|
|
// Copyright 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// The purpose of this file is to generate Google Test output under
// various conditions. The output will then be verified by
// googletest-output-test.py to ensure that Google Test generates the
// desired messages. Therefore, most tests in this file are MEANT TO
// FAIL.
#include "gtest/gtest-spi.h"
#include "gtest/gtest.h"
#include "src/gtest-internal-inl.h"
#include <stdlib.h>
#if _MSC_VER
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4127 /* conditional expression is constant */) #endif // _MSC_VER
#if GTEST_IS_THREADSAFE
using testing::ScopedFakeTestPartResultReporter; using testing::TestPartResultArray;
using testing::internal::Notification; using testing::internal::ThreadWithParam; #endif
namespace posix = ::testing::internal::posix;
// Tests catching fatal failures.
// A subroutine used by the following test.
void TestEq1(int x) { ASSERT_EQ(1, x); }
// This function calls a test subroutine, catches the fatal failure it
// generates, and then returns early.
void TryTestSubroutine() { // Calls a subrountine that yields a fatal failure.
TestEq1(2);
// Catches the fatal failure and aborts the test.
//
// The testing::Test:: prefix is necessary when calling
// HasFatalFailure() outside of a TEST, TEST_F, or test fixture.
if (testing::Test::HasFatalFailure()) return;
// If we get here, something is wrong.
FAIL() << "This should never be reached."; }
TEST(PassingTest, PassingTest1) { }
TEST(PassingTest, PassingTest2) { }
// Tests that parameters of failing parameterized tests are printed in the
// failing test summary.
class FailingParamTest : public testing::TestWithParam<int> {};
TEST_P(FailingParamTest, Fails) { EXPECT_EQ(1, GetParam()); }
// This generates a test which will fail. Google Test is expected to print
// its parameter when it outputs the list of all failed tests.
INSTANTIATE_TEST_SUITE_P(PrintingFailingParams, FailingParamTest, testing::Values(2));
// Tests that an empty value for the test suite basename yields just
// the test name without any prior /
class EmptyBasenameParamInst : public testing::TestWithParam<int> {};
TEST_P(EmptyBasenameParamInst, Passes) { EXPECT_EQ(1, GetParam()); }
INSTANTIATE_TEST_SUITE_P(, EmptyBasenameParamInst, testing::Values(1));
static const char kGoldenString[] = "\"Line\0 1\"\nLine 2";
TEST(NonfatalFailureTest, EscapesStringOperands) { std::string actual = "actual \"string\""; EXPECT_EQ(kGoldenString, actual);
const char* golden = kGoldenString; EXPECT_EQ(golden, actual); }
TEST(NonfatalFailureTest, DiffForLongStrings) { std::string golden_str(kGoldenString, sizeof(kGoldenString) - 1); EXPECT_EQ(golden_str, "Line 2"); }
// Tests catching a fatal failure in a subroutine.
TEST(FatalFailureTest, FatalFailureInSubroutine) { printf("(expecting a failure that x should be 1)\n");
TryTestSubroutine(); }
// Tests catching a fatal failure in a nested subroutine.
TEST(FatalFailureTest, FatalFailureInNestedSubroutine) { printf("(expecting a failure that x should be 1)\n");
// Calls a subrountine that yields a fatal failure.
TryTestSubroutine();
// Catches the fatal failure and aborts the test.
//
// When calling HasFatalFailure() inside a TEST, TEST_F, or test
// fixture, the testing::Test:: prefix is not needed.
if (HasFatalFailure()) return;
// If we get here, something is wrong.
FAIL() << "This should never be reached."; }
// Tests HasFatalFailure() after a failed EXPECT check.
TEST(FatalFailureTest, NonfatalFailureInSubroutine) { printf("(expecting a failure on false)\n"); EXPECT_TRUE(false); // Generates a nonfatal failure
ASSERT_FALSE(HasFatalFailure()); // This should succeed.
}
// Tests interleaving user logging and Google Test assertions.
TEST(LoggingTest, InterleavingLoggingAndAssertions) { static const int a[4] = { 3, 9, 2, 6 };
printf("(expecting 2 failures on (3) >= (a[i]))\n"); for (int i = 0; i < static_cast<int>(sizeof(a)/sizeof(*a)); i++) { printf("i == %d\n", i); EXPECT_GE(3, a[i]); } }
// Tests the SCOPED_TRACE macro.
