|
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "common.h"
/** ZHEMV performs the matrix-vector operation
* * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n hermitian matrix. */ int EIGEN_BLAS_FUNC(hemv)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy) { Scalar* a = reinterpret_cast<Scalar*>(pa); Scalar* x = reinterpret_cast<Scalar*>(px); Scalar* y = reinterpret_cast<Scalar*>(py); Scalar alpha = *reinterpret_cast<Scalar*>(palpha); Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
// check arguments
int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(*n<0) info = 2; else if(*lda<std::max(1,*n)) info = 5; else if(*incx==0) info = 7; else if(*incy==0) info = 10; if(info) return xerbla_(SCALAR_SUFFIX_UP"HEMV ",&info,6);
if(*n==0) return 1;
Scalar* actual_x = get_compact_vector(x,*n,*incx); Scalar* actual_y = get_compact_vector(y,*n,*incy);
if(beta!=Scalar(1)) { if(beta==Scalar(0)) vector(actual_y, *n).setZero(); else vector(actual_y, *n) *= beta; }
if(alpha!=Scalar(0)) { // TODO performs a direct call to the underlying implementation function
if(UPLO(*uplo)==UP) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Upper>() * (alpha * vector(actual_x,*n)); else if(UPLO(*uplo)==LO) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Lower>() * (alpha * vector(actual_x,*n)); }
if(actual_x!=x) delete[] actual_x; if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy);
return 1; }
/** ZHBMV performs the matrix-vector operation
* * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n hermitian band matrix, with k super-diagonals. */ // int EIGEN_BLAS_FUNC(hbmv)(char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda,
// RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
// {
// return 1;
// }
/** ZHPMV performs the matrix-vector operation
* * y := alpha*A*x + beta*y, * * where alpha and beta are scalars, x and y are n element vectors and * A is an n by n hermitian matrix, supplied in packed form. */ // int EIGEN_BLAS_FUNC(hpmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
// {
// return 1;
// }
/** ZHPR performs the hermitian rank 1 operation
* * A := alpha*x*conjg( x' ) + A, * * where alpha is a real scalar, x is an n element vector and A is an * n by n hermitian matrix, supplied in packed form. */ // int EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *alpha, RealScalar *x, int *incx, RealScalar *ap)
// {
// return 1;
// }
/** ZHPR2 performs the hermitian rank 2 operation
* * A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, * * where alpha is a scalar, x and y are n element vectors and A is an * n by n hermitian matrix, supplied in packed form. */ // int EIGEN_BLAS_FUNC(hpr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *x, int *incx, RealScalar *y, int *incy, RealScalar *ap)
// {
// return 1;
// }
/** ZHER performs the hermitian rank 1 operation
* * A := alpha*x*conjg( x' ) + A, * * where alpha is a real scalar, x is an n element vector and A is an * n by n hermitian matrix. */ int EIGEN_BLAS_FUNC(her)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pa, int *lda) { Scalar* x = reinterpret_cast<Scalar*>(px); Scalar* a = reinterpret_cast<Scalar*>(pa); RealScalar alpha = *reinterpret_cast<RealScalar*>(palpha);
int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(*n<0) info = 2; else if(*incx==0) info = 5; else if(*lda<std::max(1,*n)) info = 7; if(info) return xerbla_(SCALAR_SUFFIX_UP"HER ",&info,6);
if(alpha==RealScalar(0)) return 1;
Scalar* x_cpy = get_compact_vector(x, *n, *incx);
// TODO perform direct calls to underlying implementation
// if(UPLO(*uplo)==LO) matrix(a,*n,*n,*lda).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n), alpha);
