|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/Geometry>
#include <Eigen/LU>
#include <Eigen/SVD>
template<typename Scalar> void geometry(void) { /* this test covers the following files:
Cross.h Quaternion.h, Transform.cpp */
typedef Matrix<Scalar,2,2> Matrix2; typedef Matrix<Scalar,3,3> Matrix3; typedef Matrix<Scalar,4,4> Matrix4; typedef Matrix<Scalar,2,1> Vector2; typedef Matrix<Scalar,3,1> Vector3; typedef Matrix<Scalar,4,1> Vector4; typedef Quaternion<Scalar> Quaternionx; typedef AngleAxis<Scalar> AngleAxisx; typedef Transform<Scalar,2> Transform2; typedef Transform<Scalar,3> Transform3; typedef Scaling<Scalar,2> Scaling2; typedef Scaling<Scalar,3> Scaling3; typedef Translation<Scalar,2> Translation2; typedef Translation<Scalar,3> Translation3;
Scalar largeEps = test_precision<Scalar>(); if (ei_is_same_type<Scalar,float>::ret) largeEps = 1e-2f;
Vector3 v0 = Vector3::Random(), v1 = Vector3::Random(), v2 = Vector3::Random(); Vector2 u0 = Vector2::Random(); Matrix3 matrot1;
Scalar a = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
// cross product
VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).eigen2_dot(v1), Scalar(1)); Matrix3 m; m << v0.normalized(), (v0.cross(v1)).normalized(), (v0.cross(v1).cross(v0)).normalized(); VERIFY(m.isUnitary());
// Quaternion: Identity(), setIdentity();
Quaternionx q1, q2; q2.setIdentity(); VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs()); q1.coeffs().setRandom(); VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs());
// unitOrthogonal
VERIFY_IS_MUCH_SMALLER_THAN(u0.unitOrthogonal().eigen2_dot(u0), Scalar(1)); VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().eigen2_dot(v0), Scalar(1)); VERIFY_IS_APPROX(u0.unitOrthogonal().norm(), Scalar(1)); VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), Scalar(1));
VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0); VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(M_PI), v0.unitOrthogonal()) * v0); VERIFY_IS_APPROX(ei_cos(a)*v0.squaredNorm(), v0.eigen2_dot(AngleAxisx(a, v0.unitOrthogonal()) * v0)); m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint(); VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized())); VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m);
q1 = AngleAxisx(a, v0.normalized()); q2 = AngleAxisx(a, v1.normalized());
// angular distance
Scalar refangle = ei_abs(AngleAxisx(q1.inverse()*q2).angle()); if (refangle>Scalar(M_PI)) refangle = Scalar(2)*Scalar(M_PI) - refangle; if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps) { VERIFY(ei_isApprox(q1.angularDistance(q2), refangle, largeEps)); }
// rotation matrix conversion
VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2); VERIFY_IS_APPROX(q1 * q2 * v2, q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
VERIFY( (q2*q1).isApprox(q1*q2, largeEps) || !(q2 * q1 * v2).isApprox( q1.toRotationMatrix() * q2.toRotationMatrix() * v2));
q2 = q1.toRotationMatrix(); VERIFY_IS_APPROX(q1*v1,q2*v1);
matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX()) * AngleAxisx(Scalar(0.2), Vector3::UnitY()) * AngleAxisx(Scalar(0.3), Vector3::UnitZ()); VERIFY_IS_APPROX(matrot1 * v1, AngleAxisx(Scalar(0.1), Vector3(1,0,0)).toRotationMatrix() * (AngleAxisx(Scalar(0.2), Vector3(0,1,0)).toRotationMatrix() * (AngleAxisx(Scalar(0.3), Vector3(0,0,1)).toRotationMatrix() * v1)));
// angle-axis conversion
AngleAxisx aa = q1; VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);
// from two vector creation
VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized()); VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized());
// inverse and conjugate
VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1); VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1);
// AngleAxis
VERIFY_IS_APPROX(AngleAxisx(a,v1.normalized()).toRotationMatrix(), Quaternionx(AngleAxisx(a,v1.normalized())).toRotationMatrix());
AngleAxisx aa1; m = q1.toRotationMatrix(); aa1 = m; VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(), Quaternionx(m).toRotationMatrix());
// Transform
// TODO complete the tests !