// A helper function for testing SCOPED_TRACE.
void SubWithoutTrace(int n) { EXPECT_EQ(1, n); ASSERT_EQ(2, n); }
// Another helper function for testing SCOPED_TRACE.
void SubWithTrace(int n) { SCOPED_TRACE(testing::Message() << "n = " << n);
SubWithoutTrace(n); }
TEST(SCOPED_TRACETest, AcceptedValues) { SCOPED_TRACE("literal string"); SCOPED_TRACE(std::string("std::string")); SCOPED_TRACE(1337); // streamable type
const char* null_value = nullptr; SCOPED_TRACE(null_value);
ADD_FAILURE() << "Just checking that all these values work fine."; }
// Tests that SCOPED_TRACE() obeys lexical scopes.
TEST(SCOPED_TRACETest, ObeysScopes) { printf("(expected to fail)\n");
// There should be no trace before SCOPED_TRACE() is invoked.
ADD_FAILURE() << "This failure is expected, and shouldn't have a trace.";
{ SCOPED_TRACE("Expected trace"); // After SCOPED_TRACE(), a failure in the current scope should contain
// the trace.
ADD_FAILURE() << "This failure is expected, and should have a trace."; }
// Once the control leaves the scope of the SCOPED_TRACE(), there
// should be no trace again.
ADD_FAILURE() << "This failure is expected, and shouldn't have a trace."; }
// Tests that SCOPED_TRACE works inside a loop.
TEST(SCOPED_TRACETest, WorksInLoop) { printf("(expected to fail)\n");
for (int i = 1; i <= 2; i++) { SCOPED_TRACE(testing::Message() << "i = " << i);
SubWithoutTrace(i); } }
// Tests that SCOPED_TRACE works in a subroutine.
TEST(SCOPED_TRACETest, WorksInSubroutine) { printf("(expected to fail)\n");
SubWithTrace(1); SubWithTrace(2); }
// Tests that SCOPED_TRACE can be nested.
TEST(SCOPED_TRACETest, CanBeNested) { printf("(expected to fail)\n");
SCOPED_TRACE(""); // A trace without a message.
SubWithTrace(2); }
// Tests that multiple SCOPED_TRACEs can be used in the same scope.
TEST(SCOPED_TRACETest, CanBeRepeated) { printf("(expected to fail)\n");
SCOPED_TRACE("A"); ADD_FAILURE() << "This failure is expected, and should contain trace point A.";
SCOPED_TRACE("B"); ADD_FAILURE() << "This failure is expected, and should contain trace point A and B.";
{ SCOPED_TRACE("C"); ADD_FAILURE() << "This failure is expected, and should " << "contain trace point A, B, and C."; }
SCOPED_TRACE("D"); ADD_FAILURE() << "This failure is expected, and should " << "contain trace point A, B, and D."; }
#if GTEST_IS_THREADSAFE
// Tests that SCOPED_TRACE()s can be used concurrently from multiple
// threads. Namely, an assertion should be affected by
// SCOPED_TRACE()s in its own thread only.
// Here's the sequence of actions that happen in the test:
//
// Thread A (main) | Thread B (spawned)
// ===============================|================================
// spawns thread B |
// -------------------------------+--------------------------------
// waits for n1 | SCOPED_TRACE("Trace B");
// | generates failure #1
// | notifies n1
// -------------------------------+--------------------------------
// SCOPED_TRACE("Trace A"); | waits for n2
// generates failure #2 |
// notifies n2 |
// -------------------------------|--------------------------------
// waits for n3 | generates failure #3
// | trace B dies
// | generates failure #4
// | notifies n3
// -------------------------------|--------------------------------
// generates failure #5 | finishes
// trace A dies |
// generates failure #6 |
// -------------------------------|--------------------------------
// waits for thread B to finish |
struct CheckPoints { Notification n1; Notification n2; Notification n3; };
static void ThreadWithScopedTrace(CheckPoints* check_points) { { SCOPED_TRACE("Trace B"); ADD_FAILURE() << "Expected failure #1 (in thread B, only trace B alive)."; check_points->n1.Notify(); check_points->n2.WaitForNotification();
ADD_FAILURE() << "Expected failure #3 (in thread B, trace A & B both alive)."; } // Trace B dies here.
ADD_FAILURE() << "Expected failure #4 (in thread B, only trace A alive)."; check_points->n3.Notify(); }
TEST(SCOPED_TRACETest, WorksConcurrently) { printf("(expecting 6 failures)\n");
CheckPoints check_points; ThreadWithParam<CheckPoints*> thread(&ThreadWithScopedTrace, &check_points, nullptr); check_points.n1.WaitForNotification();
{ SCOPED_TRACE("Trace A"); ADD_FAILURE() << "Expected failure #2 (in thread A, trace A & B both alive)."; check_points.n2.Notify(); check_points.n3.WaitForNotification();
ADD_FAILURE() << "Expected failure #5 (in thread A, only trace A alive)."; } // Trace A dies here.
ADD_FAILURE() << "Expected failure #6 (in thread A, no trace alive)."; thread.Join(); } #endif // GTEST_IS_THREADSAFE
// Tests basic functionality of the ScopedTrace utility (most of its features
// are already tested in SCOPED_TRACETest).
