|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "sparse.h"
template<typename Scalar> void sparse_vector(int rows, int cols) { double densityMat = (std::max)(8./(rows*cols), 0.01); double densityVec = (std::max)(8./float(rows), 0.1); typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; typedef Matrix<Scalar,Dynamic,1> DenseVector; typedef SparseVector<Scalar> SparseVectorType; typedef SparseMatrix<Scalar> SparseMatrixType; Scalar eps = 1e-6;
SparseMatrixType m1(rows,rows); SparseVectorType v1(rows), v2(rows), v3(rows); DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); DenseVector refV1 = DenseVector::Random(rows), refV2 = DenseVector::Random(rows), refV3 = DenseVector::Random(rows);
std::vector<int> zerocoords, nonzerocoords; initSparse<Scalar>(densityVec, refV1, v1, &zerocoords, &nonzerocoords); initSparse<Scalar>(densityMat, refM1, m1);
initSparse<Scalar>(densityVec, refV2, v2); initSparse<Scalar>(densityVec, refV3, v3);
Scalar s1 = internal::random<Scalar>();
// test coeff and coeffRef
for (unsigned int i=0; i<zerocoords.size(); ++i) { VERIFY_IS_MUCH_SMALLER_THAN( v1.coeff(zerocoords[i]), eps ); //VERIFY_RAISES_ASSERT( v1.coeffRef(zerocoords[i]) = 5 );
} { VERIFY(int(nonzerocoords.size()) == v1.nonZeros()); int j=0; for (typename SparseVectorType::InnerIterator it(v1); it; ++it,++j) { VERIFY(nonzerocoords[j]==it.index()); VERIFY(it.value()==v1.coeff(it.index())); VERIFY(it.value()==refV1.coeff(it.index())); } } VERIFY_IS_APPROX(v1, refV1);
v1.coeffRef(nonzerocoords[0]) = Scalar(5); refV1.coeffRef(nonzerocoords[0]) = Scalar(5); VERIFY_IS_APPROX(v1, refV1);
VERIFY_IS_APPROX(v1+v2, refV1+refV2); VERIFY_IS_APPROX(v1+v2+v3, refV1+refV2+refV3);
VERIFY_IS_APPROX(v1*s1-v2, refV1*s1-refV2);
VERIFY_IS_APPROX(v1*=s1, refV1*=s1); VERIFY_IS_APPROX(v1/=s1, refV1/=s1);
VERIFY_IS_APPROX(v1+=v2, refV1+=refV2); VERIFY_IS_APPROX(v1-=v2, refV1-=refV2);
VERIFY_IS_APPROX(v1.dot(v2), refV1.dot(refV2)); VERIFY_IS_APPROX(v1.dot(refV2), refV1.dot(refV2));
VERIFY_IS_APPROX(v1.dot(m1*v2), refV1.dot(refM1*refV2)); int i = internal::random<int>(0,rows-1); VERIFY_IS_APPROX(v1.dot(m1.col(i)), refV1.dot(refM1.col(i)));
VERIFY_IS_APPROX(v1.squaredNorm(), refV1.squaredNorm());
// test aliasing
VERIFY_IS_APPROX((v1 = -v1), (refV1 = -refV1)); VERIFY_IS_APPROX((v1 = v1.transpose()), (refV1 = refV1.transpose().eval())); VERIFY_IS_APPROX((v1 += -v1), (refV1 += -refV1));
}
void test_sparse_vector() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( sparse_vector<double>(8, 8) ); CALL_SUBTEST_2( sparse_vector<std::complex<double> >(16, 16) ); CALL_SUBTEST_1( sparse_vector<double>(299, 535) ); } }
|