a = 0; while (ei_abs(a)<Scalar(0.1)) a = ei_random<Scalar>(-Scalar(0.4)*Scalar(M_PI), Scalar(0.4)*Scalar(M_PI)); q1 = AngleAxisx(a, v0.normalized()); Transform3 t0, t1, t2; // first test setIdentity() and Identity()
t0.setIdentity(); VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); t0.matrix().setZero(); t0 = Transform3::Identity(); VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
t0.linear() = q1.toRotationMatrix(); t1.setIdentity(); t1.linear() = q1.toRotationMatrix();
v0 << 50, 2, 1;//= ei_random_matrix<Vector3>().cwiseProduct(Vector3(10,2,0.5));
t0.scale(v0); t1.prescale(v0);
VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).norm(), v0.x()); //VERIFY(!ei_isApprox((t1 * Vector3(1,0,0)).norm(), v0.x()));
t0.setIdentity(); t1.setIdentity(); v1 << 1, 2, 3; t0.linear() = q1.toRotationMatrix(); t0.pretranslate(v0); t0.scale(v1); t1.linear() = q1.conjugate().toRotationMatrix(); t1.prescale(v1.cwise().inverse()); t1.translate(-v0);
VERIFY((t0.matrix() * t1.matrix()).isIdentity(test_precision<Scalar>()));
t1.fromPositionOrientationScale(v0, q1, v1); VERIFY_IS_APPROX(t1.matrix(), t0.matrix()); VERIFY_IS_APPROX(t1*v1, t0*v1);
t0.setIdentity(); t0.scale(v0).rotate(q1.toRotationMatrix()); t1.setIdentity(); t1.scale(v0).rotate(q1); VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t0.setIdentity(); t0.scale(v0).rotate(AngleAxisx(q1)); VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix()); VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix());
// More transform constructors, operator=, operator*=
Matrix3 mat3 = Matrix3::Random(); Matrix4 mat4; mat4 << mat3 , Vector3::Zero() , Vector4::Zero().transpose(); Transform3 tmat3(mat3), tmat4(mat4); tmat4.matrix()(3,3) = Scalar(1); VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix());
Scalar a3 = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); Vector3 v3 = Vector3::Random().normalized(); AngleAxisx aa3(a3, v3); Transform3 t3(aa3); Transform3 t4; t4 = aa3; VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); t4.rotate(AngleAxisx(-a3,v3)); VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity()); t4 *= aa3; VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
v3 = Vector3::Random(); Translation3 tv3(v3); Transform3 t5(tv3); t4 = tv3; VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); t4.translate(-v3); VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity()); t4 *= tv3; VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
Scaling3 sv3(v3); Transform3 t6(sv3); t4 = sv3; VERIFY_IS_APPROX(t6.matrix(), t4.matrix()); t4.scale(v3.cwise().inverse()); VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity()); t4 *= sv3; VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
// matrix * transform
VERIFY_IS_APPROX(Transform3(t3.matrix()*t4).matrix(), Transform3(t3*t4).matrix());
// chained Transform product
VERIFY_IS_APPROX(((t3*t4)*t5).matrix(), (t3*(t4*t5)).matrix());
// check that Transform product doesn't have aliasing problems
t5 = t4; t5 = t5*t5; VERIFY_IS_APPROX(t5, t4*t4);
// 2D transformation
Transform2 t20, t21; Vector2 v20 = Vector2::Random(); Vector2 v21 = Vector2::Random(); for (int k=0; k<2; ++k) if (ei_abs(v21[k])<Scalar(1e-3)) v21[k] = Scalar(1e-3); t21.setIdentity(); t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix(); VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(), t21.pretranslate(v20).scale(v21).matrix());
t21.setIdentity(); t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix(); VERIFY( (t20.fromPositionOrientationScale(v20,a,v21) * (t21.prescale(v21.cwise().inverse()).translate(-v20))).matrix().isIdentity(test_precision<Scalar>()) );
// Transform - new API
// 3D
t0.setIdentity(); t0.rotate(q1).scale(v0).translate(v0); // mat * scaling and mat * translation
t1 = (Matrix3(q1) * Scaling3(v0)) * Translation3(v0); VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); // mat * transformation and scaling * translation
t1 = Matrix3(q1) * (Scaling3(v0) * Translation3(v0)); VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t0.setIdentity(); t0.prerotate(q1).prescale(v0).pretranslate(v0); // translation * scaling and transformation * mat
t1 = (Translation3(v0) * Scaling3(v0)) * Matrix3(q1); VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); // scaling * mat and translation * mat
t1 = Translation3(v0) * (Scaling3(v0) * Matrix3(q1)); VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t0.setIdentity(); t0.scale(v0).translate(v0).rotate(q1); // translation * mat and scaling * transformation
t1 = Scaling3(v0) * (Translation3(v0) * Matrix3(q1)); VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); // transformation * scaling
t0.scale(v0); t1 = t1 * Scaling3(v0); VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); // transformation * translation