TEST(ScopedTraceTest, WithExplicitFileAndLine) { testing::ScopedTrace trace("explicit_file.cc", 123, "expected trace message"); ADD_FAILURE() << "Check that the trace is attached to a particular location."; }
TEST(DisabledTestsWarningTest, DISABLED_AlsoRunDisabledTestsFlagSuppressesWarning) { // This test body is intentionally empty. Its sole purpose is for
// verifying that the --gtest_also_run_disabled_tests flag
// suppresses the "YOU HAVE 12 DISABLED TESTS" warning at the end of
// the test output.
}
// Tests using assertions outside of TEST and TEST_F.
//
// This function creates two failures intentionally.
void AdHocTest() { printf("The non-test part of the code is expected to have 2 failures.\n\n"); EXPECT_TRUE(false); EXPECT_EQ(2, 3); }
// Runs all TESTs, all TEST_Fs, and the ad hoc test.
int RunAllTests() { AdHocTest(); return RUN_ALL_TESTS(); }
// Tests non-fatal failures in the fixture constructor.
class NonFatalFailureInFixtureConstructorTest : public testing::Test { protected: NonFatalFailureInFixtureConstructorTest() { printf("(expecting 5 failures)\n"); ADD_FAILURE() << "Expected failure #1, in the test fixture c'tor."; }
~NonFatalFailureInFixtureConstructorTest() override { ADD_FAILURE() << "Expected failure #5, in the test fixture d'tor."; }
void SetUp() override { ADD_FAILURE() << "Expected failure #2, in SetUp()."; }
void TearDown() override { ADD_FAILURE() << "Expected failure #4, in TearDown."; } };
TEST_F(NonFatalFailureInFixtureConstructorTest, FailureInConstructor) { ADD_FAILURE() << "Expected failure #3, in the test body."; }
// Tests fatal failures in the fixture constructor.
class FatalFailureInFixtureConstructorTest : public testing::Test { protected: FatalFailureInFixtureConstructorTest() { printf("(expecting 2 failures)\n"); Init(); }
~FatalFailureInFixtureConstructorTest() override { ADD_FAILURE() << "Expected failure #2, in the test fixture d'tor."; }
void SetUp() override { ADD_FAILURE() << "UNEXPECTED failure in SetUp(). " << "We should never get here, as the test fixture c'tor " << "had a fatal failure."; }
void TearDown() override { ADD_FAILURE() << "UNEXPECTED failure in TearDown(). " << "We should never get here, as the test fixture c'tor " << "had a fatal failure."; }
private: void Init() { FAIL() << "Expected failure #1, in the test fixture c'tor."; } };
TEST_F(FatalFailureInFixtureConstructorTest, FailureInConstructor) { ADD_FAILURE() << "UNEXPECTED failure in the test body. " << "We should never get here, as the test fixture c'tor " << "had a fatal failure."; }
// Tests non-fatal failures in SetUp().
class NonFatalFailureInSetUpTest : public testing::Test { protected: ~NonFatalFailureInSetUpTest() override { Deinit(); }
void SetUp() override { printf("(expecting 4 failures)\n"); ADD_FAILURE() << "Expected failure #1, in SetUp()."; }
void TearDown() override { FAIL() << "Expected failure #3, in TearDown()."; }
private: void Deinit() { FAIL() << "Expected failure #4, in the test fixture d'tor."; } };
TEST_F(NonFatalFailureInSetUpTest, FailureInSetUp) { FAIL() << "Expected failure #2, in the test function."; }
// Tests fatal failures in SetUp().
class FatalFailureInSetUpTest : public testing::Test { protected: ~FatalFailureInSetUpTest() override { Deinit(); }
void SetUp() override { printf("(expecting 3 failures)\n"); FAIL() << "Expected failure #1, in SetUp()."; }
void TearDown() override { FAIL() << "Expected failure #2, in TearDown()."; }
private: void Deinit() { FAIL() << "Expected failure #3, in the test fixture d'tor."; } };
TEST_F(FatalFailureInSetUpTest, FailureInSetUp) { FAIL() << "UNEXPECTED failure in the test function. " << "We should never get here, as SetUp() failed."; }
TEST(AddFailureAtTest, MessageContainsSpecifiedFileAndLineNumber) { ADD_FAILURE_AT("foo.cc", 42) << "Expected nonfatal failure in foo.cc"; }
TEST(GtestFailAtTest, MessageContainsSpecifiedFileAndLineNumber) { GTEST_FAIL_AT("foo.cc", 42) << "Expected fatal failure in foo.cc"; }
#if GTEST_IS_THREADSAFE
// A unary function that may die.
void DieIf(bool should_die) { GTEST_CHECK_(!should_die) << " - death inside DieIf()."; }
// Tests running death tests in a multi-threaded context.