// else if(UPLO(*uplo)==UP) matrix(a,*n,*n,*lda).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n), alpha);
if(UPLO(*uplo)==LO) for(int j=0;j<*n;++j) matrix(a,*n,*n,*lda).col(j).tail(*n-j) += alpha * internal::conj(x_cpy[j]) * vector(x_cpy+j,*n-j); else for(int j=0;j<*n;++j) matrix(a,*n,*n,*lda).col(j).head(j+1) += alpha * internal::conj(x_cpy[j]) * vector(x_cpy,j+1);
matrix(a,*n,*n,*lda).diagonal().imag().setZero();
if(x_cpy!=x) delete[] x_cpy;
return 1; }
/** ZHER2 performs the hermitian rank 2 operation
* * A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, * * where alpha is a scalar, x and y are n element vectors and A is an n * by n hermitian matrix. */ int EIGEN_BLAS_FUNC(her2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) { Scalar* x = reinterpret_cast<Scalar*>(px); Scalar* y = reinterpret_cast<Scalar*>(py); Scalar* a = reinterpret_cast<Scalar*>(pa); Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0; if(UPLO(*uplo)==INVALID) info = 1; else if(*n<0) info = 2; else if(*incx==0) info = 5; else if(*incy==0) info = 7; else if(*lda<std::max(1,*n)) info = 9; if(info) return xerbla_(SCALAR_SUFFIX_UP"HER2 ",&info,6);
if(alpha==Scalar(0)) return 1;
Scalar* x_cpy = get_compact_vector(x, *n, *incx); Scalar* y_cpy = get_compact_vector(y, *n, *incy);
// TODO perform direct calls to underlying implementation
if(UPLO(*uplo)==LO) matrix(a,*n,*n,*lda).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n),vector(y_cpy,*n),alpha); else if(UPLO(*uplo)==UP) matrix(a,*n,*n,*lda).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n),vector(y_cpy,*n),alpha);
matrix(a,*n,*n,*lda).diagonal().imag().setZero();
if(x_cpy!=x) delete[] x_cpy; if(y_cpy!=y) delete[] y_cpy;
return 1; }
/** ZGERU performs the rank 1 operation
* * A := alpha*x*y' + A, * * where alpha is a scalar, x is an m element vector, y is an n element * vector and A is an m by n matrix. */ int EIGEN_BLAS_FUNC(geru)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) { Scalar* x = reinterpret_cast<Scalar*>(px); Scalar* y = reinterpret_cast<Scalar*>(py); Scalar* a = reinterpret_cast<Scalar*>(pa); Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0; if(*m<0) info = 1; else if(*n<0) info = 2; else if(*incx==0) info = 5; else if(*incy==0) info = 7; else if(*lda<std::max(1,*m)) info = 9; if(info) return xerbla_(SCALAR_SUFFIX_UP"GERU ",&info,6);
if(alpha==Scalar(0)) return 1;
Scalar* x_cpy = get_compact_vector(x,*m,*incx); Scalar* y_cpy = get_compact_vector(y,*n,*incy);
// TODO perform direct calls to underlying implementation
matrix(a,*m,*n,*lda) += alpha * vector(x_cpy,*m) * vector(y_cpy,*n).transpose();
if(x_cpy!=x) delete[] x_cpy; if(y_cpy!=y) delete[] y_cpy;
return 1; }
/** ZGERC performs the rank 1 operation
* * A := alpha*x*conjg( y' ) + A, * * where alpha is a scalar, x is an m element vector, y is an n element * vector and A is an m by n matrix. */ int EIGEN_BLAS_FUNC(gerc)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) { Scalar* x = reinterpret_cast<Scalar*>(px); Scalar* y = reinterpret_cast<Scalar*>(py); Scalar* a = reinterpret_cast<Scalar*>(pa); Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0; if(*m<0) info = 1; else if(*n<0) info = 2; else if(*incx==0) info = 5; else if(*incy==0) info = 7; else if(*lda<std::max(1,*m)) info = 9; if(info) return xerbla_(SCALAR_SUFFIX_UP"GERC ",&info,6);
if(alpha==Scalar(0)) return 1;
Scalar* x_cpy = get_compact_vector(x,*m,*incx); Scalar* y_cpy = get_compact_vector(y,*n,*incy);
// TODO perform direct calls to underlying implementation
matrix(a,*m,*n,*lda) += alpha * vector(x_cpy,*m) * vector(y_cpy,*n).adjoint();
if(x_cpy!=x) delete[] x_cpy; if(y_cpy!=y) delete[] y_cpy;
return 1; }
|