t0.translate(v0); t1 = t1 * Translation3(v0); VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); // translation * transformation
t0.pretranslate(v0); t1 = Translation3(v0) * t1; VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// transform * quaternion
t0.rotate(q1); t1 = t1 * q1; VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// translation * quaternion
t0.translate(v1).rotate(q1); t1 = t1 * (Translation3(v1) * q1); VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// scaling * quaternion
t0.scale(v1).rotate(q1); t1 = t1 * (Scaling3(v1) * q1); VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// quaternion * transform
t0.prerotate(q1); t1 = q1 * t1; VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// quaternion * translation
t0.rotate(q1).translate(v1); t1 = t1 * (q1 * Translation3(v1)); VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// quaternion * scaling
t0.rotate(q1).scale(v1); t1 = t1 * (q1 * Scaling3(v1)); VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// translation * vector
t0.setIdentity(); t0.translate(v0); VERIFY_IS_APPROX(t0 * v1, Translation3(v0) * v1);
// scaling * vector
t0.setIdentity(); t0.scale(v0); VERIFY_IS_APPROX(t0 * v1, Scaling3(v0) * v1);
// test transform inversion
t0.setIdentity(); t0.translate(v0); t0.linear().setRandom(); VERIFY_IS_APPROX(t0.inverse(Affine), t0.matrix().inverse()); t0.setIdentity(); t0.translate(v0).rotate(q1); VERIFY_IS_APPROX(t0.inverse(Isometry), t0.matrix().inverse());
// test extract rotation and scaling
t0.setIdentity(); t0.translate(v0).rotate(q1).scale(v1); VERIFY_IS_APPROX(t0.rotation() * v1, Matrix3(q1) * v1);
Matrix3 mat_rotation, mat_scaling; t0.setIdentity(); t0.translate(v0).rotate(q1).scale(v1); t0.computeRotationScaling(&mat_rotation, &mat_scaling); VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling); VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity()); VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1)); t0.computeScalingRotation(&mat_scaling, &mat_rotation); VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation); VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity()); VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
// test casting
Transform<float,3> t1f = t1.template cast<float>(); VERIFY_IS_APPROX(t1f.template cast<Scalar>(),t1); Transform<double,3> t1d = t1.template cast<double>(); VERIFY_IS_APPROX(t1d.template cast<Scalar>(),t1);
Translation3 tr1(v0); Translation<float,3> tr1f = tr1.template cast<float>(); VERIFY_IS_APPROX(tr1f.template cast<Scalar>(),tr1); Translation<double,3> tr1d = tr1.template cast<double>(); VERIFY_IS_APPROX(tr1d.template cast<Scalar>(),tr1);
Scaling3 sc1(v0); Scaling<float,3> sc1f = sc1.template cast<float>(); VERIFY_IS_APPROX(sc1f.template cast<Scalar>(),sc1); Scaling<double,3> sc1d = sc1.template cast<double>(); VERIFY_IS_APPROX(sc1d.template cast<Scalar>(),sc1);
Quaternion<float> q1f = q1.template cast<float>(); VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1); Quaternion<double> q1d = q1.template cast<double>(); VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1);
AngleAxis<float> aa1f = aa1.template cast<float>(); VERIFY_IS_APPROX(aa1f.template cast<Scalar>(),aa1); AngleAxis<double> aa1d = aa1.template cast<double>(); VERIFY_IS_APPROX(aa1d.template cast<Scalar>(),aa1);
Rotation2D<Scalar> r2d1(ei_random<Scalar>()); Rotation2D<float> r2d1f = r2d1.template cast<float>(); VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(),r2d1); Rotation2D<double> r2d1d = r2d1.template cast<double>(); VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(),r2d1);
m = q1; // m.col(1) = Vector3(0,ei_random<Scalar>(),ei_random<Scalar>()).normalized();
// m.col(0) = Vector3(-1,0,0).normalized();
// m.col(2) = m.col(0).cross(m.col(1));
#define VERIFY_EULER(I,J,K, X,Y,Z) { \
Vector3 ea = m.eulerAngles(I,J,K); \ Matrix3 m1 = Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z())); \ VERIFY_IS_APPROX(m, Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z()))); \ } VERIFY_EULER(0,1,2, X,Y,Z); VERIFY_EULER(0,1,0, X,Y,X); VERIFY_EULER(0,2,1, X,Z,Y); VERIFY_EULER(0,2,0, X,Z,X);
VERIFY_EULER(1,2,0, Y,Z,X); VERIFY_EULER(1,2,1, Y,Z,Y); VERIFY_EULER(1,0,2, Y,X,Z); VERIFY_EULER(1,0,1, Y,X,Y);
VERIFY_EULER(2,0,1, Z,X,Y); VERIFY_EULER(2,0,2, Z,X,Z); VERIFY_EULER(2,1,0, Z,Y,X); VERIFY_EULER(2,1,2, Z,Y,Z);
// colwise/rowwise cross product
mat3.setRandom(); Vector3 vec3 = Vector3::Random(); Matrix3 mcross; int i = ei_random<int>(0,2); mcross = mat3.colwise().cross(vec3); VERIFY_IS_APPROX(mcross.col(i), mat3.col(i).cross(vec3)); mcross = mat3.rowwise().cross(vec3); VERIFY_IS_APPROX(mcross.row(i), mat3.row(i).cross(vec3));
}
void test_eigen2_geometry() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( geometry<float>() ); CALL_SUBTEST_2( geometry<double>() ); } }
|