// Used for coordination between the main and the spawn thread.
struct SpawnThreadNotifications { SpawnThreadNotifications() {}
Notification spawn_thread_started; Notification spawn_thread_ok_to_terminate;
private: GTEST_DISALLOW_COPY_AND_ASSIGN_(SpawnThreadNotifications); };
// The function to be executed in the thread spawn by the
// MultipleThreads test (below).
static void ThreadRoutine(SpawnThreadNotifications* notifications) { // Signals the main thread that this thread has started.
notifications->spawn_thread_started.Notify();
// Waits for permission to finish from the main thread.
notifications->spawn_thread_ok_to_terminate.WaitForNotification(); }
// This is a death-test test, but it's not named with a DeathTest
// suffix. It starts threads which might interfere with later
// death tests, so it must run after all other death tests.
class DeathTestAndMultiThreadsTest : public testing::Test { protected: // Starts a thread and waits for it to begin.
void SetUp() override { thread_.reset(new ThreadWithParam<SpawnThreadNotifications*>( &ThreadRoutine, ¬ifications_, nullptr)); notifications_.spawn_thread_started.WaitForNotification(); } // Tells the thread to finish, and reaps it.
// Depending on the version of the thread library in use,
// a manager thread might still be left running that will interfere
// with later death tests. This is unfortunate, but this class
// cleans up after itself as best it can.
void TearDown() override { notifications_.spawn_thread_ok_to_terminate.Notify(); }
private: SpawnThreadNotifications notifications_; std::unique_ptr<ThreadWithParam<SpawnThreadNotifications*> > thread_; };
#endif // GTEST_IS_THREADSAFE
// The MixedUpTestSuiteTest test case verifies that Google Test will fail a
// test if it uses a different fixture class than what other tests in
// the same test case use. It deliberately contains two fixture
// classes with the same name but defined in different namespaces.
// The MixedUpTestSuiteWithSameTestNameTest test case verifies that
// when the user defines two tests with the same test case name AND
// same test name (but in different namespaces), the second test will
// fail.
namespace foo {
class MixedUpTestSuiteTest : public testing::Test { };
TEST_F(MixedUpTestSuiteTest, FirstTestFromNamespaceFoo) {} TEST_F(MixedUpTestSuiteTest, SecondTestFromNamespaceFoo) {}
class MixedUpTestSuiteWithSameTestNameTest : public testing::Test { };
TEST_F(MixedUpTestSuiteWithSameTestNameTest, TheSecondTestWithThisNameShouldFail) {}
} // namespace foo
namespace bar {
class MixedUpTestSuiteTest : public testing::Test { };
// The following two tests are expected to fail. We rely on the
// golden file to check that Google Test generates the right error message.
TEST_F(MixedUpTestSuiteTest, ThisShouldFail) {} TEST_F(MixedUpTestSuiteTest, ThisShouldFailToo) {}
class MixedUpTestSuiteWithSameTestNameTest : public testing::Test { };
// Expected to fail. We rely on the golden file to check that Google Test
// generates the right error message.
TEST_F(MixedUpTestSuiteWithSameTestNameTest, TheSecondTestWithThisNameShouldFail) {}
} // namespace bar
// The following two test cases verify that Google Test catches the user
// error of mixing TEST and TEST_F in the same test case. The first
// test case checks the scenario where TEST_F appears before TEST, and
// the second one checks where TEST appears before TEST_F.
class TEST_F_before_TEST_in_same_test_case : public testing::Test { };
TEST_F(TEST_F_before_TEST_in_same_test_case, DefinedUsingTEST_F) {}
// Expected to fail. We rely on the golden file to check that Google Test
// generates the right error message.
TEST(TEST_F_before_TEST_in_same_test_case, DefinedUsingTESTAndShouldFail) {}
class TEST_before_TEST_F_in_same_test_case : public testing::Test { };
TEST(TEST_before_TEST_F_in_same_test_case, DefinedUsingTEST) {}
// Expected to fail. We rely on the golden file to check that Google Test
// generates the right error message.
TEST_F(TEST_before_TEST_F_in_same_test_case, DefinedUsingTEST_FAndShouldFail) { }
// Used for testing EXPECT_NONFATAL_FAILURE() and EXPECT_FATAL_FAILURE().
int global_integer = 0;
// Tests that EXPECT_NONFATAL_FAILURE() can reference global variables.
TEST(ExpectNonfatalFailureTest, CanReferenceGlobalVariables) { global_integer = 0; EXPECT_NONFATAL_FAILURE({ EXPECT_EQ(1, global_integer) << "Expected non-fatal failure."; }, "Expected non-fatal failure."); }
// Tests that EXPECT_NONFATAL_FAILURE() can reference local variables
// (static or not).
