression check for bug 286
CALL_SUBTEST_2( jacobisvd_bug286() ); }
|