TEST(ExpectNonfatalFailureTest, CanReferenceLocalVariables) { int m = 0; static int n; n = 1; EXPECT_NONFATAL_FAILURE({ EXPECT_EQ(m, n) << "Expected non-fatal failure."; }, "Expected non-fatal failure."); }
// Tests that EXPECT_NONFATAL_FAILURE() succeeds when there is exactly
// one non-fatal failure and no fatal failure.
TEST(ExpectNonfatalFailureTest, SucceedsWhenThereIsOneNonfatalFailure) { EXPECT_NONFATAL_FAILURE({ ADD_FAILURE() << "Expected non-fatal failure."; }, "Expected non-fatal failure."); }
// Tests that EXPECT_NONFATAL_FAILURE() fails when there is no
// non-fatal failure.
TEST(ExpectNonfatalFailureTest, FailsWhenThereIsNoNonfatalFailure) { printf("(expecting a failure)\n"); EXPECT_NONFATAL_FAILURE({ }, ""); }
// Tests that EXPECT_NONFATAL_FAILURE() fails when there are two
// non-fatal failures.
TEST(ExpectNonfatalFailureTest, FailsWhenThereAreTwoNonfatalFailures) { printf("(expecting a failure)\n"); EXPECT_NONFATAL_FAILURE({ ADD_FAILURE() << "Expected non-fatal failure 1."; ADD_FAILURE() << "Expected non-fatal failure 2."; }, ""); }
// Tests that EXPECT_NONFATAL_FAILURE() fails when there is one fatal
// failure.
TEST(ExpectNonfatalFailureTest, FailsWhenThereIsOneFatalFailure) { printf("(expecting a failure)\n"); EXPECT_NONFATAL_FAILURE({ FAIL() << "Expected fatal failure."; }, ""); }
// Tests that EXPECT_NONFATAL_FAILURE() fails when the statement being
// tested returns.
TEST(ExpectNonfatalFailureTest, FailsWhenStatementReturns) { printf("(expecting a failure)\n"); EXPECT_NONFATAL_FAILURE({ return; }, ""); }
#if GTEST_HAS_EXCEPTIONS
// Tests that EXPECT_NONFATAL_FAILURE() fails when the statement being
// tested throws.
TEST(ExpectNonfatalFailureTest, FailsWhenStatementThrows) { printf("(expecting a failure)\n"); try { EXPECT_NONFATAL_FAILURE({ throw 0; }, ""); } catch(int) { // NOLINT
} }
#endif // GTEST_HAS_EXCEPTIONS
// Tests that EXPECT_FATAL_FAILURE() can reference global variables.
TEST(ExpectFatalFailureTest, CanReferenceGlobalVariables) { global_integer = 0; EXPECT_FATAL_FAILURE({ ASSERT_EQ(1, global_integer) << "Expected fatal failure."; }, "Expected fatal failure."); }
// Tests that EXPECT_FATAL_FAILURE() can reference local static
// variables.
TEST(ExpectFatalFailureTest, CanReferenceLocalStaticVariables) { static int n; n = 1; EXPECT_FATAL_FAILURE({ ASSERT_EQ(0, n) << "Expected fatal failure."; }, "Expected fatal failure."); }
// Tests that EXPECT_FATAL_FAILURE() succeeds when there is exactly
// one fatal failure and no non-fatal failure.
TEST(ExpectFatalFailureTest, SucceedsWhenThereIsOneFatalFailure) { EXPECT_FATAL_FAILURE({ FAIL() << "Expected fatal failure."; }, "Expected fatal failure."); }
// Tests that EXPECT_FATAL_FAILURE() fails when there is no fatal
// failure.
TEST(ExpectFatalFailureTest, FailsWhenThereIsNoFatalFailure) { printf("(expecting a failure)\n"); EXPECT_FATAL_FAILURE({ }, ""); }
// A helper for generating a fatal failure.
void FatalFailure() { FAIL() << "Expected fatal failure."; }
// Tests that EXPECT_FATAL_FAILURE() fails when there are two
// fatal failures.
TEST(ExpectFatalFailureTest, FailsWhenThereAreTwoFatalFailures) { printf("(expecting a failure)\n"); EXPECT_FATAL_FAILURE({ FatalFailure(); FatalFailure(); }, ""); }
// Tests that EXPECT_FATAL_FAILURE() fails when there is one non-fatal
// failure.
TEST(ExpectFatalFailureTest, FailsWhenThereIsOneNonfatalFailure) { printf("(expecting a failure)\n"); EXPECT_FATAL_FAILURE({ ADD_FAILURE() << "Expected non-fatal failure."; }, ""); }
// Tests that EXPECT_FATAL_FAILURE() fails when the statement being
// tested returns.
TEST(ExpectFatalFailureTest, FailsWhenStatementReturns) { printf("(expecting a failure)\n"); EXPECT_FATAL_FAILURE({ return; }, ""); }
#if GTEST_HAS_EXCEPTIONS
// Tests that EXPECT_FATAL_FAILURE() fails when the statement being
// tested throws.
TEST(ExpectFatalFailureTest, FailsWhenStatementThrows) { printf("(expecting a failure)\n"); try { EXPECT_FATAL_FAILURE({ throw 0; }, ""); } catch(int) { // NOLINT
} }
#endif // GTEST_HAS_EXCEPTIONS
// This #ifdef block tests the output of value-parameterized tests.
std::string ParamNameFunc(const testing::TestParamInfo<std::string>& info) { return info.param; }
class ParamTest : public testing::TestWithParam<std::string> { };
TEST_P(ParamTest, Success) { EXPECT_EQ("a", GetParam()); }
TEST_P(ParamTest, Failure) { EXPECT_EQ("b", GetParam()) << "Expected failure"; }
INSTANTIATE_TEST_SUITE_P(PrintingStrings, ParamTest, testing::Values(std::string("a")), ParamNameFunc);
// This #ifdef block tests the output of typed tests.
#if GTEST_HAS_TYPED_TEST
template <typename T> class TypedTest : public testing::Test { };
TYPED_TEST_SUITE(TypedTest, testing::Types<int>);
TYPED_TEST(TypedTest, Success) { EXPECT_EQ(0, TypeParam()); }
TYPED_TEST(TypedTest, Failure) { EXPECT_EQ(1, TypeParam()) << "Expected failure"; }
typedef testing::Types<char, int> TypesForTestWithNames;
template <typename T> class TypedTestWithNames : public testing::Test {};
class TypedTestNames { public: template <typename T> static std::string GetName(int i) { if (std::is_same<T, char>::value) return std::string("char") + ::testing::PrintToString(i); if (std::is_same<T, int>::value) return std::string("int") + ::testing::PrintToString(i); } };
TYPED_TEST_SUITE(TypedTestWithNames, TypesForTestWithNames, TypedTestNames);
TYPED_TEST(TypedTestWithNames, Success) {}
TYPED_TEST(TypedTestWithNames, Failure) { FAIL(); }
#endif // GTEST_HAS_TYPED_TEST
// This #ifdef block tests the output of type-parameterized tests.
#if GTEST_HAS_TYPED_TEST_P
template <typename T> class TypedTestP : public testing::Test { };
TYPED_TEST_SUITE_P(TypedTestP);
TYPED_TEST_P(TypedTestP, Success) { EXPECT_EQ(0U, TypeParam()); }
TYPED_TEST_P(TypedTestP, Failure) { EXPECT_EQ(1U, TypeParam()) << "Expected failure"; }
REGISTER_TYPED_TEST_SUITE_P(TypedTestP, Success, Failure);
typedef testing::Types<unsigned char, unsigned int> UnsignedTypes; INSTANTIATE_TYPED_TEST_SUITE_P(Unsigned, TypedTestP, UnsignedTypes);
class TypedTestPNames { public: template <typename T> static std::string GetName(int i) { if (std::is_same<T, unsigned char>::value) { return std::string("unsignedChar") + ::testing::PrintToString(i); } if (std::is_same<T, unsigned int>::value) { return std::string("unsignedInt") + ::testing::PrintToString(i); } } };
INSTANTIATE_TYPED_TEST_SUITE_P(UnsignedCustomName, TypedTestP, UnsignedTypes, TypedTestPNames);
#endif // GTEST_HAS_TYPED_TEST_P
#if GTEST_HAS_DEATH_TEST
// We rely on the golden file to verify that tests whose test case
// name ends with DeathTest are run first.
TEST(ADeathTest, ShouldRunFirst) { }
# if GTEST_HAS_TYPED_TEST
// We rely on the golden file to verify that typed tests whose test
// case name ends with DeathTest are run first.
template <typename T> class ATypedDeathTest : public testing::Test { };
typedef testing::Types<int, double> NumericTypes; TYPED_TEST_SUITE(ATypedDeathTest, NumericTypes);
TYPED_TEST(ATypedDeathTest, ShouldRunFirst) { }
# endif // GTEST_HAS_TYPED_TEST
# if GTEST_HAS_TYPED_TEST_P
// We rely on the golden file to verify that type-parameterized tests
// whose test case name ends with DeathTest are run first.
template <typename T> class ATypeParamDeathTest : public testing::Test { };
TYPED_TEST_SUITE_P(ATypeParamDeathTest);
TYPED_TEST_P(ATypeParamDeathTest, ShouldRunFirst) { }
REGISTER_TYPED_TEST_SUITE_P(ATypeParamDeathTest, ShouldRunFirst);
INSTANTIATE_TYPED_TEST_SUITE_P(My, ATypeParamDeathTest, NumericTypes);
# endif // GTEST_HAS_TYPED_TEST_P
#endif // GTEST_HAS_DEATH_TEST
// Tests various failure conditions of
// EXPECT_{,NON}FATAL_FAILURE{,_ON_ALL_THREADS}.
class ExpectFailureTest : public testing::Test { public: // Must be public and not protected due to a bug in g++ 3.4.2.
enum FailureMode { FATAL_FAILURE, NONFATAL_FAILURE }; static void AddFailure(FailureMode failure) { if (failure == FATAL_FAILURE) { FAIL() << "Expected fatal failure."; } else { ADD_FAILURE() << "Expected non-fatal failure."; } } };
TEST_F(ExpectFailureTest, ExpectFatalFailure) { // Expected fatal failure, but succeeds.
printf("(expecting 1 failure)\n"); EXPECT_FATAL_FAILURE(SUCCEED(), "Expected fatal failure."); // Expected fatal failure, but got a non-fatal failure.
printf("(expecting 1 failure)\n"); EXPECT_FATAL_FAILURE(AddFailure(NONFATAL_FAILURE), "Expected non-fatal " "failure."); // Wrong message.
printf("(expecting 1 failure)\n"); EXPECT_FATAL_FAILURE(AddFailure(FATAL_FAILURE), "Some other fatal failure " "expected."); }
TEST_F(ExpectFailureTest, ExpectNonFatalFailure) { // Expected non-fatal failure, but succeeds.
printf("(expecting 1 failure)\n"); EXPECT_NONFATAL_FAILURE(SUCCEED(), "Expected non-fatal failure."); // Expected non-fatal failure, but got a fatal failure.
printf("(expecting 1 failure)\n"); EXPECT_NONFATAL_FAILURE(AddFailure(FATAL_FAILURE), "Expected fatal failure."); // Wrong message.
printf("(expecting 1 failure)\n"); EXPECT_NONFATAL_FAILURE(AddFailure(NONFATAL_FAILURE), "Some other non-fatal " "failure."); }
#if GTEST_IS_THREADSAFE
class ExpectFailureWithThreadsTest : public ExpectFailureTest { protected: static void AddFailureInOtherThread(FailureMode failure) { ThreadWithParam<FailureMode> thread(&AddFailure, failure, nullptr); thread.Join(); } };
TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailure) { // We only intercept the current thread.
printf("(expecting 2 failures)\n"); EXPECT_FATAL_FAILURE(AddFailureInOtherThread(FATAL_FAILURE), "Expected fatal failure."); }
TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailure) { // We only intercept the current thread.
printf("(expecting 2 failures)\n"); EXPECT_NONFATAL_FAILURE(AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure."); }
typedef ExpectFailureWithThreadsTest ScopedFakeTestPartResultReporterTest;
// Tests that the ScopedFakeTestPartResultReporter only catches failures from
// the current thread if it is instantiated with INTERCEPT_ONLY_CURRENT_THREAD.
TEST_F(ScopedFakeTestPartResultReporterTest, InterceptOnlyCurrentThread) { printf("(expecting 2 failures)\n"); TestPartResultArray results; { ScopedFakeTestPartResultReporter reporter( ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD, &results); AddFailureInOtherThread(FATAL_FAILURE); AddFailureInOtherThread(NONFATAL_FAILURE); } // The two failures should not have been intercepted.
EXPECT_EQ(0, results.size()) << "This shouldn't fail."; }
#endif // GTEST_IS_THREADSAFE
TEST_F(ExpectFailureTest, ExpectFatalFailureOnAllThreads) { // Expected fatal failure, but succeeds.
printf("(expecting 1 failure)\n"); EXPECT_FATAL_FAILURE_ON_ALL_THREADS(SUCCEED(), "Expected fatal failure."); // Expected fatal failure, but got a non-fatal failure.
printf("(expecting 1 failure)\n"); EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailure(NONFATAL_FAILURE), "Expected non-fatal failure."); // Wrong message.
printf("(expecting 1 failure)\n"); EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailure(FATAL_FAILURE), "Some other fatal failure expected."); }
TEST_F(ExpectFailureTest, ExpectNonFatalFailureOnAllThreads) { // Expected non-fatal failure, but succeeds.
printf("(expecting 1 failure)\n"); EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(SUCCEED(), "Expected non-fatal " "failure."); // Expected non-fatal failure, but got a fatal failure.
printf("(expecting 1 failure)\n"); EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddFailure(FATAL_FAILURE), "Expected fatal failure."); // Wrong message.
printf("(expecting 1 failure)\n"); EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddFailure(NONFATAL_FAILURE), "Some other non-fatal failure."); }
class DynamicFixture : public testing::Test { protected: DynamicFixture() { printf("DynamicFixture()\n"); } ~DynamicFixture() override { printf("~DynamicFixture()\n"); } void SetUp() override { printf("DynamicFixture::SetUp\n"); } void TearDown() override { printf("DynamicFixture::TearDown\n"); }
static void SetUpTestSuite() { printf("DynamicFixture::SetUpTestSuite\n"); } static void TearDownTestSuite() { printf("DynamicFixture::TearDownTestSuite\n"); } };
template <bool Pass> class DynamicTest : public DynamicFixture { public: void TestBody() override { EXPECT_TRUE(Pass); } };
auto dynamic_test = ( // Register two tests with the same fixture correctly.
testing::RegisterTest( "DynamicFixture", "DynamicTestPass", nullptr, nullptr, __FILE__, __LINE__, []() -> DynamicFixture* { return new DynamicTest<true>; }), testing::RegisterTest( "DynamicFixture", "DynamicTestFail", nullptr, nullptr, __FILE__, __LINE__, []() -> DynamicFixture* { return new DynamicTest<false>; }),
// Register the same fixture with another name. That's fine.
testing::RegisterTest( "DynamicFixtureAnotherName", "DynamicTestPass", nullptr, nullptr, __FILE__, __LINE__, []() -> DynamicFixture* { return new DynamicTest<true>; }),
// Register two tests with the same fixture incorrectly.
testing::RegisterTest( "BadDynamicFixture1", "FixtureBase", nullptr, nullptr, __FILE__, __LINE__, []() -> DynamicFixture* { return new DynamicTest<true>; }), testing::RegisterTest( "BadDynamicFixture1", "TestBase", nullptr, nullptr, __FILE__, __LINE__, []() -> testing::Test* { return new DynamicTest<true>; }),
// Register two tests with the same fixture incorrectly by ommiting the
// return type.
testing::RegisterTest( "BadDynamicFixture2", "FixtureBase", nullptr, nullptr, __FILE__, __LINE__, []() -> DynamicFixture* { return new DynamicTest<true>; }), testing::RegisterTest("BadDynamicFixture2", "Derived", nullptr, nullptr, __FILE__, __LINE__, []() { return new DynamicTest<true>; }));
// Two test environments for testing testing::AddGlobalTestEnvironment().
class FooEnvironment : public testing::Environment { public: void SetUp() override { printf("%s", "FooEnvironment::SetUp() called.\n"); }
void TearDown() override { printf("%s", "FooEnvironment::TearDown() called.\n"); FAIL() << "Expected fatal failure."; } };
class BarEnvironment : public testing::Environment { public: void SetUp() override { printf("%s", "BarEnvironment::SetUp() called.\n"); }
void TearDown() override { printf("%s", "BarEnvironment::TearDown() called.\n"); ADD_FAILURE() << "Expected non-fatal failure."; } };
// The main function.
//
// The idea is to use Google Test to run all the tests we have defined (some
// of them are intended to fail), and then compare the test results
// with the "golden" file.
int main(int argc, char **argv) { testing::GTEST_FLAG(print_time) = false;
// We just run the tests, knowing some of them are intended to fail.
// We will use a separate Python script to compare the output of
// this program with the golden file.
// It's hard to test InitGoogleTest() directly, as it has many
// global side effects. The following line serves as a sanity test
// for it.
testing::InitGoogleTest(&argc, argv); bool internal_skip_environment_and_ad_hoc_tests = std::count(argv, argv + argc, std::string("internal_skip_environment_and_ad_hoc_tests")) > 0;
#if GTEST_HAS_DEATH_TEST
if (testing::internal::GTEST_FLAG(internal_run_death_test) != "") { // Skip the usual output capturing if we're running as the child
// process of an threadsafe-style death test.
# if GTEST_OS_WINDOWS
posix::FReopen("nul:", "w", stdout); # else
posix::FReopen("/dev/null", "w", stdout); # endif // GTEST_OS_WINDOWS
return RUN_ALL_TESTS(); } #endif // GTEST_HAS_DEATH_TEST
if (internal_skip_environment_and_ad_hoc_tests) return RUN_ALL_TESTS();
// Registers two global test environments.
// The golden file verifies that they are set up in the order they
// are registered, and torn down in the reverse order.
testing::AddGlobalTestEnvironment(new FooEnvironment); testing::AddGlobalTestEnvironment(new BarEnvironment); #if _MSC_VER
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4127
#endif // _MSC_VER
return RunAllTests(); }
|